257
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Determination of Fatty Acid Methyl Esters by GC–Triple Quadrupole MS Using Electron and Chemical Ionization

&
Pages 1527-1543 | Published online: 24 Jun 2013

References

  • Vance DE , VanceJE. Biochemistry of Lipids, Lipoproteins and Membranes (5th Edition). Elsevier Science B.V., Amsterdam, The Netherlands (2008).
  • Han LD , XiaJF, LiangQLet al. Plasma esterified and non-esterified fatty acids metabolic profiling using gas chromatography–mass spectrometry and its application in the study of diabetic mellitus and diabetic nephropathy. Anal. Chim. Acta689(1), 85–91 (2011).
  • Ghadimi R , KurikiK, TsugeSet al. Serum concentrations of fatty acids and colorectal adenoma risk: a case-control study in Japan. Asian Pac. J. Cancer Prev. 9(1), 111–118 (2008).
  • Jones R , Adel-AlvarezLA, AlvarezOR, BroaddusR, DasS. Arachidonic acid and colorectal carcinogenesis. Mol. Cell. Biochem. 253(1–2), 141–149 (2003).
  • Rakheja D , KapuraP, HoangMP, RoyLC, BennettMJ. Increased ratio of saturated to unsaturated C18 fatty acids in colonic adenocarcinoma: implications for cryotherapy and lipid raft function. Med. Hypotheses65(6), 1120–1123 (2005).
  • Serini S , PiccioniE, MerendinoN, CalvielloG. Dietary polyunsaturated fatty acids as inducers of apoptosis: implications for cancer. Apoptosis14(2), 135–152 (2009).
  • Griffiths WJ . Tandem mass spectrometry in the study of fatty acids, bile acids, and steroids. Mass Spectrom. Rev. 22(2), 81–152 (2003).
  • Buyer JS . Identification of bacteria from single colonies by fatty acid analysis. J. Microbiol. Methods48(2–3), 259–265 (2002).
  • David F , TienpontB, SandraP. Chemotaxonomy of bacteria by comprehensive GC and GC–MS in electron impact and chemical ionisation mode. J. Sep. Sci. 31(19), 3395–3403 (2008).
  • Huys G , KerstersI, VancanneytM, CoopmanR, JanssenP, KerstersK. Diversity of Aeromonas sp. in flemish drinking water production plants as determined by gas-liquid chromatographic analysis of cellular fatty acid methyl esters (FAMEs). J. Appl. Bacteriol. 78(4), 445–455 (1995).
  • Liu LY , LiY, GuanCMet al. Free fatty acid metabolic profile and biomarkers of isolated post-challenge diabetes and Type 2 diabetes mellitus based on GC-MS and multivariate statistical analysis. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 878(28), 2817–2825 (2010).
  • Tighe SW , LajudieP, DipietroK, LindstromK, NickG, JarvisBD. Analysis of cellular fatty acids and phenotypic relationships of Agrobacterium, Bradyrhizobium, Mesorhizobium, Rhizobium and Sinorhizobium species using the Sherlock Microbial Identification System. Int. J. Syst. Evol. Microbiol. 502(2), 787–801 (2000).
  • Tan BB , LiangYZ, YiLZet al. Identification of free fatty acids profiling of type 2 diabetes mellitus and exploring possible biomarkers by GC–MS coupled with chemometrics. Metabolomics6(10), 219–228 (2010).
  • Carvalho AP , MalcataFX. Preparation of fatty acid methyl esters for gas-chromatographic analysis of marine lipids: insight studies. J. Agric. Food Chem. 53(13), 5049–5059 (2005).
  • Bryant DK , OrlandoRC, FenselauC, SowderRC, HendersonLE. Four-sector tandem mass spectrometric analysis of complex mixtures of phosphatidylcholines present in a human immunodeficiency virus preparation. Anal. Chem. 63(11), 1110–1114 (1991).
  • Castro-Perez J , RoddyTP, NibberingNMet al. Localization of fatty acyl and double bond positions in phosphatidylcholines using a dual stage CID fragmentation coupled with ion mobility mass spectrometry. J. Am. Soc. Mass Spectrom. 22(9), 1552–1567 (2011).
  • Hsu FF , TurkJ. Structural characterization of triacylglycerols as lithiated adducts by electrospray ionization mass spectrometry using low-energy collisionally activated dissociation on a triple stage quadrupole instrument. J. Am. Soc. Mass Spectrom. 10(7), 587–599 (1999).
  • Hsu FF , TurkJ. Elucidation of the double-bond position of long-chain unsaturated fatty acids by multiple-stage linear ion-trap mass spectrometry with electrospray ionization. J. Am. Soc. Mass Spectrom. 19(11), 1673–1680 (2008).
  • Yang K , ZhaoZ, GrossRW, HanX. Identification and quantitation of unsaturated fatty acid isomers by electrospray ionization tandem mass spectrometry: a shotgun lipidomics approach. Anal. Chem. 83(11), 4243–4250 (2011).
  • Ryhage R , StenhagenE. Mass Spectrometry of Organic Ions. Academic Press, New York, NY, USA (1963).
  • Chapman JR . Practical Organic Mass Spectrometry. Wiley-Interscience, Chichester, UK (1985).
  • Field FH . Chemical ionization mass spectrometry. VIII. Alkenes and alkynes. J. Am. Chem. Soc. 90(21), 5649–5656 (1968).
  • Munson MSB , FieldH. Chemical ionization mass spectrometry. I. General introduction. J. Am. Chem. Soc. 88(12), 2621–2630 (1966).
  • Munson MSB , FieldH. Chemical ionization mass spectrometry. II. Esters. J. Am. Chem. Soc. 88(5), 4337–4345 (1966).
  • Moldovan Z , MaldonadoC, BayonaJM. Electron ionization and positive-ion chemical ionization mass spectra of N-(2-hydroxyethyl) alkylamides. Rapid. Commun. Mass Spectrom. 11(10), 1077–1082 (1998).
  • Murphy RC , AxelsenPH. Mass spectrometric analysis of long-chain lipids. Mass Spectrom. Rev. 30(4), 579–599 (2011).
  • Claeys M , NizigiyimanaL, HeuvelHV, VedernikovaI, HaemersA. Charge-remote and charge-proximate fragmentation processes in alkali-cationized fatty acid esters upon high-energy collisional activation. A new mechanistic proposal. J. Mass. Spectrom. 33(7), 631–643 (1998).
  • Yang J , SchmelzerK, GeorgiK, HammockBD. Quantitative profiling method for oxylipin metabolome by liquid chromatography electrospray ionization tandem mass spectrometry. Anal. Chem. 81(19), 8085–8093 (2009).
  • Bielawska K , DziakowskaI, Roszkowska-JakimiecW. Chromatographic determination of fatty acids in biological material. Toxicol. Mech. Methods20(9), 526–537 (2010).
  • US FDA . US Department of Health and Human Services Guidance for Industry: Bioanalytical Method Validation. US FDA, Washington, DC, USA (2001).
  • Han LD , XiaoJF, LiangQLet al. Plasma esterified and non-esterified fatty acids metabolic profiling using gas chromatography–mass spectrometry and its application in the study of diabetic mellitus and diabetic nephropathy. Anal. Chim. Acta689(1), 85–91 (2011).
  • Quehenberger O , ArmandoAM, DennisEA. High sensitivity quantitative lipidomics analysis of fatty acids in biological samples by gas chromatography-mass spectrometry. Biochim. Biophys. Acta1811(11), 648–656 (2011).
  • Xu F , ZouL, LiuY, ZhangZ, OngCN. Enhancement of the capabilities of liquid chromatography-mass spectrometry with derivatization: general principles and applications. Mass Spectrom. Rev. 30(6), 1143–1172 (2011).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.