602
Views
5
CrossRef citations to date
0
Altmetric
Review

Data Acquisition and Data Mining Techniques for Metabolite Identification Using LC Coupled to High-Resolution MS

&
Pages 1285-1297 | Published online: 30 May 2013

References

  • Ma S , ChowdhurySK, AltonKB. Application of mass spectrometry for metabolite identification. Curr. Drug Metab. 7(5), 503–523 (2006).
  • Zhu M , ZhangH, HumphreysWG. Drug metabolite profiling and identification by high-resolution mass spectrometry. J. Biol. Chem. 286(29), 25419–25425 (2011).
  • Xie C , ZhongD, YuK, ChenX. Recent advances in metabolite identification and quantitative bioanalysis by LC–Q-TOF MS. Bioanalysis4(8), 937–959 (2012).
  • Andrews GL , SimonsBL, YoungJB, HawkridgeAM, MuddimanDC. Performance characteristics of a new hybrid quadrupole time-of-flight tandem mass spectrometer (TripleTOF 5600). Anal. Chem. 83(13), 5442–5446 (2011).
  • Perry RH , CooksRG, NollRJ. Orbitrap mass spectrometry: instrumentation, ion motion and applications. Mass Spectrom. Rev. 27(6), 661–699 (2008).
  • Makarov A , DenisovE, KholomeevAet al. Performance evaluation of a hybrid linear ion trap/Orbitrap mass spectrometer. Anal. Chem. 78(7), 2113–2120 (2006).
  • Zhang H , ZhangD, RayK, ZhuM. Mass defect filter technique and its applications to drug metabolite identification by high-resolution mass spectrometry. J. Mass Spectrom. 44(7), 999–1016 (2009).
  • Zhang H , ZhangD, RayK. A software filter to remove interference ions from drug metabolites in accurate mass liquid chromatography/mass spectrometric analyses. J. Mass Spectrom. 38(10), 1110–1112 (2003).
  • Zhang H , YangY. An algorithm for thorough background subtraction from high-resolution LC–MS data: application for detection of glutathione-trapped reactive metabolites. J. Mass Spectrom. 43(9), 1181–1190 (2008).
  • Zhu P , DingW, TongW, GhosalA, AltonK, ChowdhuryS. A retention-time-shift-tolerant background subtraction and noise reduction algorithm (BgS-NoRA) for extraction of drug metabolites in liquid chromatography/mass spectrometry data from biological matrices. Rapid Commun. Mass Spectrom. 23(11), 1563–1572 (2009).
  • Zhu P , TongW, AltonK, ChowdhuryS. An accurate-mass-based spectral-averaging isotope-pattern-filtering algorithm for extraction of drug metabolites possessing a distinct isotope pattern from LC–MS data. Anal. Chem. 81(14), 5910–5917 (2009).
  • Campbell JL , Le Blanc JC. Using high-resolution quadrupole TOF technology in DMPK analyses. Bioanalysis4(5), 487–500 (2012).
  • Peterman SM , DuczakNJr. Kalgutkar AS, Lame ME, Soglia JR. Application of a linear ion trap/Orbitrap mass spectrometer in metabolite characterization studies: examination of the human liver microsomal metabolism of the non-tricyclic anti-depressant nefazodone using data-dependent accurate mass measurements. J. Am. Soc. Mass Spectrom. 17(3), 363–375 (2006).
  • Anari MR , SanchezRI, BakhtiarR, FranklinRB, BaillieTA. Integration of knowledge-based metabolic predictions with liquid chromatography data-dependent tandem mass spectrometry for drug metabolism studies: application to studies on the biotransformation of indinavir. Anal. Chem. 76(3), 823–832 (2004).
  • Lim HK , ChenJ, SensenhauserC, CookK, SubrahmanyamV. Metabolite identification by data-dependent accurate mass spectrometric analysis at resolving power of 60,000 in external calibration mode using an LTQ/Orbitrap. Rapid Commun. Mass Spectrom. 21(12), 1821–1832 (2007).
  • Ma L , WenB, RuanQ, ZhuM. Rapid screening of glutathione-trapped reactive metabolites by linear ion trap mass spectrometry with isotope pattern-dependent scanning and postacquisition data mining. Chem. Res. Toxicol. 21(7), 1477–1483 (2008).
  • Lim HK , ChenJ, CookK, SensenhauserC, SilvaJ, EvansDC. A generic method to detect electrophilic intermediates using isotopic pattern triggered data-dependent high-resolution accurate mass spectrometry. Rapid Commun. Mass Spectrom. 22(8), 1295–1311 (2008).
  • Castro-Perez J , PlumbR, LiangL, YangE. A high-throughput liquid chromatography/tandem mass spectrometry method for screening glutathione conjugates using exact mass neutral loss acquisition. Rapid Commun. Mass Spectrom. 19(6), 798–804 (2005).
  • Zhu M , MaL, ZhangDet al. Detection and characterization of metabolites in biological matrices using mass defect filtering of liquid chromatography/high resolution mass spectrometry data. Drug Metab. Dispos. 34(10), 1722–1733 (2006).
  • Tiller PR , YuS, Castro-PerezJ, FillgroveKL, BaillieTA. High-throughput, accurate mass liquid chromatography/tandem mass spectrometry on a quadrupole time-of-flight system as a ‘first-line’ approach for metabolite identification studies. Rapid Commun. Mass Spectrom. 22(7), 1053–1061 (2008).
  • Bateman KP , Castro-PerezJ, WronaMet al. MSE with mass defect filtering for in vitro and in vivo metabolite identification. Rapid Commun. Mass Spectrom. 21(9), 1485–1496 (2007).
  • Wrona M , MaurialaT, BatemanKP, Mortishire-SmithRJ, O’ConnorD. ‘All-in-one’ analysis for metabolite identification using liquid chromatography/hybrid quadrupole time-of-flight mass spectrometry with collision energy switching. Rapid Commun. Mass Spectrom. 19(18), 2597–2602 (2005).
  • Bateman KP , KellmannM, MuensterH, PappR, TaylorL. Quantitative-qualitative data acquisition using a benchtop Orbitrap mass spectrometer. J. Am. Soc. Mass Spectrom. 20(8), 1441–1450 (2009).
  • Cho R , HuangY, SchwartzJC, ChenY, CarlsonTJ, MaJ. MSM, an efficient workflow for metabolite identification using hybrid linear ion trap Orbitrap mass spectrometer. J. Am. Soc. Mass Spectrom. 23(5), 880–888 (2012).
  • Ruan Q , PetermanS, SzewcMAet al. An integrated method for metabolite detection and identification using a linear ion trap/Orbitrap mass spectrometer and multiple data processing techniques: application to indinavir metabolite detection. J. Mass Spectrom. 43(2), 251–261 (2008).
  • Zhang H , GrubbM, WuW, JosephsJ, HumphreysWG. Algorithm for thorough background subtraction of high-resolution LC–MS data: application to obtain clean product ion spectra from nonselective collision-induced dissociation experiments. Anal. Chem. 81(7), 2695–2700 (2009).
  • Zhu X , KalyanaramanN, SubramanianR. Enhanced screening of glutathione-trapped reactive metabolites by in-source collision-induced dissociation and extraction of product ion using UHPLC–high resolution mass spectrometry. Anal. Chem. 83(24), 9516–9523 (2011).
  • Hopfgartner G , TonoliD, VaresioE. High-resolution mass spectrometry for integrated qualitative and quantitative analysis of pharmaceuticals in biological matrices. Anal. Bioanal. Chem. 402(8), 2587–2596 (2012).
  • Li AC , DingJ, JiangX, DenissenJ. Two-injection workflow for a liquid chromatography/LTQ-Orbitrap system to complete in vivo biotransformation characterization: demonstration with buspirone metabolite identification. Rapid Commun. Mass Spectrom. 23(18), 3003–3012 (2009).
  • Liu DQ , HopCE. Strategies for characterization of drug metabolites using liquid chromatography-tandem mass spectrometry in conjunction with chemical derivatization and on-line H/D exchange approaches. J. Pharm. Biomed. Anal. 37(1), 1–18 (2005).
  • Penner NA , HoG, BercoviciA, ChowdhurySK, AltonKB. Identification of two novel metabolites of SCH 486757, a nociceptin/orphanin FQ peptide receptor agonist, in humans. Drug Metab. Dispos. 38(11), 2067–2074 (2010).
  • Kulanthaivel P , BarbuchRJ, DavidsonRSet al. Selective reduction of N-oxides to amines: application to drug metabolism. Drug Metab. Dispos. 32(9), 966–972 (2004).
  • Bonn B , LeanderssonC, FontaineF, ZamoraI. Enhanced metabolite identification with MSE and a semi-automated software for structural elucidation. Rapid Commun. Mass Spectrom. 24(21), 3127–3138 (2010).
  • Li AC , ChovanJP, YuE, ZamoraI. Update on hydrocodone metabolites in rats and dogs aided with a semi-automatic software for metabolite identification Mass-MetaSite. Xenobiotica43(4), 390–398 (2013).
  • Pelander A , TyrkkoE, OjanperaI. In silico methods for predicting metabolism and mass fragmentation applied to quetiapine in liquid chromatography/time-of-flight mass spectrometry urine drug screening. Rapid Commun. Mass Spectrom. 23(4), 506–514 (2009).
  • Heinonen M , RantanenA, MielikainenTet al. FiD: a software for ab initio structural identification of product ions from tandem mass spectrometric data. Rapid Commun. Mass Spectrom. 22(19), 3043–3052 (2008).
  • Leclercq L , Mortishire-SmithRJ, HuismanM, CuyckensF, HartshornMJ, HillA. IsoScore: automated localization of biotransformations by mass spectrometry using product ion scoring of virtual regioisomers. Rapid Commun. Mass Spectrom. 23(1), 39–50 (2009).
  • Ramanathan R , KorfmacherW. The emergence of high-resolution MS as the premier analytical tool in the pharmaceutical bioanalysis arena. Bioanalysis4(5), 467–469 (2012).
  • Korfmacher W . High-resolution mass spectrometry will dramatically change our drug-discovery bioanalysis procedures. Bioanalysis3(11), 1169–1171 (2011).
  • Ranasinghe A , RamanathanR, JemalM, D’ArienzoCJ, HumphreysWG, OlahTV. Integrated quantitative and qualitative workflow for in vivo bioanalytical support in drug discovery using hybrid Q-TOF-MS. Bioanalysis4(5), 511–528 (2012).
  • Ma S , LiZ, LeeKJ, ChowdhurySK. Determination of exposure multiples of human metabolites for MIST assessment in preclinical safety species without using reference standards or radiolabeled compounds. Chem. Res. Toxicol. 23(12), 1871–1873 (2010).

Patent

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.