959
Views
4
CrossRef citations to date
0
Altmetric
Review

Immunoaffinity Chromatography: An Introduction to Applications and Recent Developments

&
Pages 769-790 | Published online: 13 Apr 2010

Bibliography

  • Hage DS , PhillipsTM. Immunoaffinity chromatography. In:Handbook of Affinity Chromatography. Hage DS (Ed.). Taylor & Francis, NY, USA, Chapter 6 (2006).
  • Hage DS . Survey of recent advances in analytical applications of immunoaffinity chromatography. J. Chromatogr. B715(1), 3–28 (1998).
  • Calton GJ . Immunosorbent separations. Meth. Enzymol. 104, 381–387 (1985).
  • Phillips TM . High performance immunoaffinity chromatography. An introduction. LC Mag. 3, 962–972 (1985).
  • D’allesandro G , SofiaF. The adsorption of antibodies from the sera of syphilitics and turburculosis patients. Z. Immunitats84, 237–250 (1935).
  • Landsteiner K , Van Der Scheer J. Cross reactions of immune sera to azoproteins. J. Exp. Med. 63, 325–339 (1936).
  • Campbell DH , LuescherE, LermanLS. Immunologic adsorbents. I. Isolation of antibody by means of a cellulose-protein antigen. Proc. Natl Acad. Sci. USA37, 575–578 (1951).
  • Weller MG . Immunochromatographic techiques – a critical review. Fres. J. Anal. Chem. 366, 635–645 (2000).
  • Ehle H , HornA. Immunoaffinity chromatography of enzymes. Bioseparation1, 97–110 (1990).
  • Nakajima M , YamaguchiI. Purification of plant hormones by immunoaffinity chromatography. Kagaku to Seibutsu29, 270–275 (1991).
  • Gallant SR . Immunoaffinity chromatography of proteins. Methods Mol. Biol. 251, 103–109 (2004).
  • Zolotarjova N , BoyesB, MartosellaJet al. Immunoaffinity depletion of high-abundant proteins for proteomic sample preparation. In:Separation Methods in Proteomics. Smejkal GB, Lazarev A (Eds). CRC Press, FL, USA 63–79 (2006).
  • de Frutos M , RegnierFE. Tandem chromatographic-immunological analyses. Anal. Chem. 65, 17A–25A (1993).
  • Peoples MC , KarnesHT. Microfluidic immunoaffinity separations for bioanalysis. J. Chromatogr. B866, 14–25 (2008).
  • Hage DS , NelsonMA. Chromatographic immunoassays. Anal. Chem. 73, 198A–205A (2001).
  • Hage DS , ClarkeW. Immunoaffinity chromatography in clinical analysis. In:Separation Techniques in Clinical Chemistry. Aboul-Enein HY (Ed.). Marcel Dekker, NY, USA 361–387 (2003).
  • Nelson MA , HageDS. Environmental analysis by affinity chromatography. In:Handbook of Affinity Chromatography. Hage DS (Ed.). Taylor & Francis, NY, USA (2006).
  • Jiang T , MallikR, HageDS. Affinity monoliths for ultrafast immunoextraction. Anal. Chem. 77, 2362–2372 (2005).
  • Hage DS , RollagJG, ThomasDH. Analysis of atrazine and its degradation products in water by tandem high-performance immunoaffinity chromatography and reversed-phase liquid chromatography. ACS Symposium Series657, 118–132 (1997).
  • Moser AC , HageDS. Chromatographic immunoassays. In:Handbook of Affinity Chromatography. Hage DS (Ed.). Taylor & Francis, NY, USA, Chapter 29 (2006).
  • Williams BAR , DiehneltCW, BelcherPet al. Creating protein affinity reagents by combining peptide ligands on synthetic DNA scaffolds. J. Am. Chem. Soc. 131, 17233–17241 (2009).
  • Benhar I . Design of synthetic antibody libraries. Expert Opin. Biol. Ther. 7, 763–779 (2007).
  • Lerner RA . Manufacturing immunity to disease in a test tube: the magic bullet realized. Angew. Chem. Int. Ed. Engl. 45, 8106–8125 (2006).
  • Donzeau M , KnappikA. Recombinant monoclonal antibodies. Methods Mol. Biol. 378, 15–31 (2007).
  • Boyle MDP , LangoneJJ. A simple procedure to use whole serum as a source of either IgG- or IgM-specific antibody. J. Immunol. Meth. 32, 51–58 (1980).
  • Kabat EA , MayerM. Experimental Immunochemistry. Springfield, IL, USA (1961).
  • Eliasson M , AnderssonR, OlssonA, WigzellH, UhlenM. Differential IgG-binding characteristics of staphylococcal protein A, streptococcal protein G, and a chimeric protein AG. J. Immunol. 142, 575–581 (1989).
  • Narhi LO , CaugheyDJ, HoranTP, KitaY, ChangD, ArakawaT. Fractionation and characterization of polyclonal antibodies using three progressively more chaotropic solvents. Anal. Biochem. 253, 246–252 (1997).
  • Kohler G , MilsteinC. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature256, 495–497 (1975).
  • Gustavsson P , LarssonPO. Support materials for affinity chromatography. In:Handbook of Affinity Chromatography. Hage DS (Ed.). Taylor & Francis, NY, USA, Chapter 2 (2006).
  • Schiel JE , MallikR, SomanS, JosephKS, HageDS. Applications of silica supports in affinity chromatography. J. Sep. Sci. 29, 719–737 (2006).
  • Phillips TM . Measurement of recombinant interferon levels by high performance immunoaffinity chromatography in body fluids of cancer patients on interferon therapy. Biomed. Chrom. 6, 287–290 (1992).
  • Hage DS . Handbook of HPLC. Chapter 13 (2nd Edition). Corradini D (Ed.). Taylor & Francis/CRC Press, Boca Raton, FL, USA, Chapter 10 (2010).
  • Mcconnell JP , Anderson DJj. Determination of fibrinogen in plasma by high-performance immunoaffinity chromatography. J.Chromatogr. 615, 67–75 (1993).
  • Zou H , ZhangY, LuP, KrullIS. Perfusion immunoaffinity chromatography and its application in analysis and purification of biomolecules. Biomed. Chrom. 10, 122–126 (1996).
  • Clarke W , BeckwithJD, JacksonA, ReynoldsB, KarleEM, HageDS. Antibody immobilization to high-performance liquid chromatography supports. Characterization of maximum loading capacity for intact immunoglobulin G and Fab fragments. J. Chromatogr. A888, 13–22 (2000).
  • Mallik R , HageDS. Affinity monolith chromatography. J. Sep. Sci. 29, 1686–1704 (2006).
  • Kim H , HageDS. Immobilization methods for affinity chromatography. In:Handbook of Affinity Chromatography. Hage DS (Ed.). Taylor & Francis, NY, USA, Chapter 3 (2006).
  • Hermanson GT , MalliaAK, SmithPK. Immobilized Affinity Ligand Techniques. Academic Press, NY, USA (1992).
  • Larsson PO . High-performance liquid chromatography. Meth. Enzymol. 104, 212–223 (1984).
  • Kortt AA , OddieGW, IliadiesP, GruenLC, HudsonPJ. Nonspecific amine immobilization of ligand can be a potential source of error in Biacore binding experiments and may reduce binding affinities. Anal. Biochem. 253, 103–111 (1997).
  • Wilcheck M , MironT. Limitations of n-hydroxy-succimide esters in affinity chromatography and protein immobilization. Biochemistry26, 2155–2161 (1987).
  • Phillips TM . Isolation and recovery of biologically active proteins by high-performance immunoaffinity chromatography. In:The Use of HPLC in Receptor Biochemistry. Venter CJ, Harrison LC (Eds). John Wiley & Sons, NY, USA, 129–154 (1998).
  • Ruhn PF , GarverS, HageDS. Development of dihydrazide-activated silica supports for high-performance affinity chromatography. J. Chromatogr. A669, 9–19 (1994).
  • Bayer EA , WilcheckM. The use of the avidin–biotin complex as a a tool in molecular biology. Methods Biochem. Anal. 26, 1–45 (1980).
  • Hage DS , BianM, BurksR, KarleE, OhnmachtC, WaC. Bioaffinity chromatography. In:Handbook of Affinity Chromatography. Hage DS (Ed.). Taylor & Francis, NY, USA, Chapter 5 (2006).
  • O’shannessy DJ , QuarlesRH. Labeling of the oligosaccharide moieties of immunoglobulins. J. Immunol. Meth. 99, 153–161 (1987).
  • Phillips TM , QueenWD, MoreNS, ThompsonAM. Protein A-coated glass beads: universal support medium for high-performance immunoaffinity chromatography. J. Chromatogr. 327, 213–219 (1985).
  • Schneider C , NewmanRA, SutherlandDR, AsserU, GreavesMF. A one-step purification of membrane proteins using a high efficiencey immunomatrix. J. Biol. Chem. 257, 10766–10769 (1982).
  • Sisson TH , CastorCW. An improved method for immobilizing IgG antibodies on protein A-agarose. Immunol. Methods127, 215–220 (1990).
  • Zopf D , OhlsonS, DakourJ, WangW, LundbladA. Analysis and purification of oligosaccharides by high-performance liquid affinity chromatography. Meth. Enzymol. 179, 55–64 (1989).
  • Dakour J , LundbladA, ZopfD. Separation of blood group A-active oligosaccharides by high-pressure liquid affinity chromatography using a monoclonal antibody bound to concanavalin a silica. Anal. Biochem. 161, 140–143 (1987).
  • Puchades R , MaquieiraA. Recent developments in flow injection immunoanalysis. Crit. Rev. Anal. Chem. 26, 195–218 (1996).
  • Delauney N , PichonV, Hennion M-C. Immunoaffinity solid-phase extraction for the trace-analysis of low-molecular-mass analytes in complex sample matrices. J. Chromatogr. B745, 15–37 (2000).
  • Ibarra N , CaballeroA, GonzalezE, ValdesR. Comparison of different elution conditions for the immunopurification of recombinant hepatitis B surface antigen. J. Chromatogr. B735, 271–277 (1999).
  • Cong J , ThompsonVF, GollDE. Immunoaffinity purification of the calpains. Protein Exp. Purif. 25, 283–290 (2002).
  • Sica V , PucaGA, MolinariM, BuonaguroFM, BrescianiF. Effect of chemical perturbation with sodium thiocyanate on receptor–estradiol interaction: a new exchange assay at low temperature. Biochemistry19, 88–88 (1980).
  • Lawrence JF , MenardC. Determination of clenbuterol in beef liver and muscle tissue using immunoaffinity chromatographic cleanup and liquid chromatography with ultraviolet absorbance detection. J. Chromatogr. B696, 291–297 (1997).
  • Hage DS , WaltersRR. Dual-column determination of albumin and immunoglobulin G in serum by high-performance affinity chromatography. J. Chromatogr. 386, 37–49 (1987).
  • Yoshikawa T , TerashimaM, KatohS. Immunoassay using HPLAC and fluorescence-labeled antibodies. J. Ferm. Bioeng. 80, 200–203 (1995).
  • Beyer K , ReineckeM, NoeW, ScheperT. Immunobased elution assay for process control. Anal. Chim. Acta309, 301–305 (1995).
  • Stoecklein W , JaegerV, SchmidRD. Monitoring of mouse immunoglobulin G by flow-injection analytical affinity chromatography. Anal. Chim. Acta245, 1–6 (1991).
  • Bouvrette P , LuongJHT. Development of a flow injection analysis (FIA) immunosensor for the detection of Escherichia coli. Int. J. Food Microbiol. 27, 129–137 (1995).
  • Delaunay-Bertoncini N , PichonV, Hennion M-C. Comparison of immunoextraction sorbents prepared from monoclonal and polyclonal anti-isoproturon antibodies and optimization of the appropriate monoclonal antibody-based sorbent for environmental and biological applications. Chromatographia53, S224–S230 (2001).
  • Ferrer I , Hennion M-C, Barcelo D. Immunosorbents coupled online with liquid chromatography/atmospheric pressure chemical ionization/mass spectrometry for the part per trillion level determination of pesticides in sediments and natural waters using low preconcentration volumes. Anal. Chem. 69, 4508–4514 (1997).
  • Bouzige M , LegeayP, PichonV, Hennion M-C. Selective on-line immunoextraction coupled to liquid chromatography for the trace determination of benzidine, congeners and related azo dyes in surface water and industrial effluents. J. Chromatogr. A846, 317–329 (1999).
  • Davoli E , FanelliR, BagnatiR. Purification and analysis of drug residues in urine samples by on-line immunoaffinity chromatography/high-performance liquid chromatography/continuous-flow fast-atom-bombardment mass spectrometry. Anal. Chem. 65, 2679–2685 (1993).
  • Vanderlaan M , LottiR, SiekG, KingD, GoldsteinM. Perfusion immunoassay for acetylcholinesterase: analyte detection based on intrinsic activity. J. Chromatogr. A711, 23–31 (1995).
  • Janis LJ , RegnierFE. Dual-column immunoassays using protein G affinity chromatography. Anal. Chem. 61, 1901–1906 (1989).
  • Cole LJ , KennedyRT. Selective preconcentration for capillary zone electrophoresis using protein G immunoaffinity capillary chromatography. Electrophoresis16, 549–556 (1995).
  • De Frutos M , RegnierFE. Tandem chromatographic–immunological analyses. Anal. Chem. 65, 17A–25A (1998).
  • Thomas DH , Beck-WestermeyerM, HageDS. Determination of atrazine in water using tandem high-performance immunoaffinity chromatography and reversed-phase liquid chromatography. Anal. Chem. 66, 3823–3829 (1994).
  • Hage DS , RollagJG, ThomasDH. Immunochemical Technology for Environmental Applications. Aga DS, Thurman EM (Eds). ACS Press, DC, USA, Chapter 10 (1997).
  • Rollag JG , Beck-WestermeyerM, HageDS. Analysis of pesticide degradation products by tandem high-performance immunoaffinity chromatography and reversed-phase liquid chromatography. Anal. Chem. 68, 3631–3637 (1996).
  • Hao P , RenY, XieY. Label-free relative quantification method for low-abundance glycoproteins in human serum by microtof-q. J. Chromatogr. B877, 1657–1666 (2009).
  • Cellar NA , KarnoupAS, AlbersDR, LanghorstML, YoungSA. Immunodepletion of high abundance proteins coupled on-line with reversed-phase liquid chromatography: a two-dimensional LC sample enrichment and fractionation technique for mammalian proteomics. J. Chromatogr. B877, 79–85 (2009).
  • Dowling P , O’DriscollL, MeleadyPet al. 2-D difference gel electrophoresis of the lung squamous cell carcinoma versus normal sera demonstrates consistent alterations in the levels of ten specific proteins. Electrophoresis28, 4302–4310 (2007).
  • Lai X , BacallaoRL, Blazer-Yost BLl, Hong D, Mason SB, Witzmann FA. Characterization of the renal cyst fluid proteome in autosomal dominant polycystic kidney disease (ADPKD) patients. Proteomics Clin. Appl. 2(7–8), 1140–1152 (2008).
  • Chromy BA , GonzalesAD, PerkinsJet al. Proteomic anaylsis of human serum by two dimensional differential gel electrophoresis after depletion of high-abundant proteins. J. Proteome Res. 3, 1120–1127 (2004).
  • Yu KH , RustgiAK, BlairIA. Characterization of proteins in human pancreatic cancer serum using differential gel electrophoresis and tandem mass spectrometry. J. Proteome Res. 4, 1742–1751 (2005).
  • Kagel JR , RossiDT, NordblomGDet al. Considerations in the development of a sensitive HPLC assay for human epidermal growth factors in human plasma. J. Pharm. Biomed. Anal. 13, 1205–1213 (1995).
  • Heegaard NHH , SchouC. Affinity ligands in capillary electrophoresis. In:Handbook of Affinity Chromatography. Hage DS (Ed.). Taylor & Francis, NY, USA, Chapter 26 (2006).
  • Amundson LK , SirenH. Immunoaffinity CE in clinical analysis of body fluids and tissues. Electrophoresis28, 99–113 (2007).
  • Guzman NA , PhillipsTM. Immunoaffinity CE for proteomic studies. Anal. Chem. 77, 60A–67A (2005).
  • Guzman NA . Immunoaffinity capillary electrophoresis applications of clinical and pharmaceutical relevance. Anal. Bioanal. Chem. 378, 37–39 (2004).
  • Moser AC , HageDS. Capillary electrophoresis-based immunoassays: principles and quantitative applications. Electrophoresis29, 3279–3295 (2008).
  • Briscoe CJ , ClarkeW, HageDS. Affinity mass spectrometry. In:Handbook of Affinity Chromatography. Hage DS (Ed.). Taylor & Francis, NY, USA, Chapter 27 (2006).
  • Dalluge J , HankemeierT, VreulsRJJ, BrinkmanUAT. Online coupling of immunoaffinity-based solid-phase extraction and gas chromatography for the determination of s-triazines in aqueous samples. J. Chromatogr. A830, 377–386 (1999).
  • Farjam A , VreulsJJ, CuppenWJGM, BrinkmanUAT, de Jong GJ. Direct introduction of large-volume urine samples into an on-line immunoaffinity sample pretreatment-capillary gas chromatography system. Anal. Chem. 63, 2481–2487 (1991).
  • Phillips TM . Microanalytical methods based on affinity chromatography. In:Handbook of Affinity Chromatography. Hage DS (Ed.). Taylor & Francis, NY, USA, Chapter 28 (2006).
  • Newkirk DK , BensonRW, HowardPC, ChurchwellMI, DoergeDR, RobertsDW. Online immunoaffinity capture, coupled with HPLC and electrospray ionization mass spectrometry, for automated determination of fumonisins. J. Agr. Food Chem. 46, 1677–1688 (1998).
  • Itoh M , KominamiG. On-line immunoaffinity extraction followed by high-performance liquid chromatography and radioimmunoassay for a novel retinobenzoic acid, AM-80, in human plasma. J. Immunoassay Immunochemistry22, 213–223 (2001).
  • Holtzapple CK , BuckleySA, StankerLH. Determination of fluoroquinolones in serum using an on-line clean-up column coupled to high-performance immunoaffinity-reversed-phase liquid chromatography. J. Chromatogr. B754, 1–9 (2001).
  • Creaser CS , FeelySJ, HoughtonE, SeymourM. Immunoaffinity chromatography combined online with high-performance liquid chromatography–mass spectrometry for the determination of corticosteroids. J. Chromatogr. A794, 37–43 (1998).
  • Flurer CL , NovotnyM. Dual microcolumn immunoaffinity liquid chromatography: an analytical application to human plasma proteins. Anal. Chem. 65, 817–821 (1993).
  • Farjam A , BrugmanAE, LingemanH, BrinkmanUAT. On-line immunoaffinity sample pretreatment for column liquid chromatography: evaluation of desorption techniques and operating conditions using an anti-estrogen immuno-precolumn as a model system. Analyst116, 891–896 (1991).
  • Radabaugh MR , NemirovskiyOV, MiskoTP, AggarwalP, MathewsWR. Immunoaffinity liquid chromatography-tandem mass spectrometry detection of nitrotyrosine in biological fluids: development of a clinically translatable biomarker. Anal. Biochem. 380, 68–76 (2008).
  • Berna M , SchmalzC, DuffinK, MitchellP, ChambersM, AckermannB. Online immunoaffinity liquid chromatography/tandem mass spectrometry determination of a type II collagen peptide biomarker in rat urine: investigation of the impact of collision-induced dissociation fluctuation on peptide quantitation. Anal. Biochem. 356, 235–243 (2006).
  • Hoos JS , SudergatH, Hoelck J-Pet al. Selective quantitative bioanalysis of proteins in biological fluids by on-line immunoaffinity chromatography-protein digestion-liquid chromatography-mass spectrometry. J. Chromatogr. B830, 262–269 (2006).
  • Roberts DW , ChurchwellMI, BelandFA, Fang J-L, Doerge DR. Quantitative analysis of etheno-2´-deoxycytidine DNA adducts using on-line immunoaffinity chromatography coupled with LC/ES-MS/MS detection. Anal. Chem. 73, 303–309 (2001).
  • Nelson MA , PapastavrosE, DodlingerM, HageDS. Environmental analysis by on-line immunoextraction and reversed-phase liquid chromatography: optimization of the immunoextraction/RPLC interface. J. Agr. Food Chem. 55, 3788–3797 (2007).
  • Garcinuno RM , FernandezP, Perez-CondeC, GutierrezAM, CamaraC. Development of a fluoroimmunosensor for theophylline using immobilized antibody. Talanta52, 825–832 (2000).
  • Ren X . Flow injection fluoroimmunoassay for human transferrin using a protein A immunoreactor. Anal. Lett. 27, 1067–1074 (1994).
  • Palmer DA , Fernandez-HernandoP, MillerJN. A model online flow injection fluorescence immunoassay using a protein a immunoreactor and Lucifer yellow. Anal. Lett. 26, 2543–2553 (1993).
  • Martin-Esteban A , FernandezP, Perez-CondeC, GutierrezAM, CamaraC. New fluorescence immunoassay for adrenocorticotropic hormone determination using flow injection analysis. Anal. Quim. Int. Ed. 92, 37–40 (1996).
  • Palmer DA , EvansM, MillerJN, FrenchMT. Rapid fluorescence flow injection immunoassay using a novel perfusion chromatographic material. Analyst119, 943–947 (1994).
  • Rico CM , FernandezMDP, GutierrezAM, CondeMCP, CamaraC. Development of a flow fluoroimmunosensor for determination of theophylline. Analyst120, 2589–2591 (1995).
  • Turiel E , FernandezP, Perez-CondeC, GutierrezAM, CamaraC. Flow-through fluorescence immunosensor for atrazine determination. Talanta47, 1255–1261 (1998).
  • Meyer UJ , ZhiZ-L, MeuselM, SpenerF, LoomansE. Automated stand-alone flow injection immunoanalysis system for the determination of cephalexin in milk. Analyst124, 1605–1610 (1999).
  • de Frutos M , PaliwalSK, RegnierFE. Liquid chromatography based enzyme-amplified immunological assays in fused-silica capillaries at the zeptomole level. Anal. Chem. 65, 2159–2163 (1993).
  • Palmer DA , EdmondsTE, SeareNJ. Flow-injection immunosensor for theophylline. Anal. Lett. 26, 1425–1439 (1993).
  • Wang Q , LuoG, WangY, YeungWSB. Sandwich immunoassay for monoclonal antibody using protein G immunoaffinity capillary chromatography and diode laser induced fluorescence detection. J. Liq. Chrom. Rel. Tech. 23, 1489–1498 (2000).
  • Mattiasson B , BorrebaeckC, SanfridsonB, MosbachK. Thermometric enzyme linked immunosorbent assay: TELISA. Biochim. Biophys. Acta483, 221–227 (1977).
  • Middendorf C , SchulzeB, FreitagR, ScheperT, HowaldtM, HoffmannH. Online immunoanalysis for bioprocess control. J. Biotech. 31, 395–403 (1993).
  • Pollema CH , RuzickaJ, ChristianGD, LernmarkA. Sequential injection immunoassay utilizing immunomagnetic beads. Anal. Chem. 64, 1356–1361 (1992).
  • Valencia-Gonzalez MJ , Diaz-GarciaME. Flow-through fluorescent immunosensing of IgG. Ciencia4, 29–40 (1996).
  • Yang H-H , ZhuQ-Z, QuH-Y, ChenX-L, DingM-T, XuJ-G. Flow injection fluorescence immunoassay for gentamicin using sol-gel-derived mesoporous biomaterial. Anal. Biochem. 308, 71–76 (2002).
  • Pollema CH , RuzickaJ. Flow injection renewable surface immunoassay: a new approach to immunoanalysis with fluorescence detection. Anal. Chem. 66, 1825–1831 (1994).
  • Mecklenburg M , LindbladhC, LiH, MosbachK, DanielssonB. Enzymic amplification of a flow-injected thermometric enzyme-linked immunoassay for human insulin. Anal. Biochem. 212, 388–393 (1993).
  • Gonzalez-Martinez MA , MoraisS, PuchadesR, MaquieiraA, AbadA, MontoyaA. Development of an automated controlled-pore glass flow-through immunosensor for carbaryl. Anal. Chim. Acta347, 199–205 (1997).
  • Gascon J , OubinaA, BallesterosBet al. Development of a highly sensitive enzyme-linked immunosorbent assay for atrazine. Performance evaluation by flow injection immunoassay. Anal. Chim. Acta347, 149–162 (1997).
  • Katmeh MF , GodfreyAJM, StevensonD, AherneGW. Enzyme immunoaffinity chromatography – a rapid semi-quantitative immunoassay technique for screening the presence of isoproturon in water samples. Analyst122, 481–486 (1997).
  • Mattiasson B , SvenssonK, BorrebaeckC, JonssonS, KronvallG. Non-equilibrium enzyme immunoassay of gentamicin. Clin. Chem. 24, 1770–1773 (1978).
  • de Alwis U , WilsonGS. Rapid heterogeneous competitive electrochemical immunoassay for IgG in the picomole range. Anal. Chem. 59, 2786–2789 (1987).
  • Dreveny D , SeidlR, GubitzG, MichalowskiJ. Development of solid-phase chemiluminescence immunoassays for digoxin comparing flow injection and sequential injection techniques. Analyst123, 2271–2276 (1998).
  • Hacker A , HinterleitnerM, ShellumC, GuebitzG. Development of an automated flow injection chemiluminescence immunoassay for human immunoglobulin G. Fres. J. Anal. Chem. 352, 793–796 (1995).
  • Yap WT , Locascio-BrownL, PlantAL, ChoquetteSJ, HorvathV, DurstRA. Liposome flow injection immunoassay: model calculations of competitive immunoreactions involving univalent and multivalent ligands. Anal. Chem. 63, 2007–2011 (1991).
  • Locascio-Brown L , PlantAL, CheslerR, KrollM, RuddelM, DurstRA. Liposome-based flow-injection immunoassay for determining theophylline in serum. Clin. Chem. 39, 386–391 (1993).
  • Kamel R , LandonJ, ForrestGC. A fully automated, continuous-flow radioimmunoassay for methotrexate. Clin. Chem. 26, 97–100 (1980).
  • He Z , JinW. Capillary electrophoretic enzyme immunoassay with electrochemical detection for thyroxine. Anal. Biochem. 313, 34–40 (2003).
  • Schmalzing D , NashabehW, FuchsM. Solution-phase immunoassay for determination of cortisol in serum by capillary electrophoresis. Clin. Chem. 41, 1403–1406 (1995).
  • Hage DS , ThomasDH, BeckMS. Theory of a sequential addition competitive binding immunoassay based on high-performance immunoaffinity chromatography. Anal. Chem. 65, 1622–1630 (1993).
  • Hage DS , ThomasDH, ChowdhuriAR, ClarkeW. Development of a theoretical model for chromatographic-based competitive binding immunoassays with simultaneous injection of sample and label. Anal. Chem. 71, 2965–2975 (1999).
  • Lee M , DurstRA, WongRB. Comparison of liposome amplification and fluorophor detection in flow-injection immunoanalyses. Anal. Chim. Acta354, 23–28 (1997).
  • Scheper T , BrandesW, MaschkeH, PloetzF, MuellerC. Two FIA-based biosensor systems studied for bioprocess monitoring. J. Biotech. 31, 345–356 (1993).
  • Brandes W , MaschkeHE, ScheperT. Specific flow injection sandwich binding assay for IgG using protein A and a fusion protein. Anal. Chem. 65, 3368–3371 (1993).
  • Kaneki N , XuY, KumariA, HalsallHB, HeinemanWR, KissingerPT. Electrochemical enzyme immunoassay using sequential saturation technique in a 20-ml capillary: digoxin as a model analyte. Anal. Chim. Acta287, 253–258 (1994).
  • Kramer P , SchmidR. Flow injection immunoanalysis (FIIA) – a new immunoassay format for the determination of pesticides in water. Biosens. Bioelectron. 6, 239–243 (1991).
  • Kramer PM , SchmidRD. Automated quasi-continuous immunoanalysis of pesticides with a flow injection system. Pest. Sci. 32, 451–462 (1991).
  • Nilsson M , HaakansonH, MattiassonB. Process monitoring by flow-injection immunoassay: evaluation of a sequential competitive binding assay. J. Chromatogr. 597, 383–389 (1992).
  • Nilsson M , MattiassonG, MattiassonB. Automated immunochemical binding assay (flow-ELISA) based on repeated use of an antibody column placed in a flow-injection system. J. Biotech. 31, 381–394 (1993).
  • Liu H , YuJC, BindraDS, GivensRS, WilsonGS. Flow injection solid-phase chemiluminescent immunoassay using a membrane-based reactor. Anal. Chem. 63, 666–669 (1991).
  • Lee M , DurstRA, WongRB. Development of flow-injection liposome immunoanalysis (FILIA) for imazethapyr. Talanta46, 851–859 (1998).
  • Lee M , DurstRA. Determination of imazethapyr using capillary column flow injection liposome immunoanalysis. J. Agr. Food Chem. 44, 4032–4036 (1996).
  • Nelson MA , ReiterWS, HageDS. Chromatographic competitive binding immunoassays: a comparison of the sequential and simultaneous injection methods. Biomed. Chrom. 17, 188–200 (2003).
  • Kusterbeck AW , WemhoffGA, CharlesPTet al. A continuous flow immunoassay for rapid and sensitive detection of small molecules. J. Immunol. Meth. 135, 191–197 (1990).
  • Whelan JP , KusterbeckAW, WemhoffGA, BredehorstR, LiglerFS. Continuous-flow immunosensor for detection of explosives. Anal. Chem. 65, 3561–3565 (1993).
  • Rabbany SY , KusterbeckAW, BredehorstR, LiglerFS. Effect of antibody density on the displacement kinetics of a flow immunoassay. J. Immunol. Meth. 168, 227–234 (1994).
  • Wemhoff GA , RabbanySY, KusterbeckAW, OgertRA, BredehorstR, LiglerFS. Kinetics of antibody binding at solid–liquid interfaces in flow. J. Immunol. Meth. 156, 223–230 (1992).
  • Kronkvist K , LoevgrenU, SvensonJ, Edholm L-E, Johansson G. Competitive flow injection enzyme immunoassay for steroids using a post-column reaction technique. J. Immunol. Meth. 200, 145–153 (1997).
  • Charles PT , ConradDW, JacobsMS, BartJC, KusterbeckAW. Synthesis of a fluorescent analog of polychlorinated biphenyls for use in a continuous flow immunosensor assay. Bioconj. Chem. 6, 691–694 (1995).
  • Cassidy SA , JanisLJ, RegnierFE. Kinetic chromatographic sequential addition immunoassays using protein A affinity chromatography. Anal. Chem. 64, 1973–1977 (1992).
  • Hage DS , TaylorB, KaoPC. Intact parathyroid hormone: performance and clinical utility of an automated assay based on high-performance immunoaffinity chromatography and chemiluminescence detection. Clin. Chem. 38, 1494–1500 (1992).
  • Johns MA , RosengartenLK, JacksonM, RegnierFE. Enzyme-linked immunosorbent assays in a chromatographic format. J. Chromatogr. A743, 195–206 (1996).
  • Hayes MA , PolsonNA, PhayreAN, GarciaAA. Flow-based microimmunoassay. Anal. Chem. 73, 5896–5902 (2001).
  • Wang Q , WangY, LuoG, YeungWSB. Feasibility study of enzyme-amplified sandwich immunoassay using protein G capillary affinity chromatography and laser induced fluorescence detection. J. Liq. Chrom. Rel. Tech. 24, 1953–1963 (2001).
  • Karube I , MatsunagaT, SatohT, SuzukiS. A catalytic immunoreactor for the amperometric determination of human serum albumin. Anal. Chim. Acta156, 283–287 (1984).
  • de Alwis WU , WilsonGS. Rapid sub-picomole electrochemical enzyme immunoassay for immunoglobulin G. Anal. Chem. 57, 2754–2756 (1985).
  • Lee IH , MeyerhoffME. Rapid flow-injection sandwich-type immunoassays of proteins using an immobilized antibody reactor and adenosine deaminase-antibody conjugates. Anal. Chim. Acta229, 47–55 (1990).
  • Shellum C , GuebitzG. Flow-injection immunoassays with acridinium ester-based chemiluminescence detection. Anal. Chim. Acta227, 97–107 (1989).
  • Hage DS , KaoPC. High-performance immunoaffinity chromatography and chemiluminescent detection in the automation of a parathyroid hormone sandwich immunoassay. Anal. Chem. 63, 586–595 (1991).
  • Oates MR , ClarkeW, ZimlichAII, HageDS. Optimization and development of a high-performance liquid chromatography-based one-site immunometric assay with chemiluminescence detection. Anal. Chim. Acta470, 37–50 (2002).
  • Miller KJ , HermanAC. Affinity chromatography with immunochemical detection applied to the analysis of human methionyl granulocyte colony stimulating factor in serum. Anal. Chem. 68, 3077–3082 (1996).
  • Irth H , OosterkampAJ, TjadenUR, van der Greef J. Strategies for online coupling of immunoassays to HPLC. Trends Anal. Chem. 14, 355–361 (1995).
  • Oosterkamp AJ , IrthH, BethM, UngerKK, TjadenUR, van der Greef J. Bioanalysis of digoxin and its metabolites using direct serum injection combined with liquid chromatography and online immunochemical detection. J. Chromatogr. B653, 55–61 (1994).
  • Irth H , OosterkampAJ, van der Welle W, Tjaden UR, van der Greef J. Online immunochemical detection in liquid chromatography using fluorescein-labeled antibodies. J. Chromatogr. 633, 65–72 (1993).
  • Lindgren A , EmneusJ, Marko-VargaG, IrthH, OosterkampA, EreminS. Optimization of a heterogeneous non-competitive flow immunoassay comparing fluorescein, peroxidase and alkaline phosphatase as labels. J. Immunol. Meth. 211, 33–42 (1998).
  • Kjellstrom S , EmneusJ, Marko-VargaG. Flow immunochemical bio-recognition detection for the determination of interleukin-10 in cell samples. J. Immunol. Meth. 246, 119–130 (2000).
  • Freytag JW , LauHP, WadsleyJJ. Affinity-column-mediated immunoenzymometric assays: influence of affinity-column ligand and valency of antibody–enzyme conjugates. Clin. Chem. 30, 1494–1498 (1984).
  • Wilmer M , TrauD, RennebergR, SpenerF. Amperometric immunosensor for the detection of 2,4-dichlorophenoxyacetic acid (2,4-D) in water. Anal. Lett. 30, 515–525 (1997).
  • Lovgren U , KronkvistK, BackstromB, Edholm L-E, Johansson G. Design of non-competitive flow injection enzyme immunoassays for determination of haptens. Application to digoxigenin. J. Immunol. Meth. 208, 159–168 (1997).
  • Gunaratna PC , WilsonGS. Noncompetitive flow injection immunoassay for a hapten, α-(difluoromethyl)ornithine. Anal. Chem. 65, 1152–1157 (1993).
  • Kaptein WA , KorfJ, ChengS, YangM, GlatzJFC, RennebergR. Online flow displacement immunoassay for fatty acid-binding protein. J. Immunol. Meth. 217, 103–111 (1998).
  • Aref’ev AA , VlasenkoSB, EreminSA, OsipovAP, EgorovAM. Flow-injection enzyme immunoassay of haptens with enhanced chemiluminescence detection. Anal. Chim. Acta237, 285–289 (1990).
  • Silvaieh H , SchmidMG, HofstetterO, SchurigV, GubitzG. Development of enantioselective chemiluminescence flow- and sequential-injection immunoassays for α-amino acids. J. Biochem. Biophys. Meth. 53, 1–14 (2002).
  • Locascio-Brown L , ChoquetteSJ. Measuring estrogens using flow injection immunoanalysis with liposome amplification. Talanta40, 1899–1904 (1993).
  • Wang R , LuX, MaW. Non-competitive immunoassay for α-fetoprotein using micellar electrokinetic capillary chromatography and laser-induced fluorescence detection. J. Chromatogr. B779, 157–162 (2002).
  • Bier FF , JockersR, SchmidRD. Integrated optical immunosensor for s-triazine determination: regeneration, calibration and limitations. Analyst119, 437–441 (1994).
  • Behnke B , BayerE. Pressurized gradient electro-high-performance liquid-chromatography. J. Chromatogr. A680, 93–98 (1994).
  • Heegaard NHH , KennedyRT. Antigen–antibody interactions in capillary electrophoresis. J. Chromatogr. B768, 93–103 (2002).
  • Phillips TM , WellnerEF. Analysis of inflammatory biomarkers from tissue biopsies by chip-based immunoaffinity CE. Electrophoresis28, 3401–3048 (2007).
  • Clarke W , ChowdhuriAR, HageDS. Analysis of free drug fractions by ultrafast immunoaffinity chromatography. Anal. Chem. 73, 2157–2164 (2001).
  • Clarke W , SchielJE, MoserAC, HageDS. Analysis of free hormone fractions by an ultrafast immunoextraction/displacement immunoassay: studies using free thyroxine as a model system. Anal. Chem. 77, 1859–1866 (2005).
  • Ohnmacht CM , SchielJE, HageDS. Analysis of free drug fractions using near infrared fluorescent labls and an ultrafast immunoextraction/displacement assay. Anal. Chem. 78, 7547–7556 (2006).
  • Hou C , HerrAE. Clinically relevant advances in on-chip affinity-based electrophoresis and electrochromatography. Electrophoresis29, 3306–3319 (2008).
  • Kawabata T , WadaHG, WatanabeM, SatomuraS. Electrokinetic analyte transport assay for α-fetoprotein immunoassay integrates mixing, reaction and separation on-chip. Electrophoresis29, 1399–1406 (2008).
  • Kagebayashi C , YamaguchiI, AkinagaAet al. Automated immunoassay system for AFP-l3% using on-chip electrokinetic reaction and separation by affinity electrophoresis. Anal. Biochem. 388, 306–311 (2009).
  • Durst RA , Locascio-BrownL, PlantAL. Automated liposome-based flow injection immunoassay system. GBF Monographs14, 181–190 (1991).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.