495
Views
0
CrossRef citations to date
0
Altmetric
Review

Advances in Human Chorionic Gonadotropin Detection Technologies: A Review

, , &
Pages 1509-1529 | Received 08 Apr 2017, Accepted 15 Aug 2017, Published online: 21 Oct 2017

References

  • Osman A , PundirJ, ElsherbiniM, DaveS, El-ToukhyT, KhalafY. The effect of intrauterine HCG injection on IVF outcome: a systematic review and meta-analysis. Repord. Biomed. Online33 (3), 350–359 (2016).
  • Fournier T , GuibourdencheJ, Evain-BrionD. Review: HCGs: different sources of production, different glycoforms and functions. Placenta36 (Suppl. 1), S60–S65 (2015).
  • Patel KK , QaviAJ, HockKG, GronowskiAM. Establishing reference intervals for HCG in postmenopausal women. Clin. Biochem. 50 (4–5), 234–237 (2017).
  • Ticconi C , PiccioneE, BelmonteA, RaoCV. HCG – a new kid on the block in prematurity prevention. J. Matern. Fetal Neonatal. Med. 19 (11), 687–692 (2006).
  • Yang H , LeiCX, ZhangW. Human chorionic gonadotropin (HCG) regulation of galectin-3 expression in endometrial epithelial cells and endometrial stromal cells. Acta Histochem. 115 (1), 3–7 (2013).
  • Lee C-L , ChiuPCN, HautalaLet al. Human chorionic gonadotropin and its free β-subunit stimulate trophoblast invasion independent of LH/HCG receptor. Mol. Cell. Endocrinol. 375 (1–2), 43–52 (2013).
  • Pocius KD , BartzD, MaurerR, StenquistA, FortinJ, GoldbergAB. Serum human chorionic gonadotropin (HCG) trend within the first few days after medical abortion: a prospective study. Contraception95 (3), 263–268 (2017).
  • Pocius KD , MaurerR, FortinJ, GoldbergAB, BartzD. Early serum human chorionic gonadotropin (HCG) trends after medication abortion. Contraception91 (6), 503–506 (2015).
  • Regan Lesley , RaiRaj. Epidemiology and the medical causes of miscarriage. Best Pract. Res. Clin. Obstet. Gynaecol. 14 (5), 839–854 (2000).
  • Cole Laurence A , Sutton JaimeM. HCG tests in the management of gestational trophoblastic diseases. Clin. Obstet. Gynecol. 46 (3), 523–540 (2003).
  • Cate FL , MoffettC, GronowskiAM, GrenacheDG, HartmannKE, WoodworthA. Analytical and clinical validation of the Immulite 1000 HCG assay for quantitative analysis in urine. Clin. Chim. Acta421, 104–108 (2013).
  • Yan X , HuangZ, HeMet al. Detection of HCG-antigen based on enhanced photoluminescence of hierarchical ZnO arrays. Colloids Surf. B89, 86–92 (2012).
  • Berger P , SturgeonC. Pregnancy testing with HCG – future prospects. Trends Endocrin. Met. 25 (12), 637–648 (2014).
  • Strahm E , Marques-VidalP, PralongF, DvorakJ, SaugyM, BaumeN. Influence of multiple injections of human chorionic gonadotropin (HCG) on urine and serum endogenous steroids concentrations. Forensic Sci. Int. 213 (1–3), 62–72 (2011).
  • Lund H , PausE, BergerPet al. Epitope analysis and detection of human chorionic gonadotropin (hCG) variants by monoclonal antibodies and mass spectrometry. Tumor Biol. 35 (2), 1013–1022 (2014).
  • Sturgeon CM , EllisAR. Standardization of FSH, LH and HCG – current position and future prospects. Mol. Cell. Endocrinol. 260, 301–309 (2007).
  • Acevedo HF . Human chorionic gonadotropin (HCG), the hormone of life and death: a review. J. Exp. Ther. Oncol. 2 (3), 133–145 (2002).
  • Sturgeon CM , McallisterEJ. Analysis of HCG: clinical applications and assay requirements. Ann. Clin. Biochem. 35 (4), 460–491 (1998).
  • Chen J , YanF, DaiZ, JuHX. Reagentless amperometric immunosensor for human chorionic gonadotrophin based on direct electrochemistry of horseradish peroxidase. Biosens. Bioelectron. 21 (2), 330–336 (2006).
  • Leonardo S , Rambla-AlegreM, SamdalIAet al. Immunorecognition magnetic supports for the development of an electrochemical immunoassay for azaspiracid detection in mussels. Biosens. Bioelectron. 92, 200–206 (2017).
  • Wu D , WeiQ, ZhangYet al. CN102735728A (2012).
  • Li D , FengY, ZhouLet al. Label-free capacitive immunosensor based on quartz crystal Au electrode for rapid and sensitive detection of Escherichia coli O157:H7. Anal. Chim. Acta687 (1), 89–96 (2011).
  • An Y , ZhuG, BiWet al. Highly sensitive electrochemical immunoassay integrated with polymeric nanocomposites and enhanced SiO2@Au core-shell nanobioprobes for SirT1 determination. Anal. Chim. Acta966, 54–61 (2017).
  • Li R , WuD, LiHet al. Label-free amperometric immunosensor for the detection of human serum chorionic gonadotropin based on nanoporous gold and graphene. Anal. Biochem. 414 (2), 196–201 (2011).
  • Teixeira S , BurwellG, CastaingA, GonzalezD, ConlanRS, GuyOJ. Epitaxial graphene immunosensor for human chorionic gonadotropin. Sens. Actuators B Chem. 190, 723–729 (2014).
  • Truong LTN , ChikaeM, UkitaY, TakamuraY. Labelless impedance immunosensor based on polypyrrole-pyrolecarboxylic acid copolymer for HCG detection. Talanta85 (5), 2576–2580 (2011).
  • Kerman K , NagataniN, ChikaeM, YuhiT, TakamuraY, TamiyaE. Label-free electrochemical immunoassay for the detection of human chorionic gonadotropin hormone. Anal. Chem. 78 (15), 5612–5616 (2006).
  • Santandreu M , AlegretS, FabregasE. Determination of human chorionic gonadotrophin β-subunit (β-HCG) using amperometric immunosensors based on a conducting immunocomposite. Anal. Chim. Acta396 (2–3), 181–188 (2000).
  • Tang Z , FuY, MaZ. Multiple signal amplification strategies for ultrasensitive label-free electrochemical immunoassay for carbohydrate antigen 24–2 based on redox hydrogel. Biosens. Bioelectron. 91, 299–305 (2017).
  • Chen J , YanF, TanF, JuH. Gold nanoparticles doped three-dimensional sol-gel matrix for amperometric human chorionic gonadotrophin immunosensor. Electroanalysis18 (17), 1696–1702 (2006).
  • Wei Q , LiR, DuBet al. Multifunctional mesoporous silica nanoparticles as sensitive labels for immunoassay of human chorionic gonadotropin. Sens. Actuators B Chem. 153 (1), 256–260 (2011).
  • Liu Y , GuoW, QinXet al. Sensitive sandwich electrochemical immunosensor for human chorionic gonadotropin using nanoporous Pd as a label. RSC Adv. 4 (42), 21891–21898 (2014).
  • Guo W , LiuY, MengX, PeiM, JinpingW, WangL. A novel signal amplification strategy of an electrochemical immunosensor for human chorionic gonadotropin, based on nanocomposites of multi-walled carbon nanotubes-ionic liquid and nanoporous Pd. RSC Adv. 4 (101), 57773–57780 (2014).
  • Wang J , YuanR, ChaiYet al. A novel immunosensor based on gold nanoparticles and poly-(2,6-pyridinediamine)/multiwall carbon nanotubes composite for immunoassay of human chorionic gonadotrophin. Biochem. Eng. J. 51 (3), 95–101 (2010).
  • Yang H , YuanR, ChaiY, ZhuoY. Electrochemically deposited nanocomposite of chitosan and carbon nanotubes for detection of human chorionic gonadotrophin. Colloids Surf. B82 (2), 463–469 (2011).
  • Idegami K , ChikaeM, KermanKet al. Gold nanoparticle-based redox signal enhancement for sensitive detection of human chorionic gonadotropin hormone. Electroanal. (NY)20 (1), 14–21 (2008).
  • Chikae M , IdegamiK, NatataniN, TamiyaE, TakamuraY. Highly sensitive method for electrochemical detection of silver nanoparticle labels in metalloimmunoassay with preoxidation/reduction signal enhancement. Electroanalysis78 (9), 748 (2011).
  • Chai R , YuanR, ChaiY, OuC, CaoS, LiX. Amperometric immunosensors based on layer-by-layer assembly of gold nanoparticles and methylene blue on thiourea modified glassy carbon electrode for determination of human chorionic gonadotrophin. Talanta74 (5), 1330–1336 (2008).
  • Yang G , ChangY, YangHet al. The preparation of reagentless electrochemical immunosensor based on a nano-gold and chitosan hybrid film for human chorionic gonadotrophin. Anal. Chim. Acta644 (1–2), 72–77 (2009).
  • Yang G , YangX, YangC, YangY. A reagentless amperometric immunosensor for human chorionic gonadotrophin based on a gold nanotube arrays electrode. Colloids Surf. A389 (1–3), 195–200 (2011).
  • Tao M , LiX, WuZ, WangM, HuaM, YangY. The preparation of label-free electrochemical immunosensor based on the Pt-Au alloy nanotube array for detection of human chorionic gonadotrophin. Clin. Chim. Acta412 (7–8), 550–555 (2011).
  • Lim SA , YoshikawaH, TamiyaE, YasinHM, AhmedMU. A highly sensitive gold nanoparticle bioprobe based electrochemical immunosensor using screen printed graphene biochip. RSC Adv. 4 (102), 58460–58466 (2014).
  • Teixeira S , ConlanRS, GuyOJ, SalesMGF. Label-free human chorionic gonadotropin detection at picogram levels using oriented antibodies bound to graphene screen-printed electrodes. J. Mater. Chem. B2 (13), 1852–1865 (2014).
  • Lu J , LiuS, GeS, YanM, YuJ, HuX. Ultrasensitive electrochemical immunosensor based on Au nanoparticles dotted carbon nanotube-graphene composite and functionalized mesoporous materials. Biosens. Bioelectron. 33 (1), 29–35 (2012).
  • Nguyen Xuan V , ChikaeM, UkitaYet al. Gold-linked electrochemical immunoassay on single-walled carbon nanotube for highly sensitive detection of human chorionic gonadotropin hormone. Biosens. Bioelectron. 42, 592–597 (2013).
  • Yang L , ZhaoH, FanSet al. Label-free electrochemical immunosensor based on gold-silicon carbide nanocomposites for sensitive detection of human chorionic gonadotrophin. Biosens. Bioelectron. 57, 199–206 (2014).
  • Zhao D , YuY, XuC. A sensitive electrochemical immunosensor for the detection of human chorionic gonadotropin based on a hierarchical nanoporous AuAg alloy. RSC Adv. 6 (1), 87–93 (2016).
  • Roushani M , ValipourA, ValipourM. Layer-by-layer assembly of gold nanoparticles and cysteamine on gold electrode for immunosensing of human chorionic gonadotropin at picogram levels. Mat. Sci. Eng. C Materi. 61, 344–350 (2016).
  • Roushani M , ValipourA. Using electrochemical oxidation of Rutin in modeling a novel and sensitive immunosensor based on Pt nanoparticle and graphene–ionic liquid–chitosan nanocomposite to detect human chorionic gonadotropin. Sens. Actuators B-Chem. 222, 1103–1111 (2016).
  • Yang H , YuanR, ChaiY, ZhuoY, SuH. Electrochemical immunoassay for human chorionic gonadotrophin based on Pt hollow nanospheres and silver/titanium dioxide nanocomposite matrix. J. Chem. Technol. Biot. 85 (4), 577–582 (2010).
  • Sun G , ZhangL, ZhangYet al. Multiplexed enzyme-free electrochemical immunosensor based on ZnO nanorods modified reduced graphene oxide-paper electrode and silver deposition-induced signal amplification strategy. Biosens. Bioelectron. 71, 30–36 (2015).
  • Wu D , ZhangY, ShiLet al. Electrochemical immunosensor for ultrasensitive detection of human chorionic gonadotropin based on Pd@SBA-15. Electroanalysis25 (2), 427–432 (2013).
  • Mihailescu C-M , StanD, IosubR, MoldovanC, SavinM. A Sensitive capacitive immunosensor for direct detection of human heart fatty acid-binding protein (h-FABP). Talanta132, 37–43 (2015).
  • Sanguino P , MonteiroT, BhattacharyyaSR, DiasCJ, IgrejaR, FrancoR. ZnO nanorods as immobilization layers for interdigitated capacitive immunosensors. Sens. Actuators B-Chem. 204, 211–217 (2014).
  • Balakrishnan SR , HashimU, GopinathSCBet al. A point-of-care immunosensor for human chorionic gonadotropin in clinical urine samples using a cuneated polysilicon nanogap lab-on-chip. PLoS ONE10 (9), e0137891 (2015).
  • Kamer SM , FoleyKF, SchmidtRL, GreeneDN. Analytical sensitivity of four commonly used HCG point of care devices. Clin. Biochem. 48 (6), 448–452 (2015).
  • Zhu Z , ShiL, FengH, Susan ZhouH. Single domain antibody coated gold nanoparticles as enhancer for Clostridium difficile toxin detection by electrochemical impedance immunosensors. Bioelectrochem. 101, 153–158 (2015).
  • Teixeira S , FerreiraNS, ConlanRS, GuyOJ, SalesMGF. Chitosan/AuNPs modified graphene electrochemical sensor for label-free human chorionic gonadotropin detection. Electroanalysis26 (12), 2591–2598 (2015).
  • Lin J , WangR, JiaoPet al. An impedance immunosensor based on low-cost microelectrodes and specific monoclonal antibodies for rapid detection of avian influenza virus H5N1 in chicken swabs. Biosens. Bioelectron. 67, 546–552 (2015).
  • Zhang X , ShenG, ShenY, YinD, ZhangC. Direct immobilization of antibodies on a new polymer film for fabricating an electrochemical impedance immunosensor. Anal. Biochem. 485, 81–85 (2015).
  • Teixeira S , ConlanRS, GuyOJ, SalesMGF. Novel single-wall carbon nanotube screen-printed electrode as an immunosensor for human chorionic gonadotropin. Electrochim. Acta136, 323–329 (2014).
  • Qiu W , GaoF, ChenJ, XieL, WangQ. Application of 2-(4-Formylphenyl) [60]Fulleropyrrolidine as an electrode matrix for cross linker-free immobilization of HCG-antibody and the sensing analysis. Sens. Actuators B231, 376–383 (2016).
  • Zhang A , HuangC, ShiHet al. Electrochemiluminescence immunosensor for sensitive determination of tumor biomarker CEA based on multifunctionalized Flower-like Au@BSA nanoparticles. Sens. Actuators B Chem. 238, 24–31 (2017).
  • Zhang X , DingS-N. Sandwich-structured electrogenerated chemiluminescence immunosensor based on dual-stabilizers-capped CdTe quantum dots as signal probes and Fe3O4-Au nanocomposites as magnetic separable carriers. Sens. Actuators B Chem. 240, 1123–1133 (2017).
  • Wu F-F , ZhouY, WangJ-X, ZhuoY, YuanR, ChaiY-Q. A novel electrochemiluminescence immunosensor based on Mn doped Ag2S quantum dots probe for laminin detection. Sens. Actuators B Chem. 243, 1067–1074 (2017).
  • Mao L , YuanR, ChaiY, ZhuoY, YangX. A new electrochemiluminescence immunosensor based on Ru(bpy)32+-doped TiO2 nanoparticles labeling for ultrasensitive detection of human chorionic gonadotrophin. Sens. Actuators B Chem. 149 (1), 226–232 (2010).
  • Li N-L , JiaL-P, MaR-Net al. A novel sandwiched electrochemiluminescence immunosensor for the detection of carcinoembryonic antigen based on carbon quantum dots and signal amplification. Biosens. Bioelectron. 89 (Part 1), 453–460 (2017).
  • Luo L , ZhangZ, HouL, WangJ, TianW. The study of a chemiluminescence immunoassay using the peroxyoxalate chemiluminescent reaction and its application. Talanta72 (4), 1293–1297 (2007).
  • Gábor Merényi , JohanLind, Eriksen TrygveE. Luminol chemiluminescence: chemistry, excitation, emitter. Luminescence5 (1), 53–56 (1990).
  • He Y , LiY, HunX. Polymer nanoparticles as fluorescent labels in a fluoroimmunoassay for human chorionic gonadotropin. Microchim. Acta171 (3–4), 393–398 (2010).
  • He Y , SunJ, WangX, WangL. Detection of human leptin in serum using chemiluminescence immunosensor: signal amplification by hemin/G-quadruplex DNAzymes and protein carriers by Fe3O4/polydopamine/Au nanocomposites. Sens. Actuators B Chem. 221, 792–798 (2015).
  • Clemmons DR . IGF-I assays: current assay methodologies and their limitations. Pituitary10 (2), 121–128 (2007).
  • Sato N , ShirakawaK, KakiharaY, MochizukiH, KanamoriT. Preliminary studies on chemiluminescence immunoassay for human chorionic gonadotropin and thyrotropin using acridinium ester-labelled antibody. Anal. Sci. 12 (6), 853–858 (1997).
  • Oed M , AmtmannR, LowerY, SchlettR, MackM. LIAISON HCG – an automated chemiluminescent immunoassay for the determination of human chorionic gonadotropin (HCG). Anticancer Res. 19 (4A), 2735–2737 (1999).
  • Reis MF , AnicetoP, AguiarP, SimaoF, SeguradoS. Quantification of urinary chorionic gonadotropin in spontaneous abortion of pre-clinically recognized pregnancy: method development and analytical validation. Int. J. Hyg. Environ. Health210 (3–4), 419–427 (2007).
  • Liu J-M , HuangX-M, CuiM-Let al. Determination of trace human chorionic gonadotropin by using multiwall carbon nanotubes as phosphorescence labeling reagent. Anal. Biochem. 431 (1), 19–29 (2012).
  • Park JM , JungHW, ChangYW, KimHS, KangMJ, PyunJC. Chemiluminescence lateral flow immunoassay based on Pt nanoparticle with peroxidase activity. Anal. Chim. Acta853 (1), 360–367 (2015).
  • Wang Q , YinB-C, YeB-C. A novel polydopamine-based chemiluminescence resonance energy transfer method for microRNA detection coupling duplex-specific nuclease-aided target recycling strategy. Biosens. Bioelectron. 80, 366–372 (2016).
  • Hao L , GuH, DuanNet al. An enhanced chemiluminescence resonance energy transfer aptasensor based on rolling circle amplification and WS2 nanosheet for Staphylococcus aureus detection. Anal. Chim. Acta959, 83–90 (2017).
  • Lei JQ , JingT, ZhouTTet al. A simple and sensitive immunoassay for the determination of human chorionic gonadotropin by graphene-based chemiluminescence resonance energy transfer. Biosens. Bioelectron. 54 (1), 72–77 (2014).
  • Medawar V , MessinaGA, Fernández-BaldoM, RabaJ, PereiraSV. Fluorescent immunosensor using AP-SNs and QDs for quantitation of IgG anti-Toxocara canis. Microchem. J. 130, 436–441 (2017).
  • Nakamura N , LimTK, JeongJM, MatsunagaT. Flow immunoassay for detection of human chorionic gonadotrophin using a cation-exchange resin packed capillary column. Anal. Chim. Acta439 (1), 125–130 (2002).
  • Petrou PS , KakabakosSE, ChristofidisI, ArgitisP, MisiakosK. Multi-analyte capillary immunosensor for the determination of hormones in human serum samples. Biosens. Bioelectron. 17 (4), 261–268 (2003).
  • Chu CC , LiL, LiSet al. Fluorescence-based immunoassay for human chorionic gonadotropin based on polyfluorene-coated silica nanoparticles and polyaniline-coated Fe3O4 nanoparticles. Microchim. Acta180 (15–16), 1509–1516 (2013).
  • Huang X , LiY, HuangXet al. A novel reverse fluorescent immunoassay approach for sensing human chorionic gonadotropin based on silver-gold nano-alloy and magnetic nanoparticles. Anal. Bioanal. Chem. 408 (2), 619–627 (2016).
  • Wani TA , DarwishIA. An automated flow immunosensor based on kinetic exclusion analysis for measurement of a free β-subunit of human chorionic gonadotropin in serum. New J. Chem. 36 (4), 1114–1120 (2012).
  • Ding X , YangK-L. Antibody-free detection of human chorionic gonadotropin by use of liquid crystals. Anal. Chem. 85 (22), 10710–10716 (2013).
  • Hou J-Y , LiuT-C, RenZ-Q, ChenM-J, LinG-F, WuY-S. Magnetic particle-based time-resolved fluoroimmunoassay for the simultaneous determination of α-fetoprotein and the free β-subunit of human chorionic gonadotropin. Analyst138 (13), 3697–3704 (2013).
  • Qin Q , ChristiansenM, LövgrenT, N⊘rgaard-PedersenB, PetterssonK. Dual-label time-resolved immunofluorometric assay for simultaneous determination of pregnancy-associated plasma protein A and free β-subunit of human chorionic gonadotrophin. J. Immunol. Methods205 (2), 169–175 (1997).
  • Tram DTN , WangH, SugiartoSet al. Advances in nanomaterials and their applications in point of care (POC) devices for the diagnosis of infectious diseases. Biotechnol. Adv. 34 (8), 1275–1288 (2016).
  • Sun WQ , RenSL, YuanGW, WangY, LiLQ, ZhangLC. A dual-label time-resolved fluorescence immunoassay for the simultaneous determination of β-human chorionic gonadotropin and progesterone. Anal. Lett. 47 (18), 2900–2908 (2015).
  • Walta A-M , KeltanenT, LindroosK, SajantilaA. The usefulness of point-of-care (POC) tests in screening elevated glucose and ketone body levels postmortem. Forensic Sci. Int. 266, 299–303 (2016).
  • Von Lode P , RosenbergJ, PetterssonK, TakaloH. A europium chelate for quantitative point-of-care immunoassays using direct surface measurement. Anal. Chem. 75 (13), 3193–3201 (2003).
  • Von Lode P , RainahoJ, PetterssonK. Quantitative, wide-range, 5-min point-of-care immunoassay for total human chorionic gonadotropin in whole blood. Clin. Chem. 50 (6), 1026–1035 (2004).
  • Li Y , ChenG, FuR, TaoL, LanW. CN104034906A (2014).
  • Cai W , FanY, JiangZ, YaoJ. A highly sensitive and selective resonance scattering spectral assay for potassium ion based on aptamer and nanosilver aggregation reactions. Talanta81 (4–5), 1810–1815 (2010).
  • Liang A , ZouM, JiangZ. Immunonanogold-catalytic resonance scattering spectral assay of trace human chorionic gonadotrophin. Talanta75 (5), 1214–1220 (2008).
  • Liu Q , WenG, LiK, LiangA. An immunonanosilver resonance Rayleigh scattering spectral probe for rapid assay of human chorionic gonadotrophin. Adv. Mater. Res. 680, 141–144 (2013).
  • Lu M , GuiqingW, LinglingYet al. SERS quantitative detection of trace human chorionic gonadotropin using a label-free Victoria blue B as probe in the aggregated immunonanogold sol substrate. Luminescence30 (6), 790–797 (2015).
  • Zhang X , LiK, HuL, LiangA, JiangZ. An immunonanosilver surface-enhnaced resonance Raman scattering method for determination of human chorionic gonadotrophin. Appl. Mech. Mater. 319, 157–160 ; 155 (2013).
  • Pan M-Y , LeeK-L, WangL, WeiP-K. Chip-based digital surface plasmon resonance sensing platform for ultrasensitive biomolecular detection. Biosens. Bioelectron. 91, 580–587 (2017).
  • Michel D , XiaoF, AlamehK. A compact, flexible fiber-optic surface plasmon resonance sensor with changeable sensor chips. Sens. Actuators B Chem. 246, 258–261 (2017).
  • Grosjean L , CherifB, MerceyEet al. A polypyrrole protein microarray for antibody–antigen interaction studies using a label-free detection process. Anal. Biochem. 347 (2), 193–200 (2005).
  • Piliarik M , BockovaM, HomolaJ. Surface plasmon resonance biosensor for parallelized detection of protein biomarkers in diluted blood plasma. Biosens. Bioelectron. 26 (4), 1656–1661 (2010).
  • Ko H , LeeE-H, LeeG-Yet al. One step immobilization of peptides and proteins by using modified parylene with formyl groups. Biosens. Bioelectron. 30 (1), 56–60 (2011).
  • Wang Y , DostalekJ, KnollW. Magnetic nanoparticle-enhanced biosensor based on grating-coupled surface plasmon resonance. Anal. Chem. 83 (16), 6202–6207 (2011).
  • Yang J , LuY, AoLet al. Colorimetric sensor array for proteins discrimination based on the tunable peroxidase-like activity of AuNPs–DNA conjugates. Sens. Actuators B Chem. 245, 66–73 (2017).
  • Chang C-C , ChenC-P, LeeC-H, ChenC-Y, LinC-W. Colorimetric detection of human chorionic gonadotropin using catalytic gold nanoparticles and a peptide aptamer. Chem. Commun. 50 (92), 14443–14446 (2014).
  • Chang C-C , ChenC-Y, ChenC-P, LinC-W. Facile colorimetric detection of human chorionic gonadotropin based on the peptide-induced aggregation of gold nanoparticles. Anal. Methods7 (1), 29–33 (2015).
  • Liang A , TangM, TangYet al. A new immunonanogold graphite furnace atomic absorption spectral assay for human chorionic gonadotrophin. Anal. Lett. 44 (12), 2162–2169 (2011).
  • Tung NH , ChikaeM, UkitaY, VietPH, TakamuraY. Sensing technique of silver nanoparticles as labels for immunoassay using liquid electrode plasma atomic emission spectrometry. Anal. Chem. 84 (3), 1210–1213 (2012).
  • Nagainis PA , NakagawaCH, BaronSL, FullerSA, ChandlerHM, HurrellJGR. A rapid quantitative capillary tube enzyme immunoassay for human chorionic gonadotropin in urine. Clin. Chim. Acta160 (3), 273–279 (1986).
  • Kuo HT , YehJZ, WuPH, JiangCM, WuMC. Application of immunomagnetic particles to enzyme-linked immunosorbent assay (ELISA) for improvement of detection sensitivity of HCG. J. Immunoassay. Immunochem. 33 (4), 377–387 (2012).
  • Abdelshafi NA , PanneU, SchneiderRJ. Screening for cocaine on Euro banknotes by a highly sensitive enzyme immunoassay. Talanta165, 619–624 (2017).
  • Ruan K , KeD. Small-scale sandwich enzyme immunoassay for human chorionic gonadotropin using a new micro-transferable plastic bead as solid phase. Ann. Clin. Biochem. 25 (6), 645–649 (1989).
  • Apilux A , UkitaY, ChikaeM, ChailapakulO, TakamuraY. Development of automated paper-based devices for sequential multistep sandwich enzyme-linked immunosorbent assays using inkjet printing. Lab Chip13 (1), 126–135 (2013).
  • Bagherbaigi S , CorcolesEP, WicaksonoDHB. Cotton fabric as an immobilization matrix for low-cost and quick colorimetric enzyme-linked immunosorbent assay (ELISA). Anal. Methods6 (18), 7175–7180 (2014).
  • Imamura S , MiuraS, IshiguroM, KikutaniM, AikawaT, KitagawaT. Enzyme-linked immunoassay of HCG. Rinsho Kagaku Shimpojumu16, 28–32 (1976).
  • Podrouzek P , KrabecZ, MancalP, PreslJ. The development and evaluation of Sevatest ELISA HCG Micro I. kit as a test for pregnancy. J. Hyg. Epidemiol. Microbiol. Immunol. 32 (4), 467–476 (1988).
  • Basu A , MaitraSK, ShrivastavTG. Development of dual-enzyme-based simultaneous immunoassay for measurement of progesterone and human chorionic gonadotropin. Anal. Biochem. 366 (2), 175–181 (2008).
  • Kuo H-T , YehJZ, JiangC-M, WuM-C. Magnetic particle-linked anti HCG beta antibody for immunoassay of human chorionic gonadotropin (HCG), potential application to early pregnancy diagnosis. J. Immunol. Methods381 (1–2), 32–40 (2012).
  • Bagel O , DegrandC, LimogesB, JoannesM, AzekF, BrossierP. Enzyme affinity assays involving a single-use electrochemical sensor. Applications to the enzyme immunoassay of human chorionic gonadotropin hormone and nucleic acid hybridization of human cytomegalovirus DNA. Electroanalysis12 (18), 1447–1452 (2001).
  • Darwish IA , WaniTA, AlanaziAM, HamidaddinMA, ZargarS. Kinetic-exclusion analysis-based immunosensors versus enzyme-linked immunosorbent assays for measurement of cancer markers in biological specimens. Talanta111 (1), 13–19 (2013).
  • Prasad PV , ChaubeSK, ShrivastavTG, KumariGL. Development of colorimetric enzyme-linked immunosorbent assay for human chorionic gonadotropin. J. Immunoass. Immunoch. 27 (1), 15–30 (2006).
  • Li X , WengS, GeB, YaoZ, YuH-Z. DVD technology-based molecular diagnosis platform: quantitative pregnancy test on a disc. Lab Chip14 (10), 1686–1694 (2014).
  • Bruce SJ , ReyF, BéguinA, BerthodC, WernerD, HenryH. Discrepancy between radioimmunoassay and high performance liquid chromatography tandem-mass spectrometry for the analysis of androstenedione. Anal. Biochem. 455, 20–25 (2014).
  • Welp A , ManzB, PeschkeE. Development and validation of a high throughput direct radioimmunoassay for the quantitative determination of serum and plasma melatonin (N-acetyl-5-methoxytryptamine) in mice. J. Immunol. Methods358 (1–2), 1–8 (2010).
  • Kaemmerer K , Dey-HazraA. Radioimmunological determination of human chorionic gonadotropin (HCG) in commercial preparations. Riv. Zootec. Vet. (3), 147–151 (1979).
  • Post KG , RoyAK, CederqvistLL, SaxenaBB. A rapid, centrifugation-free radioimmunoassay specific for human chorionic gonadotropin using glass beads as solid phase. J. Clin. Endocrinol. Metab. 50 (1), 169–175 (1980).
  • Katoh S , HattoriS, FuruhashiY, ManoH, GotoS, TomodaY. A new radioimmunoassay for human chorionic gonadotropin using monoclonal antibody. Endocrinol. Jpn. 33 (5), 691–700 (1986).
  • Pfaunmiller EL , AnguizolaJA, MilanukML, CarterN, HageDS. Use of protein G microcolumns in chromatographic immunoassays: a comparison of competitive binding formats. J. Chromatogr. B1021, 91–100 (2016).
  • Tanaka R , YuhiT, NagataniNet al. A novel enhancement assay for immunochromatographic test strips using gold nanoparticles. Anal. Bioanal. Chem. 385 (8), 1414–1420 (2007).
  • Su J , ZhouZ, LiH, LiuS. Quantitative detection of human chorionic gonadotropin antigen via immunogold chromatographic test strips. Anal. Methods6 (2), 450–455 (2014).
  • Park JH , JangH, JungYKet al. A mass spectrometry-based multiplex SNP genotyping by utilizing allele-specific ligation and strand displacement amplification. Biosens. Bioelectron. 91, 122–127 (2017).
  • Huang T , ZhangX, SongDet al. The quantification of human chorionic gonadotropin by two isotope dilution mass spectrometry methods. Anal. Methods6 (21), 8690–8697 (2014).
  • Zhang SC , ZhangC, XingZ, ZhangXR. Simultaneous determination of α-fetoprotein and free β-human chorionic gonadotropin by element-tagged immunoassay with detection by inductively coupled plasma mass spectrometry. Clin. Chem. 50 (7), 1214–1221 (2004).
  • Lund H , SnilsbergAH, PausE, HalvorsenTG, HemmersbachP, ReubsaetL. Sports drug testing using immuno-MS: clinical study comprising administration of human chorionic gonadotropin to males. Anal. Bioanal. Chem. 405 (5), 1569–1576 (2013).
  • Zhang B , MaoQG, ZhangXet al. A novel piezoelectric quartz micro-array immunosensor based on self-assembled monolayer for determination of human chorionic gonadotropin. Biosens. Bioelectron. 19 (7), 711–720 (2004).
  • Sanchez S , RoldanM, PerezS, FabregasE. Toward a fast, easy, and versatile immobilization of biomolecules into carbon nanotube/polysulfone-based biosensors for the detection of HCG hormone. Anal. Chem. 80 (17), 6508–6514 (2009).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.