697
Views
0
CrossRef citations to date
0
Altmetric
Review

Microfluidic Cell Chips for High-Throughput Drug Screening

, , &
Pages 921-937 | Received 01 Feb 2016, Accepted 23 Mar 2016, Published online: 13 Apr 2016

References

  • FDA Issues Advice to Make Earliest Stages Of Clinical Drug Development More Efficient . www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/2006/ucm108576.htm.
  • Macarron R , BanksMN, BojanicDet al. Impact of high-throughput screening in biomedical research. Nat. Rev. Drug Discov. 10 (3), 188–195 (2011).
  • AIM Biotech . www.aimbiotech.com/chips.html.
  • 3D Biotek Perfusion Bioreactor System with Pump www.sigmaaldrich.com/catalog/product/aldrich/z755354?lang=en®ion=US.
  • Sung JH , ShulerML. A micro cell culture analog (mu CCA) with 3-D hydrogel culture of multiple cell lines to assess metabolism-dependent cytotoxicity of anti-cancer drugs. Lab Chip9 (10), 1385–1394 (2009).
  • Dereli-Korkut Z , AkaydinHD, AhmedAHR, JiangXJ, WangSH. Three dimensional microfluidic cell arrays for ex vivo drug screening with mimicked vascular flow. Anal. Chem. 86 (6), 2997–3004 (2014).
  • Niu Y , BaiJ, KammRD, WangY, WangC. Validating antimetastatic effects of natural products in an engineered microfluidic platform mimicking tumor microenvironment. Mol. Pharm. 11 (7), 2022–2029 (2014).
  • Mehta G , MehtaK, SudDet al. Quantitative measurement and control of oxygen levels in microfluidic poly(dimethylsiloxane) bioreactors during cell culture. Biomed. Microdevices9 (2), 123–134 (2007).
  • Zheng B , RoachLS, IsmagilovRF. Screening of protein crystallization conditions on a microfluidic chip using nanoliter-size droplets. J. Am. Chem. Soc. 125 (37), 11170–11171 (2003).
  • Yamashita T , TanakaY, IdotaN, SatoK, MawatariK, KitamoriT. Cultivation and recovery of vascular endothelial cells in microchannels of a separable micro-chemical chip. Biomaterials32 (10), 2459–2465 (2011).
  • Zheng XT , YuL, LiPWet al. On-chip investigation of cell-drug interactions. Adv. Drug Del. Rev. 65 (11–12), 1556–1574 (2013).
  • Gates BD , XuQB, StewartM, RyanD, WillsonCG, WhitesidesGM. New approaches to nanofabrication: molding, printing, and other techniques. Chem. Rev. 105 (4), 1171–1196 (2005).
  • Byun I , ParkJ, KimJ, KimB. Fabrication of PDMS Nano-stamp by replicating Si Nano-moulds fabricated by interference lithography. Proc. Prec. Eng. Nanotechnol. (Aspen2011)516, 25–29 (2012).
  • Lei KF . Materials and fabrication techniques for nano- and microfluidic devices. In : Microfluidics in Detection Science: Lab-on-a-chip Technologies. The Royal Society of Chemistry, Cambridge, UK, 1–28 (2015).
  • Palchesko RN , ZhangL, SunY, FeinbergAW. Development of polydimethylsiloxane substrates with tunable elastic modulus to study cell mechanobiology in muscle and nerve. PLoS ONE7 (12), e51499 (2012).
  • Zhou JW , KhodakovDA, EllisAV, VoelckerNH. Surface modification for PDMS-based microfluidic devices. Electrophoresis33 (1), 89–104 (2012).
  • Vickers JA , CaulumMM, HenryCS. Generation of hydrophilic poly(dimethylsiloxane) for high-performance microchip electrophoresis. Anal. Chem. 78 (21), 7446–7452 (2006).
  • Park JY , AhnD, ChoiYYet al. Surface chemistry modification of PDMS elastomers with boiling water improves cellular adhesion. Sensors and Actuators B-Chemical173, 765–771 (2012).
  • Wang L , SunB, ZiemerKS, BarabinoGA, CarrierRL. Chemical and physical modifications to poly(dimethylsiloxane) surfaces affect adhesion of Caco-2 cells. J. Biomed. Mater. Res. A93a (4), 1260–1271 (2010).
  • Zhang HB , ChiaoM. Anti-fouling coatings of poly(dimethylsiloxane) devices for biological and biomedical applications. J. Med. Biol. Eng. 35 (2), 143–155 (2015).
  • Wang J , BettingerCJ, LangerRS, BorensteinJT. Biodegradable microfluidic scaffolds for tissue engineering from amino alcohol-based poly(ester amide) elastomers. Organogenesis6 (4), 212–216 (2010).
  • Domachuk P , TsiorisK, OmenettoFG, KaplanDL. Bio-microfluidics: biomaterials and biomimetic designs. Adv. Mater. 22 (2), 249–260 (2010).
  • Waldbaur A , RappH, LangeK, RappBE. Let there be chip-towards rapid prototyping of microfluidic devices: one-step manufacturing processes. Anal. Methods3 (12), 2681–2716 (2011).
  • Ren K , ZhouJ, WuH. Materials for microfluidic chip fabrication. Acc. Chem. Res. 46 (11), 2396–2406 (2013).
  • Cabodi M , ChoiNW, GleghornJP, LeeCSD, BonassarLJ, StroockAD. A microfluidic biomaterial. J. Am. Chem. Soc. 127 (40), 13788–13789 (2005).
  • Tseng P , MurrayC, KimD, Di CarloD. Research highlights: printing the future of microfabrication. Lab Chip14 (9), 1491–1495 (2014).
  • Rodriguez-Rivera V , WeidnerJW, YostMJ. Three-dimensional biomimetic technology: novel biorubber creates defined micro- and macro-scale architectures in collagen hydrogels. J. Vis. Exp. 12 (108), e53578 (2016).
  • Bettinger CJ , WeinbergEJ, KuligKMet al. Three-dimensional microfluidic tissue-engineering scaffolds using a flexible biodegradable polymer. Adv. Mater. (Deerfield Beach, Fla.)18 (2), 165–169 (2005).
  • Yetisen AK , AkramMS, LoweCR. Paper-based microfluidic point-of-care diagnostic devices. Lab Chip13 (12), 2210–2251 (2013).
  • Cate DM , AdkinsJA, MettakoonpitakJ, HenryCS. Recent developments in paper-based microfluidic devices. Anal. Chem. 87 (1), 19–41 (2015).
  • Hansson J , YasugaH, HaraldssonT, Van Der WijngaartW. Synthetic microfluidic paper: high surface area and high porosity polymer micropillar arrays. Lab Chip16 (2), 298–304 (2016).
  • Paguirigan A , BeebeDJ. Gelatin based microfluidic devices for cell culture. Lab Chip6 (3), 407–413 (2006).
  • Zhang W , LinS, WangCet al. PMMA/PDMS valves and pumps for disposable microfluidics. Lab Chip9 (21), 3088–3094 (2009).
  • Au AK , LeeW, FolchA. Mail-order microfluidics: evaluation of stereolithography for the production of microfluidic devices. Lab Chip14 (7), 1294–1301 (2014).
  • Kang HW , ChoDW. Development of an indirect stereolithography technology for scaffold fabrication with a wide range of biomaterial selectivity. Tissue Eng. C Methods18 (9), 719–729 (2012).
  • Khalil S , SunW. Bioprinting endothelial cells with alginate for 3D tissue constructs. J. Biomech. Eng. 131 (11), 111002 (2009).
  • Au AK , LaiHY, UtelaBR, FolchA. Microvalves and micropumps for BioMEMS. Micromachines-Basel2 (2), 179–220 (2011).
  • King KR , WangSH, IrimiaD, JayaramanA, TonerM, YarmushML. A high-throughput microfluidic real-time gene expression living cell array. Lab Chip7 (1), 77–85 (2007).
  • Wu MH , HuangSB, CuiZF, CuiZ, LeeGB. A high throughput perfusion-based microbioreactor platform integrated with pneumatic micropumps for three-dimensional cell culture. Biomed. Microdevices10 (2), 309–319 (2008).
  • Lau ATH , YipHM, NgKCC, CuiX, LamRHW. Dynamics of microvalve operations in integrated microfluidics. Micromachines-Basel5 (1), 50–65 (2014).
  • Walker GM , BeebeDJ. A passive pumping method for microfluidic devices. Lab Chip2 (3), 131–134 (2002).
  • Pedro JR , DavidJB, JustinCW. A review of tubeless microfluidic devices. In : Microfluidics and Nanotechnology. CRC Press, FL, USA, 221–264 (2014).
  • Chen YL , GaoD, LiuHX, LinS, JiangYY. Drug cytotoxicity and signaling pathway analysis with three-dimensional tumor spheroids in a microwell-based microfluidic chip for drug screening. Anal. Chim. Acta898, 85–92 (2015).
  • Park J , YoonTH. Microfluidic image cytometry (mu FIC) assessments of silver nanoparticle cytotoxicity. Bull. Korean Chem. Soc. 33 (12), 4023–4027 (2012).
  • Ye NN , QinJH, ShiWW, LiuX, LinBC. Cell-based high content screening using an integrated microfluidic device. Lab Chip7 (12), 1696–1704 (2007).
  • Hung PJ , LeePJ, SabounchiP, LinR, LeeLP. Continuous perfusion microfluidic cell culture array for high-throughput cell-based assays. Biotechnol. Bioeng. 89 (1), 1–8 (2005).
  • Flaim CJ , ChienS, BhatiaSN. An extracellular matrix microarray for probing cellular differentiation. Nat. Methods2 (2), 119–125 (2005).
  • Englert DL , MansonMD, JayaramanA. Flow-based microfluidic device for quantifying bacterial chemotaxis in stable, competing gradients. Appl. Environ. Microbiol. 75 (13), 4557–4564 (2009).
  • An D , KimK, KimJ. Microfluidic system based high throughput drug screening system for Curcumin/TRAIL combinational chemotherapy in human prostate cancer PC3 cells. Biomol. Ther. (Seoul)22 (4), 355–362 (2014).
  • Liu D , WangL, ZhongRet al. Parallel microfluidic networks for studying cellular response to chemical modulation. J. Biotechnol. 131 (3), 286–292 (2007).
  • Lau C , NygardS, FureHet al. CD14 and complement crosstalk and largely mediate the transcriptional response to escherichia coli in human whole blood as revealed by DNA microarray. PLoS ONE10 (2), (2015).
  • Lao YH , ChiangHY, YangDK, PeckK, ChenLC. Selection of aptamers targeting the sialic acid receptor of hemagglutinin by epitope-specific SELEX. Chem. Commun. 50 (63), 8719–8722 (2014).
  • Lee MY , KumarRA, SukumaranSM, HoggMG, ClarkDS, DordickJS. Three-dimensional cellular microarray for high-throughput toxicology assays. Proc. Natl Acad. Sci. USA105 (1), 59–63 (2008).
  • Yeon JH , ParkJK. Cytotoxicity test based on electrochemical impedance measurement of HepG2 cultured in microfabricated cell chip. Anal. Biochem. 341 (2), 308–315 (2005).
  • Caviglia C , ZorK, MontiniLet al. Impedimetric toxicity assay in microfluidics using free and liposome-encapsulated anticancer drugs. Anal. Chem. 87 (4), 2204–2212 (2015).
  • Caviglia C , ZorK, CanepaSet al. Interdependence of initial cell density, drug concentration and exposure time revealed by real-time impedance spectroscopic cytotoxicity assay. Analyst140 (10), 3623–3629 (2015).
  • Pihl J , SinclairJ, SahlinEet al. Microfluidic gradient-generating device for pharmacological profiling. Anal. Chem. 77 (13), 3897–3903 (2005).
  • Mao SF , GaoD, LiuW, WeiHB, LinJM. Imitation of drug metabolism in human liver and cytotoxicity assay using a microfluidic device coupled to mass spectrometric detection. Lab Chip12 (1), 219–226 (2012).
  • Berthuy OI , BlumLJ, MarquetteCA. Cancer-cells on a chip for label-free optic detection of secreted molecules. Biosensors (Basel). 6 (1), pii: E2 (2016).
  • Lee K , KimC, AhnBet al. Generalized serial dilution module for monotonic and arbitrary microfluidic gradient generators. Lab Chip9 (5), 709–717 (2009).
  • Wang H , ChenCH, XiangZL, WangM, LeeC. A convection-driven long-range linear gradient generator with dynamic control. Lab Chip15 (6), 1445–1450 (2015).
  • Abhyankar VV , LokutaMA, HuttenlocherA, BeebeDJ. Characterization of a membrane-based gradient generator for use in cell-signaling studies. Lab Chip6 (3), 389–393 (2006).
  • Ziauddin J , SabatiniDM. Microarrays of cells expressing defined cDNAs. Nature411 (6833), 107–110 (2001).
  • Lee PJ , HungPJ, RaoVM, LeeLP. Nanoliter scale microbioreactor array for quantitative cell biology. Biotechnol. Bioeng. 94 (1), 5–14 (2006).
  • Baker BM , ChenCS. Deconstructing the third dimension - how 3D culture microenvironments alter cellular cues. J. Cell Sci. 125 (13), 3015–3024 (2012).
  • Walsh CL , BabinBM, KasinskasRW, FosterJA, McgarryMJ, ForbesNS. A multipurpose microfluidic device designed to mimic microenvironment gradients and develop targeted cancer therapeutics. Lab Chip9 (4), 545–554 (2009).
  • Lee PJ , HungPJ, LeeLP. An artificial liver sinusoid with a microfluidic endothelial-like barrier for primary hepatocyte culture. Biotechnol. Bioeng. 97 (5), 1340–1346 (2007).
  • Huh D , MatthewsBD, MammotoA, Montoya-ZavalaM, HsinHY, IngberDE. Reconstituting organ-level lung functions on a chip. Science328 (5986), 1662–1668 (2010).
  • Kim HJ , HuhD, HamiltonG, IngberDE. Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Lab Chip12 (12), 2165–2174 (2012).
  • Torisawa YS , SpinaCS, MammotoTet al. Bone marrow-on-a-chip replicates hematopoietic niche physiology in vitro. Nat. Methods11 (6), 663–+ (2014).
  • Yasotharan S , PintoS, SledJG, BolzSS, GuntherA. Artery-on-a-chip platform for automated, multimodal assessment of cerebral blood vessel structure and function. Lab Chip15 (12), 2660–2669 (2015).
  • Huh D , LeslieDC, MatthewsBDet al. A human disease model of drug toxicity-induced pulmonary edema in a lung-on-a-chip microdevice. Sci. Transl. Med. 4 (159), 159ra147 (2012).
  • Jang KJ , SuhKY. A multi-layer microfluidic device for efficient culture and analysis of renal tubular cells. Lab Chip10 (1), 36–42 (2010).
  • Jang KJ , MehrAP, HamiltonGAet al. Human kidney proximal tubule-on-a-chip for drug transport and nephrotoxicity assessment. Integrative Biology5 (9), 1119–1129 (2013).
  • Agarwal A , GossJA, ChoA, MccainML, ParkerKK. Microfluidic heart on a chip for higher throughput pharmacological studies. Lab Chip13 (18), 3599–3608 (2013).
  • Bhatia SN , IngberDE. Microfluidic organs-on-chips. Nat. Biotechnol. 32 (8), 760–772 (2014).
  • Booth R , KimH. Characterization of a microfluidic in vitro model of the blood–brain barrier (mu BBB). Lab Chip12 (10), 1784–1792 (2012).
  • Kim J , TaylorD, AgrawalNet al. A programmable microfluidic cell array for combinatorial drug screening. Lab Chip12 (10), 1813–1822 (2012).
  • Occhetta P , CentolaM, TonnarelliB, RedaelliA, MartinI, RasponiM. High-throughput microfluidic platform for 3D cultures of mesenchymal stem cells, towards engineering developmental processes. Sci. Rep. 5, 10288 (2015).
  • Huang SB , WangSS, HsiehCH, LinYC, LaiCS, WuMH. An integrated microfluidic cell culture system for high-throughput perfusion three-dimensional cell culture-based assays: effect of cell culture model on the results of chemosensitivity assays dagger. Lab Chip13 (6), 1133–1143 (2013).
  • Wen Y , ZhangX, YangS-T. Microplate-reader compatible perfusion microbioreactor array for modular tissue culture and cytotoxicity assays. Biotechnol. Prog. 26 (4), 1135–1144 (2010).
  • Montanez-Sauri SI , SungKE, PuccinelliJP, PehlkeC, BeebeDJ. Automation of three-dimensional cell culture in arrayed microfluidic devices. J. Lab. Autom. 16 (3), 171–185 (2011).
  • List of microfluidics companies . http://fluidicmems.com/list-of-microfluidics-lab-on-a-chip-and-biomems-companies.
  • ACEA Biosciences . www.aceabio.com/about/.
  • Bell Brook Labs . www.bellbrooklabs.com/products-services/iuvo-microconduit-array-platform/microchannel-5250/.
  • Cellasic bought by Millipore . www.emdmillipore.com/US/en/life-science-research/cell-culture-systems/cellASIC-live-cell-analysis/microfluidic-plates/68eb.qB.wfkAAAFBWmVb3.sJ,nav.
  • Cytoo . http://cytoo.com/about-us.
  • Celsee Diagnostics . http://celsee.com/about-us/.
  • Fluxion Biosciences . http://fluxionbio.com/bioflux/.
  • Xona mcirofluidics http://xonamicrofluidics.com/.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.