218
Views
1
CrossRef citations to date
0
Altmetric
Review

Database Searching for Structural Identification of Metabolites in Complex Biofluids for Mass Spectrometry-Based Metabonomics

, , , , &
Pages 1627-1643 | Published online: 07 Dec 2009

Bibliography

  • Nicholson JK , LindonJC, HolmesE. ‘Metabonomics‘: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica29(11), 1181–1189 (1999).
  • Gartland KP , BonnerFW, NicholsonJK. Investigations into the biochemical effects of region-specific nephrotoxins. Mol. Pharmacol. 35(2), 242–250 (1989).
  • Iles RA , HindAJ, ChalmersRA. Use of proton nuclear magnetic resonance spectroscopy in detection and study of organic acidurias. Clin. Chem. 31(11), 1795–1801 (1985).
  • Nicholson JK , HighamDP, TimbrellJA, SadlerPJ. Quantitative high resolution 1H NMR urinalysis studies on the biochemical effects of cadmium in the rat. Mol. Pharmacol. 36(3), 398–404 (1989).
  • Nicholson JK , O’FlynnMP, SadlerPJ. Proton-nuclear-magnetic-resonance studies of serum, plasma and urine from fasting normal and diabetic subjects. Biochem. J. 217(2), 365–375 (1984).
  • Fiehn O . Metabolomics – the link between genotypes and phenotypes. Plant Mol. Biol. 48(1–2), 155–171 (2002).
  • Fiehn O , KopkaJ, DormannP, AltmannT, TretheweyRN, WillmitzerL. Metabolite profiling for plant functional genomics. Nat. Biotechnol. 18(11), 1157–1161 (2000).
  • Lindon JC , HolmesE, NicholsonJK. So what’s the deal with metabonomics? Anal. Chem. 75(17), 384A–391A (2003).
  • Nicholson JK , LindonJC. Systems biology: metabonomics. Nature455(7216), 1054–1056 (2008).
  • Aoki-Kinoshita KF . An introduction to bioinformatics for glycomics research. PLoS Comput. Biol. 4(5), e1000075 (2008).
  • Fahy E , CotterD, ByrnesRet al. Bioinformatics for lipidomics. Methods Enzymol. 432, 247–273 (2007).
  • Wolf C , QuinnPJ. Lipidomics: practical aspects and applications. Prog. Lipid Res. 47(1), 15–36 (2008).
  • Wolf C , QuinnPJ. Lipidomics in diagnosis of lipidoses. Subcell. Biochem. 49, 567–588 (2008).
  • Schulz-Knappe P , SchraderM, ZuchtHD. The peptidomics concept. Comb. Chem. High Throughput Screen. 8(8), 697–704 (2005).
  • Brindle JT , AnttiH, HolmesEet al. Rapid and noninvasive diagnosis of the presence and severity of coronary heart disease using 1H-NMR-based metabonomics. Nat. Med. 8(12), 1439–1444 (2002).
  • Sreekumar A , PoissonLM, RajendiranTMet al. Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature457(7231), 910–914 (2009).
  • Tsang TM , HuangJTJ, HolmesE, BahnS. Metabolic profiling of plasma from discordant schizophrenia twins: correlation between lipid signals and global functioning in female schizophrenia patients. J. Proteome Res. 5(4), 756–760 (2006).
  • Woolas RP , ConawayMR, XuFet al. Combinations of multiple serum markers are superior to individual assays for discriminating malignant from benign pelvic masses. Gynecol. Oncol. 59(1), 111–116 (1995).
  • Yin P , ZhaoX, LiQ, WangJ, LiJ, XuG. Metabonomics study of intestinal fistulas based on ultraperformance liquid chromatography coupled with Q-TOF mass spectrometry (UPLC/Q-Tof MS). J. Proteome Res. 5(9), 2135–2143 (2006).
  • Zhang S , Nagana Gowda GA, Asiago V, Shanaiah N, Barbas C, Raftery D. Correlative and quantitative 1H NMR-based metabolomics reveals specific metabolic pathway disturbances in diabetic rats. Anal. Biochem. 383(1), 76–84 (2008).
  • Zhang Z , BarnhillSD, ZhangHet al. Combination of multiple serum markers using an artificial neural network to improve specificity in discriminating malignant from benign pelvic masses. Gynecol. Oncol. 73(1), 56–61 (1999).
  • Zhao X , WangW, WangJ, YangJ, XuG. Urinary profiling investigation of metabolites with cis-diol structure from cancer patients based on UPLC–MS and HPLC–MS as well as multivariate statistical analysis. J. Sep. Sci. 29(16), 2444–2451 (2006).
  • Hodson MP , DearGJ, RobertsADet al. A gender-specific discriminator in Sprague-Dawley rat urine: the deployment of a metabolic profiling strategy for biomarker discovery and identification. Anal. Biochem. 362(2), 182–192 (2007).
  • Plumb RS , GrangerJH, StumpfCLet al. A rapid screening approach to metabonomics using UPLC and OA–TOF mass spectrometry: application to age, gender and diurnal variation in normal/zucker obese rats and black, white and nude mice. Analyst130(6), 844–849 (2005).
  • Plumb RS , JohnsonKA, RainvillePet al. The detection of phenotypic differences in the metabolic plasma profile of three strains of zucker rats at 20 weeks of age using ultra-performance liquid chromatography/orthogonal acceleration time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 20(19), 2800–2806 (2006).
  • Wagner S , ScholzK, DoneganM, BurtonL, WingateJ, VolkelW. Metabonomics and biomarker discovery: LC–MS metabolic profiling and constant neutral loss scanning combined with multivariate data analysis for mercapturic acid analysis. Anal. Chem. 78(4), 1296–1305 (2006).
  • Williams RE , LenzEM, LowdenJS, RantalainenM, WilsonID. The metabonomics of aging and development in the rat: an investigation into the effect of age on the profile of endogenous metabolites in the urine of male rats using 1H NMR and HPLC–TOF MS. Mol. Biosyst. 1(2), 166–175 (2005).
  • Delinsky AD , DelinskyDC, MuralidharaS, FisherJW, BrucknerJV, BartlettMG. Analysis of dichloroacetic acid in rat blood and tissues by hydrophilic interaction liquid chromatography with tandem mass spectrometry. Rapid Commun. Mass Spectrom. 19(8), 1075–1083 (2005).
  • Griffin JL . Metabonomics: NMR spectroscopy and pattern recognition analysis of body fluids and tissues for characterisation of xenobiotic toxicity and disease diagnosis. Curr. Opin. Chem. Biol. 7(5), 648–654 (2003).
  • Lenz EM , BrightJ, KnightRet al. Metabonomics with 1H-NMR spectroscopy and liquid chromatography-mass spectrometry applied to the investigation of metabolic changes caused by gentamicin-induced nephrotoxicity in the rat. Biomarkers10(2–3), 173–187 (2005).
  • Lenz EM , BrightJ, KnightR, WilsonID, MajorH. A metabonomic investigation of the biochemical effects of mercuric chloride in the rat using 1H NMR and HPLC–TOF/MS: Time dependent changes in the urinary profile of endogenous metabolites as a result of nephrotoxicity. Analyst129(6), 535–541 (2004).
  • Lenz EM , BrightJ, KnightR, WilsonID, MajorH. Cyclosporin a-induced changes in endogenous metabolites in rat urine: a metabonomic investigation using high field 1H NMR spectroscopy, HPLC–TOF/MS and chemometrics. J. Pharm. Biomed. Anal. 35(3), 599–608 (2004).
  • Petricoin EF III , ArdekaniAM, HittBAet al. Use of proteomic patterns in serum to identify ovarian cancer. Lancet359(9306), 572–577 (2002).
  • Goodsaid F , FruehF. Biomarker qualification pilot process at the US food and drug administration. AAPS J. 9(1), (2007).
  • Niedbala RS , MauckC, HarrisonP, DoncelGF. Biomarker discovery: validation and decision-making in product development. Sex. Transm. Dis. 36(Suppl. 3), S76–S80 (2009).
  • Dunn WB , EllisDI. Metabolomics: current analytical platforms and methodologies. Trends Analyt. Chem. 24(4), 285–294 (2005).
  • Anari MR , BaillieTA. Bridging cheminformatic metabolite prediction and tandem mass spectrometry. Drug Discov. Today10(10), 711–717 (2005).
  • Bateman KP , Castro-PerezJ, WronaMet al. MSE with mass defect filtering for in vitro and in vivo metabolite identification. Rapid Commun. Mass Spectrom. 21(9), 1485–1496 (2007).
  • Holcapek M , KolarovaL, NobilisM. High-performance liquid chromatography–tandem mass spectrometry in the identification and determination of Phase I and Phase II drug metabolites. Anal. Bioanal. Chem. 391(1), 59–78 (2008).
  • Watt AP , Mortishire-SmithRJ, GerhardU, ThomasSR. Metabolite identification in drug discovery. Curr. Opin. Drug Discov. Devel. 6(1), 57–65 (2003).
  • Johnson M . Assessing the reliability of methods for predicting drug metabolites. J. Biopharm. Stat. 1(1), 27–56 (1991).
  • Ma S , ChowdhurySK, AltonKB. Application of mass spectrometry for metabolite identification. Curr. Drug Metab. 7(5), 503–523 (2006).
  • Nassar AE , TalaatRE. Strategies for dealing with metabolite elucidation in drug discovery and development. Drug Discov. Today9(7), 317–327 (2004).
  • Prakash C , ShafferCL, NeddermanA. Analytical strategies for identifying drug metabolites. Mass Spectrom. Rev. 26(3), 340–369 (2007).
  • Darvas F . Predicting metabolic pathways by logic programming. J. Mol. Graph. 6(2), 80–86 (1988).
  • Seressiotis A , BaileyJE. MPS: an artificially intelligent software system for the analysis and synthesis of metabolic pathways. Biotechnol. Bioeng. 31(6), 587–602 (1988).
  • Testa B , BalmatAL, LongA, JudsonP. Predicting drug metabolism – an evaluation of the expert system METEOR. Chem. Biodivers. 2(7), 872–885 (2005).
  • Tinker JF , GelernterH. Computer simulation of metabolic transformation. J. Comput. Chem. 7(5), 657–665 (1986).
  • Riska P , LamsonM, MacgregorTet al. Disposition and biotransformation of the antiretroviral drug nevirapine in humans. Drug Metab. Dispos. 27(8), 895–901 (1999).
  • Zhang H , ZhangD, RayK. A software filter to remove interference ions from drug metabolites in accurate mass liquid chromatography/mass spectrometric analyses. J. Mass Spectrom. 38(10), 1110–1112 (2003).
  • Cuyckens F , HurkmansR, Castro-PerezJM, LeclercqL, Mortishire-SmithRJ. Extracting metabolite ions out of a matrix background by combined mass defect, neutral loss and isotope filtration. Rapid Commun. Mass Spectrom. 23(2), 327–332 (2009).
  • Mortishire-Smith RJ , O’ConnorD, Castro-PerezJM, KirbyJ. Accelerated throughput metabolic route screening in early drug discovery using high-resolution liquid chromatography/quadrupole time-of-flight mass spectrometry and automated data analysis. Rapid Commun. Mass Spectrom. 19(18), 2659–2670 (2005).
  • Rousu T , PelkonenO, TolonenA. Rapid detection and characterization of reactive drug metabolites in vitro using several isotope-labeled trapping agents and ultra-performance liquid chromatography/time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 23(6), 843–855 (2009).
  • Zhang H , ZhuM, RayKL, MaL, ZhangD. Mass defect profiles of biological matrices and the general applicability of mass defect filtering for metabolite detection. Rapid Commun. Mass Spectrom. 22(13), 2082–2088 (2008).
  • Scholz K , DekantW, VolkelW, PahlerA. Rapid detection and identification of N-acetyl-l-cysteine thioethers using constant neutral loss and theoretical multiple reaction monitoring combined with enhanced product-ion scans on a linear ion trap mass spectrometer. J. Am. Soc. Mass Spectrom. 16(12), 1976–1984 (2005).
  • Irwin JJ , ShoichetBK. Zinc – a free database of commercially available compounds for virtual screening. J. Chem. Inf. Model. 45(1), 177–182 (2005).
  • Wishart DS , TzurD, KnoxCet al. HMDB: the human metabolome database. Nucleic Acids Res. 35, D521–D526 (2007).
  • Aoki KF , KanehisaM. Using the Kegg database resource. Curr. Protoc. Bioinformatics1(1), 12 (2005).
  • Smith CA , O’MailleG, WantEJet al. METLIN: a metabolite mass spectral database. Ther. Drug Monit. 27(6), 747–751 (2005).
  • Degtyarenko K , De Matos P, Ennis Met al. ChEBI: a database and ontology for chemical entities of biological interest. Nucleic Acids Res. 36, D344–D350 (2008).
  • Mazurek S , EigenbrodtE. The tumor metabolome. Anticancer Res. 23(2A), 1149–1154 (2003).
  • Merrill Jr AH . Sphingomap – a web-based biosynthetic pathway map of sphingolipids and glycosphingolipids. Glycobiology15(6), 15G (2005).
  • Yasugi E , WatanabeK. Lipidbank for web, the newly developed lipid database. Tanpakushitsu Kakusan Koso47(7), 837–841 (2002).
  • Wishart DS . Current progress in computational metabolomics. Brief. Bioinform. 8(5), 279–293 (2007).
  • Wishart DS , KnoxC, GuoACet al. Drugbank: a knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res. 36, D901–D906 (2008).
  • Wishart DS , KnoxC, GuoACet al. Drugbank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res. 34, D668–D672 (2006).
  • Ryals J , LawtonK, StevensD, MilburnM. Metabolon, Inc. Pharmacogenomics8(7), 863–866 (2007).
  • Williams DK Jr , MuddimanDC. Parts-per-billion mass measurement accuracy achieved through the combination of multiple linear regression and automatic gain control in a Fourier transform ion cyclotron resonance mass spectrometer. Anal. Chem. 79(13), 5058–5063 (2007).
  • Kind T , FiehnO. Metabolomic database annotations via query of elemental compositions: mass accuracy is insufficient even at less than 1 ppm. BMC Bioinformatics7, 234 (2006).
  • Hill DW , KerteszTM, FontaineD, FriedmanR, GrantDF. Mass spectral metabonomics beyond elemental formula: chemical database querying by matching experimental with computational fragmentation spectra. Anal. Chem. 80(14), 5574–5582 (2008).
  • Ramaley L , HerreraLC. Software for the calculation of isotope patterns in tandem mass spectrometry. Rapid Commun. Mass Spectrom. 22(17), 2707–2714 (2008).
  • Kind T , FiehnO. Seven golden rules for heuristic filtering of molecular formulas obtained by accurate mass spectrometry. BMC Bioinformatics8, 105 (2007).
  • Ojanpera S , PelanderA, PelzingM, KrebsI, VuoriE, OjanperaI. Isotopic pattern and accurate mass determination in urine drug screening by liquid chromatography/time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 20(7), 1161–1167 (2006).
  • De Vos RC , MocoS, LommenA, KeurentjesJJ, BinoRJ, HallRD. Untargeted large-scale plant metabolomics using liquid chromatography coupled to mass spectrometry. Nat. Protoc. 2(4), 778–791 (2007).
  • Kuehl D , WangY. The role of spectral accuracy in mass spectrometry. LC–GC North America25(Suppl. 4), 10–16 (2007).
  • Kuehl D , WangY. Peak shape calibration method improves the mass accuracy of mass spectrometers. BioPharm International19(7) online issue (2006).
  • Hill DW , KelleyTR, LangnerKJ, MillerKW. Determination of mycotoxins by gradient high-performance liquid chromatography using an alkylphenone retention index system. Anal. Chem. 56(13), 2576–2579 (1984).
  • Hill DW , KindAJ. Reversed-phase solvent-gradient HPLC retention indexes of drugs. J. Anal. Toxicol. 18(5), 233–242 (1994).
  • Kováts E . Characterization of organic compounds by gas chromatography. Part 1. Retention. Indices of aliphatic halides, alcohols, aldehydes and ketones. Helv. Chim. Acta41(7), 1915–1932 (1958).
  • Guo W , LuY, ZhengXM. The predicting study for chromatographic retention index of saturated alcohols by MLR and ANN. Talanta51(3), 479–488 (2000).
  • Acevedo-Martinez J , Escalona-ArranzJC, Villar-RojasAet al. Quantitative study of the structure-retention index relationship in the imine family. J. Chromatogr. A1102(1–2), 238–244 (2006).
  • Konoz E , FatemiMH, FarajiR. Prediction of kovats retention indices of some aliphatic aldehydes and ketones on some stationary phases at different temperatures using artificial neural network. J. Chromatogr. Sci. 46(5), 406–412 (2008).
  • Albaugh DR , HallLM, HillDWet al. Prediction of HPLC retention index using artificial neural networks and Igroup E-state indices. J. Chem. Inf. Model. 49(4), 788–799 (2009).
  • Rosenstock HM , WallensteinMB, WahrhaftigAL, EyringH. Absolute rate theory for isolated systems and the mass spectra of polyatomic molecules. Proc. Natl Acad. Sci. USA38(8), 667–678 (1952).
  • Gabelica V , De Pauw E. Internal energy and fragmentation of ions produced in electrospray sources. Mass Spectrom. Rev. 24(4), 566–587 (2005).
  • Vekey K . Internal energy effects in mass spectrometry. J. Mass Spectrom. 31(5), 445–463 (1996).
  • Kim S , RodgersRP, MarshallAG. Truly “exact” mass: elemental composition can be determined uniquely from molecular mass measurement at 0.1 mDa accuracy for molecules up to 500 Da. Int. J. Mass Spectrom. 251(2–3 SPEC. ISS.), 260–265 (2006).
  • McLafferty FW , ZhangMY, StaufferDB, LohSY. Comparison of algorithms and databases for matching unknown mass spectra. J. Am. Soc. Mass Spectrom. 9(1), 92–95 (1998).
  • Stein SE , ScottDR. Optimization and testing of mass spectral library search algorithms for compound identification. J. Am. Soc. Mass Spectrom. 5(9), 859–866 (1994).
  • Atwater BA , StaufferDB, MclaffertyFW. Reliability ranking and scaling improvements to the probability based matching system for unknown mass spectra. Anal. Chem. 57(4), 899–903 (1985).
  • McLafferty FW , HertelRH, VillwockRD. Probability based matching of mass spectra. Rapid identification of specific compounds in mixtures. Org. Mass Spectrom. 9(7), 690–702 (1974).
  • Hopley C , BristowT, LubbenAet al. Towards a universal product ion mass spectral library – reproducibility of product ion spectra across eleven different mass spectrometers. Rapid Commun. Mass Spectrom. 22(12), 1779–1786 (2008).
  • Oberacher H , PavlicM, LibisellerKet al. On the inter-instrument and the inter-laboratory transferability of a tandem mass spectral reference library: 2. Optimization and characterization of the search algorithm. J. Mass Spectrom. 44(4), 494–502 (2009).
  • Oberacher H , PavlicM, LibisellerKet al. On the inter-instrument and inter-laboratory transferability of a tandem mass spectral reference library: 1. Results of an Austrian multicenter study. J. Mass Spectrom. 44(4), 485–493 (2009).
  • McLafferty FW , TurecekF. Interpretation of Mass Spectra (4th Edition). University Science Books, Sausalito, CA, USA (1993).
  • Bovet C , WortmannA, EilerSet al. Estrogen receptor-ligand complexes measured by chip-based nanoelectrospray mass spectrometry: an approach for the screening of endocrine disruptors. Protein Sci. 16(5), 938–946 (2007).
  • Danikiewicz W , TarnowskiP, BienkowskiT, JurczakJ. Estimation of the noncovalent bond dissociation energies of the gas-phase complexes of macrocyclic polyethers with alkali metal cations using an electrospray ionization/triple quadrupole mass spectrometer. Pol. J. Chem. 78(5), 699–709 (2004).
  • DeMaaijer-Gielbert J , GuC, SomogyiA, WysockiVH, KistemakerPG, WeedingTL. Surface-induced dissociation of singly and multiply protonated polypropylenamine dendrimers. J. Am. Soc. Mass Spectrom. 10(5), 414–422 (1999).
  • Dongre AR , SomogyiA, WysockiVH. Surface-induced dissociation: an effective tool to probe structure, energetics and fragmentation mechanisms of protonated peptides. J. Mass Spectrom. 31(4), 339–350 (1996).
  • Guo X , DuursmaMC, KistemakerPGet al. Manipulating internal energy of protonated biomolecules in electrospray ionization fourier transform ion cyclotron resonance mass spectrometry. J. Mass Spectrom. 38(6), 597–606 (2003).
  • Kertesz TM , HallLH, HillDW, GrantDF. CE50: quantifying collision-induced dissociation energy for small molecule characterization and identification. J. Am. Soc. Mass Spectrom. 20(9), 1759–1767 (2009).
  • Rosu F , NguyenCH, De Pauw E, Gabelica V. Ligand binding mode to duplex and triplex DNA assessed by combining electrospray tandem mass spectrometry and molecular modeling. J. Am. Soc. Mass Spectrom. 18(6), 1052–1062 (2007).
  • Rosu F , PirotteS, PauwED, GabelicaV. Positive and negative ion mode ESI-MS and MS/MS for studying drug–DNA complexes. Int. J. Mass Spectrom. 253(3), 156–171 (2006).
  • Vekey K , SomogyiA, WysockiVH. Average activation energies of low-energy fragmentation processes of protonated peptides determined by a new approach. Rapid Commun. Mass Spectrom. 10(8), 911–918 (1996).
  • Schymanski EL , MeringerM, BrackW. Matching structures to mass spectra using fragmentation patterns: are the results as good as they look? Anal. Chem. 81(9), 3608–3617 (2009).
  • Anari MR , BakhtiarR, FranklinRB, PearsonPG, BaillieTA. Study of the fragmentation mechanism of protonated 6-hydroxychlorzoxazone: application in simultaneous analysis of cyp2e1 activity with major human cytochrome p450s. Anal. Chem. 75(3), 469–478 (2003).

Websites

Patent

  • Wang Y. Methods for operating mass spectrometry (MS) instrument systems. US6983213(10689313) (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.