506
Views
0
CrossRef citations to date
0
Altmetric
Review

Metabolomics for Early Detection of Drug-Induced Kidney Injury: Review of The Current Status

, , , , &
Pages 1645-1663 | Published online: 07 Dec 2009

Bibliography

  • Choudhury D , AhmedZ. Drug-associated renal dysfunction and injury. Nat. Clin. Pract. Nephrol. 2(2), 80–91 (2006).
  • Perazella MA . Drug-induced nephropathy: an update. Exp. Opin. Drug Safety4(4), 689–706 (2005).
  • Mehta RL , KellumJA, ShahSVet al. Acute kidney injury network: report of an initiative to improve outcomes in acute kidney injury. Critical Care (London, England)11(2), R31– (2007).
  • Waikar SS , CurhanGC, WaldR, MccarthyEP, ChertowGM. Declining mortality in patients with acute renal failure, 1988 to 2002. J. Am. Soc. Nephrol. 17(4), 1143–1150 (2006).
  • Niemann CU , SerkovaNJ. Biochemical mechanisms of nephrotoxicity: application for metabolomics. Exp. Opin. Drug Metab. Toxicol. 3(4), 527–544 (2007).
  • Uchino S , KellumJA, BellomoRet al. Acute renal failure in critically ill patients: a multinational, multicenter study. JAMA294(7), 813–818 (2005).
  • Vaidya VS , FergusonMA, BonventreJV. Biomarkers of acute kidney injury. Ann. Rev. Pharmacol. Toxicol. 48, 463–493 (2008).
  • Stevens L , LafayetteR, PerroneR. Laboratory evaluation of kidney function. In:Diseases of the Kidney and Urinary Tract. Schrier R (Ed.). Lippincott, Williams and Wilkins, PA, USA (2007).
  • Ferguson MA , VaidyaVS, BonventreJV. Biomarkers of nephrotoxic acute kidney injury. Toxicology245(3), 182–193 (2008).
  • Dimasi JA , HansenRW, GrabowskiHG. The price of innovation: new estimates of drug development costs. J. Health Economics22(2), 151–185 (2003).
  • Adams CP , BrantnerVV. Estimating the cost of new drug development: is it really 802 million dollars? Health Aff. (Project Hope)25(2), 420–428 (2006).
  • Thukral SK , NordonePJ, HuRet al. Prediction of nephrotoxicant action and identification of candidate toxicity-related biomarkers. Toxicol. Pathol. 33(3), 343–355 (2005).
  • Kola I , LandisJ. Can the pharmaceutical industry reduce attrition rates? Nat. Rev. 3(8), 711–715 (2004).
  • John R , HerzenbergAM. Renal toxicity of therapeutic drugs. J. Clin. Pathol. 62(6), 505–515 (2009).
  • Tarloff JB , GoldsteinRS. Biochemical mechanisms of renal toxicity. In:Introduction to Biochemical Toxicology. Prentice Hall, NJ, USA (1994).
  • Werner M , CostaMJ, MitchellLG, NayarR. Nephrotoxicity of xenobiotics. Clin. Chim. Acta237(1–2), 107–154 (1995).
  • Banday AA , FarooqN, PriyamvadaS, YusufiAN, KhanF. Time dependent effects of gentamicin on the enzymes of carbohydrate metabolism, brush border membrane and oxidative stress in rat kidney tissues. Life Sci. 82(9–10), 450–459 (2008).
  • Mayrhofer C , KriegerS, HuttaryNet al. Alterations in fatty acid utilization and an impaired antioxidant defense mechanism are early events in podocyte injury: a proteomic analysis. Am. J. Pathol. 174(4), 1191–1202 (2009).
  • Markowitz GS , PerazellaMA. Drug-induced renal failure: a focus on tubulointerstitial disease. Clin. Chim. Acta351(1–2), 31–47 (2005).
  • Hitti WA , AndersonJ. Cholesterol emboli-induced renal failure and gastric ulcer after thrombolytic therapy. South Med. J. 98(2), 235–237 (2005).
  • Sistare FD , DegeorgeJJ. Preclinical predictors of clinical safety: opportunities for improvement. Clin. Pharmacol. Ther. 82(2), 210–214 (2007).
  • US FDA . Innovation or Stagnation: Challenge and Opportunity on the Critical Path to New Medical Products. US FDA, Department of Health and Human Services, Rockville, MA, USA (2004).
  • Rule AD , LarsonTS, BergstralhEJ, SlezakJM, JacobsenSJ, CosioFG. Using serum creatinine to estimate glomerular filtration rate: accuracy in good health and in chronic kidney disease. Annals Int. Med. 141(12), 929–937 (2004).
  • Stevens LA , LeveyAS. Measurement of kidney function. Med. Clinics North Am. 89(3), 457–473 (2005).
  • Loeb WF . The measurement of renal injury. Toxicol. Pathol. 26(1), 26–28 (1998).
  • Star RA . Treatment of acute renal failure. Kidney Int. 54(6), 1817–1831 (1998).
  • Duarte CG , PreussHG. Assessment of renal function – glomerular and tubular. Clinics Lab. Med. 13(1), 33–52 (1993).
  • Edelstein CL . Biomarkers of acute kidney injury. Adv. Chronic Kidney Dis. 15(3), 222–234 (2008).
  • Goodsaid F , FruehF, MattesW. The predictive safety testing consortium: a synthesis of the goals, challenges and accomplishments of the critical path. Drug Discov. Today Technol. 4, 47–50 (2007).
  • Goodsaid F , FruehF. Biomarker qualification pilot process at the US Food and Drug Administration. AAPS J. 9(1), E105–E108 (2007).
  • Chaturvedi S , FarmerT, KapkeGF. Assay validation for KIM-1: human urinary renal dysfunction biomarker. Int. J. Biol. Sci. 5(2), 128–134 (2009).
  • Vaidya VS , WaikarSS, FergusonMAet al. Urinary biomarkers for sensitive and specific detection of acute kidney injury in humans. Clin. Translational Sci. 1(3), 200–208 (2008).
  • Robertson DG . Metabonomics in toxicology: a review. Toxicol. Sci. 85(2), 809–822 (2005).
  • Evans A , DehavenCD, BarrettT, MitchellM, MilgramE. An integrated, non-targeted UHPLC–ESI–MS/MS2 platform for the identification and relative quantification of the small molecule complement of biological systems. Anal. Chem. (2009) (In Press).
  • Boudonck KJ , MitchellMW, NemetLet al. Discovery of metabolomics biomarkers for early detection of nephrotoxicity. Toxicol. Pathol. 37(3), 280–292 (2009).
  • Klawitter J , Bendrick-PeartJ, RudolphBet al. Urine metabolites reflect time-dependent effects of cyclosporine and sirolimus on rat kidney function. Chem. Res. Toxicol. 22(1), 118–128 (2009).
  • Sieber M , HoffmannD, AdlerMet al. Comparative analysis of novel noninvasive renal biomarkers and metabonomic changes in a rat model of gentamicin nephrotoxicity. Toxicol. Sci. 109(2), 336–349 (2009).
  • Wishart DS . Metabolomics in monitoring kidney transplants. Curr. Opin. Nephrol. Hypertension15(6), 637–642 (2006).
  • Fave G , BeckmannME, DraperJH, MathersJC. Measurement of dietary exposure: a challenging problem which may be overcome thanks to metabolomics? Genes Nutr. 4(2), 135–141 (2009).
  • Robosky LC , WellsDF, EgnashLA, ManningML, ReilyMD, RobertsonDG. Metabonomic identification of two distinct phenotypes in Sprague–Dawley (crl:CD(sd)) rats. Toxicol. Sci. 87(1), 277–284 (2005).
  • Wikoff WR , AnforaAT, LiuJet al. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc. Natl Acad. Sci. USA106(10), 3698–3703 (2009).
  • Nicholls AW , Mortishire-SmithRJ, NicholsonJK. NMR spectroscopic-based metabonomic studies of urinary metabolite variation in acclimatizing germ-free rats. Chem. Res. Toxicol. 16(11), 1395–1404 (2003).
  • Warrack BM , HnatyshynS, OttKHet al. Normalization strategies for metabonomic analysis of urine samples. J. Chromatogr. 877(5–6), 547–552 (2009).
  • Minami Y , KasukawaT, KakazuYet al. Measurement of internal body time by blood metabolomics. Proc. Natl Acad. Sci. USA106(24), 9890–9895 (2009).
  • Ebbels TM , KeunHC, BeckonertOPet al. Prediction and classification of drug toxicity using probabilistic modeling of temporal metabolic data: the consortium on metabonomic toxicology screening approach. J. Proteome Res. 6(11), 4407–4422 (2007).
  • Holmes E , NicholsonJK, NichollsAWet al. The identification of novel biomarkers of renal toxicity using automatic data reduction techniques and PCA of proton NMR spectra of urine. Chemom. Intel. Lab. Syst. 44(1,2), 245–255 (1998).
  • Robertson DG , ReilyMD, SiglerRE, WellsDF, PatersonDA, BradenTK. Metabonomics: evaluation of nuclear magnetic resonance (NMR) and pattern recognition technology for rapid in vivo screening of liver and kidney toxicants. Toxicol. Sci. 57(2), 326–337 (2000).
  • Portilla D , LiS, NagothuKKet al. Metabolomic study of cisplatin-induced nephrotoxicity. Kidney Int. 69(12), 2194–2204 (2006).
  • Van De Poll MC , SoetersPB, DeutzNE, FearonKC, DejongCH. Renal metabolism of amino acids: its role in interorgan amino acid exchange. Am. J. Clin. Nutr. 79(2), 185–197 (2004).
  • Seiler N , RaulF. Polyamines and apoptosis. J. Cell. Mol. Med. 9(3), 623–642 (2005).
  • Wallace HM , NiiranenK. Polyamine analogues – an update. Amino Acids33(2), 261–265 (2007).
  • Elwi AN , DamarajuVL, BaldwinSA, YoungJD, SawyerMB, CassCE. Renal nucleoside transporters: physiological and clinical implications. Biochimie Biologie Cellulaire84(6), 844–858 (2006).
  • Xu EY , PerlinaA, VuHet al. Integrated pathway analysis of rat urine metabolic profiles and kidney transcriptomic profiles to elucidate the systems toxicology of model nephrotoxicants. Chem. Res. Toxicol. 21(8), 1548–1561 (2008).
  • Lindon JC , KeunHC, EbbelsTM, PearceJM, HolmesE, NicholsonJK. The consortium for metabonomic toxicology (comet): aims, activities and achievements. Pharmacogenomics6(7), 691–699 (2005).
  • Sinha G . Drug research. Trying to catch troublemakers with a metabolic profile. Science310(5750), 965–966 (2005).
  • Gallagher WM , TweatsD, KoenigJ. Omic profiling for drug safety assessment: current trends and public–private partnerships. Drug Discov. Today14(7–8), 337–342 (2009).
  • Lenz EM , BrightJ, KnightRet al. Metabonomics with 1H-NMR spectroscopy and liquid chromatography–mass spectrometry applied to the investigation of metabolic changes caused by gentamicin-induced nephrotoxicity in the rat. Biomarkers10(2–3), 173–187 (2005).
  • Espandiari P , ZhangJ, RosenzweigBA, VaidyaVS, SunJ, SchnackenbergL. The utility of a rodent model in detecting pediatric drug-induced nephrotoxicity. Toxicol. Sci. 99(2), 937–648 (2007).
  • Park JC , HongYS, KimYJet al. A metabonomic study on the biochemical effects of doxorubicin in rats using (1)H-NMR spectroscopy. J. Toxicol. Environ. Health72(6), 374–384 (2009).
  • Ni Y , SuM, QiuYet al. Metabolic profiling using combined GC–MS and LC–MS provides a systems understanding of aristolochic acid-induced nephrotoxicity in rat. FEBS Lett. 581(4), 707–711 (2007).
  • Waters NJ , WaterfieldCJ, FarrantRD, HolmesE, NicholsonJK. Metabonomic deconvolution of embedded toxicity: application to thioacetamide hepato- and nephrotoxicity. Chem. Res. Toxicol. 18(4), 639–654 (2005).
  • Williams RE , JacobsenM, LockEA. 1H NMR pattern recognition and 31P NMR studies with D-serine in rat urine and kidney, time- and dose-related metabolic effects. Chem. Res. Toxicol. 16(10), 1207–1216 (2003).
  • Holmes E , BonnerFW, SweatmanBCet al. Nuclear magnetic resonance spectroscopy and pattern recognition analysis of the biochemical processes associated with the progression of and recovery from nephrotoxic lesions in the rat induced by mercury(II) chloride and 2-bromoethanamine. Mol. Pharmacol. 42(5), 922–930 (1992).
  • Griffin JL , WalkerLA, ShoreRF, NicholsonJK. Metabolic profiling of chronic cadmium exposure in the rat. Chem. Res. Toxicol. 14(10), 1428–1434 (2001).
  • Holmes E , NichollsAW, LindonJCet al. Chemometric models for toxicity classification based on NMR spectra of biofluids. Chem. Res. Toxicol. 13(6), 471–478 (2000).
  • Wang Y , BollardME, NicholsonJK, HolmesE. Exploration of the direct metabolic effects of mercury II chloride on the kidney of Sprague–Dawley rats using high-resolution magic angle spinning 1H NMR spectroscopy of intact tissue and pattern recognition. J. Pharmaceutical Biomed. Anal. 40(2), 375–381 (2006).
  • Lenz EM , BrightJ, KnightR, WilsonID, MajorH. A metabonomic investigation of the biochemical effects of mercuric chloride in the rat using 1H NMR and HPLC–TOF/MS: time dependent changes in the urinary profile of endogenous metabolites as a result of nephrotoxicity. Analyst129(6), 535–541 (2004).
  • König J . A better system. Drug Discov. Dev. 11(8), 28–30 (2008).
  • Anthony ML , RoseVS, NicholsonJK, LindonJC. Classification of toxin-induced changes in 1H NMR spectra of urine using an artificial neural network. J. Pharmaceutical Biomed. Anal. 13(3), 205–211 (1995).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.