2,726
Views
0
CrossRef citations to date
0
Altmetric
Research Article

2D-LC–MS/MS to Measure Cleaved High-Molecular-Weight Kininogen in Human Plasma as A Biomarker for C1-Inh-Hae

, , , &
Pages 1477-1491 | Received 10 May 2017, Accepted 03 Aug 2017, Published online: 21 Oct 2017

References

  • Zuraw BL , ChristiansenSC. HAE pathophysiology and underlying mechanisms. Clin. Rev. Allergy Immunol. 51 (2), 216–229 (2016).
  • Zeerleder S . C1-inhibitor: more than a serine protease inhibitor. Semin. Thromb. Hemost. 37 (4), 362–374 (2011).
  • Davis AE, 3rd, LuF, MejiaP. C1 inhibitor, a multi-functional serine protease inhibitor. Thromb. Haemost. 104 (5), 886–893 (2010).
  • Cicardi M , BerettaA, ColomboM, GioffreD, CugnoM, AgostoniA. Relevance of lymphoproliferative disorders and of anti-C1 inhibitor autoantibodies in acquired angio-oedema. Clin. Exp. Immunol. 106 (3), 475–480 (1996).
  • Kaplan AP , GreavesMW. Angioedema. J. Am. Acad. Dermatol. 53 (3), 373–388 ; quiz 389–392 (2005).
  • Nussberger J , CugnoM, AmstutzC, CicardiM, PellacaniA, AgostoniA. Plasma bradykinin in angio-oedema. Lancet351 (9117), 1693–1697 (1998).
  • Agostoni A , CicardiM. Hereditary and acquired C1-inhibitor deficiency: biological and clinical characteristics in 235 patients. Medicine (Baltimore)71 (4), 206–215 (1992).
  • Colman RW , SchmaierAH. Contact system: a vascular biology modulator with anticoagulant, profibrinolytic, antiadhesive, and proinflammatory attributes. Blood90 (10), 3819–3843 (1997).
  • Berrettini M , LammleB, WhiteTet al. Detection of in vitro and in vivo cleavage of high molecular weight kininogen in human plasma by immunoblotting with monoclonal antibodies. Blood68 (2), 455–462 (1986).
  • Cugno M , CicardiM, BottassoBet al. Activation of the coagulation cascade in C1-inhibitor deficiencies. Blood89 (9), 3213–3218 (1997).
  • Mori K , NagasawaS. Studies on human high molecular weight (HMW) kininogen. II. Structural change of HMW kininogen by the action of human plasma kallikrein. J. Biochem. 89 (5), 1465–1473 (1981).
  • Baroso R , SellierP, DefendiFet al. Kininogen cleavage assay: diagnostic assistance for kinin-mediated angioedema conditions. PLoS ONE11 (9), e0163958 (2016).
  • Couture R , BlaesN, GirolamiJP. Kinin receptors in vascular biology and pathology. Curr. Vasc. Pharmacol. 12 (2), 223–248 (2014).
  • Gainer JV , MorrowJD, LovelandA, KingDJ, BrownNJ. Effect of bradykinin-receptor blockade on the response to angiotensin-converting-enzyme inhibitor in normotensive and hypertensive subjects. N. Engl. J. Med. 339 (18), 1285–1292 (1998).
  • Leeb-Lundberg LM , MarceauF, Muller-EsterlW, PettiboneDJ, ZurawBL. International union of pharmacology. XLV. Classification of the kinin receptor family: from molecular mechanisms to pathophysiological consequences. Pharmacol. Rev. 57 (1), 27–77 (2005).
  • Longhurst H , CicardiM. Hereditary angio-oedema. Lancet379 (9814), 474–481 (2012).
  • Schmaier AH . Assembly, activation, and physiologic influence of the plasma kallikrein/kinin system. Int. Immunopharmacol. 8 (2), 161–165 (2008).
  • Banerji A , BusseP, ShennakMet al. Inhibiting plasma kallikrein for hereditary angioedema prophylaxis. N. Engl. J. Med. 376 (8), 717–728 (2017).
  • Chyung Y , VinceB, IarrobinoRet al. A Phase 1 study investigating DX-2930 in healthy subjects. Ann. Allergy. Asthma. Immunol. 113 (4), 460–466 ; e462 (2014).
  • Kenniston JA , FaucetteRR, MartikDet al. Inhibition of plasma kallikrein by a highly specific active site blocking antibody. J. Biol. Chem. 289 (34), 23596–23608 (2014).
  • Cugno M , ZanichelliA, BellatorreAG, GriffiniS, CicardiM. Plasma biomarkers of acute attacks in patients with angioedema due to C1-inhibitor deficiency. Allergy64 (2), 254–257 (2009).
  • Schapira M , SilverLD, ScottCFet al. Prekallikrein activation and high-molecular-weight kininogen consumption in hereditary angioedema. N. Engl. J. Med. 308 (18), 1050–1053 (1983).
  • Kaufman N , PageJD, PixleyRA, ScheinR, SchmaierAH, ColmanRW. Alpha 2-macroglobulin-kallikrein complexes detect contact system activation in hereditary angioedema and human sepsis. Blood77 (12), 2660–2667 (1991).
  • Suffritti C , ZanichelliA, MaggioniL, BonanniE, CugnoM, CicardiM. High-molecular-weight kininogen cleavage correlates with disease states in the bradykinin-mediated angioedema due to hereditary C1-inhibitor deficiency. Clin. Exp. Allergy44 (12), 1503–1514 (2014).
  • Cugno M , CicardiM, CoppolaR, AgostoniA. Activation of factor XII and cleavage of high molecular weight kininogen during acute attacks in hereditary and acquired C1-inhibitor deficiencies. Immunopharmacology33 (1–3), 361–364 (1996).
  • An B , ZhangM, QuJ. Toward sensitive and accurate analysis of antibody biotherapeutics by liquid chromatography coupled with mass spectrometry. Drug Metab. Dispos. 42 (11), 1858–1866 (2014).
  • Becker JO , HoofnagleAN. Replacing immunoassays with tryptic digestion-peptide immunoaffinity enrichment and LC–MS/MS. Bioanalysis4 (3), 281–290 (2012).
  • Heudi O , BarteauS, ZimmerDet al. Towards absolute quantification of therapeutic monoclonal antibody in serum by LC–MS/MS using isotope-labeled antibody standard and protein cleavage isotope dilution mass spectrometry. Anal. Chem. 80 (11), 4200–4207 (2008).
  • Neubert H , FanYY, Fernandez OcanaM. Quantification of protein biomarkers in tissues: new capabilities with pellet digestion peptide immunoaffinity LC–MS/MS. Bioanalysis8 (15), 1551–1555 (2016).
  • Neubert H , GaleJ, MuirheadD. Online high-flow peptide immunoaffinity enrichment and nanoflow LC–MS/MS: assay development for total salivary pepsin/pepsinogen. Clin. Chem. 56 (9), 1413–1423 (2010).
  • Palandra J , FinelliA, ZhuM, MasferrerJ, NeubertH. Highly specific and sensitive measurements of human and monkey interleukin 21 using sequential protein and tryptic peptide immunoaffinity LC–MS/MS. Anal. Chem. 85 (11), 5522–5529 (2013).
  • Qu M , AnB, ShenSet al. Qualitative and quantitative characterization of protein biotherapeutics with liquid chromatography mass spectrometry. Mass Spectrom. Rev. 36 (6), 734–754 (2016).
  • Sano S , TagamiS, HashimotoYet al. Absolute quantitation of low abundance plasma APL1beta peptides at sub-fmol/ml Level by SRM/MRM without immunoaffinity enrichment. J. Proteome Res. 13 (2), 1012–1020 (2014).
  • Ackermann BL , BernaMJ. Coupling immunoaffinity techniques with MS for quantitative analysis of low-abundance protein biomarkers. Expert Rev. Proteomics4 (2), 175–186 (2007).
  • Berna MJ , ZhenY, WatsonDE, HaleJE, AckermannBL. Strategic use of immunoprecipitation and LC/MS/MS for trace-level protein quantification: myosin light chain 1, a biomarker of cardiac necrosis. Anal. Chem. 79 (11), 4199–4205 (2007).
  • Patel BB , BarreroCA, BravermanAet al. Assessment of two immunodepletion methods: off-target effects and variations in immunodepletion efficiency may confound plasma proteomics. J. Proteome Res. 11 (12), 5947–5958 (2012).
  • Shen Y , ZhangG, YangJet al. Online 2D-LC–MS/MS assay to quantify therapeutic protein in human serum in the presence of pre-existing antidrug antibodies. Anal. Chem. 87 (16), 8555–8563 (2015).
  • US FDA. Guidance for Industry: Bioanalytical Method Validation (2001,). www.Fda.Gov/Downloads/Drugs/Guidance/Ucm070107.Pdf.
  • Jenkins R , DugganJX, AubryAFet al. Recommendations for validation of LC–MS/MS bioanalytical methods for protein biotherapeutics. AAPS J. 17 (1), 1–16 (2015).
  • Zhang JC , ClaffeyK, SakthivelRet al. Two-chain high molecular weight kininogen induces endothelial cell apoptosis and inhibits angiogenesis: partial activity within domain 5. FASEB J. 14 (15), 2589–2600 (2000).
  • Fung EN , BryanP, KozhichA. Techniques for quantitative LC–MS/MS analysis of protein therapeutics: advances in enzyme digestion and immunocapture. Bioanalysis8 (8), 847–856 (2016).
  • Furlong MT , TitschC, XuW, JiangH, JemalM, ZengJ. An exploratory universal LC–MS/MS assay for bioanalysis of hinge region-stabilized human IgG4 mAbs in clinical studies. Bioanalysis6 (13), 1747–1758 (2014).
  • Gong C , ZhengN, ZengJ, AubryAF, ArnoldME. Post-pellet-digestion precipitation and solid phase extraction: a practical and efficient workflow to extract surrogate peptides for ultra-high performance liquid chromatography--tandem mass spectrometry bioanalysis of a therapeutic antibody in the low ng/ml range. J. Chromatogr. A1424, 27–36 (2015).
  • Jiang H , ZengJ, TitschCet al. Fully validated LC–MS/MS assay for the simultaneous quantitation of coadministered therapeutic antibodies in cynomolgus monkey serum. Anal. Chem. 85 (20), 9859–9867 (2013).
  • Yuan L , ArnoldME, AubryAF, JiQC. Simple and efficient digestion of a monoclonal antibody in serum using pellet digestion: comparison with traditional digestion methods in LC–MS/MS bioanalysis. Bioanalysis4 (24), 2887–2896 (2012).
  • Sandra K , MortierK, JorgeLet al. LC–MS/MS quantification of next-generation biotherapeutics: a case study for an IgE binding Nanobody in cynomolgus monkey plasma. Bioanalysis6 (9), 1201–1213 (2014).
  • Zhang G , ZhangY, FastDM, LinZ, SteenwykR. Ultra sensitive quantitation of endogenous oxytocin in rat and human plasma using a two-dimensional liquid chromatography-tandem mass spectrometry assay. Anal. Biochem. 416 (1), 45–52 (2011).
  • Lee JW , DevanarayanV, BarrettYCet al. Fit-for-purpose method development and validation for successful biomarker measurement. Pharm. Res. 23 (2), 312–328 (2006).
  • Pellacani A , BrunnerHR, NussbergerJ. Plasma kinins increase after angiotensin-converting enzyme inhibition in human subjects. Clin. Sci. (Lond.)87 (5), 567–574 (1994).