248
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A Method for Sensitive Staining of DNA in Polyacrylamide Gels Using Basic Fuchsin

, , , , , , & show all
Pages 1545-1554 | Published online: 24 Jun 2013

References

  • Bassam BJ , GresshoffPM. Silver staining DNA in polyacrylamide gels. Nat. Protoc. 2, 2649–2654 (2007).
  • Sharp RA , SugdenB, SambrookJ. Detection of two restriction endonuclease activities in Haemophilus parainfluenzae using analytical agarose-ethidium bromide electrophoresis. Biochemistry12, 3055–3063 (1973).
  • Cerutti PA . Prooxidant states and tumor promotion. Science227, 375–381 (1985).
  • Marks R . An overview of skin cancers. Incidence and causation. Cancer75, 607–612 (1995).
  • Ohta T , TokishitaSI, YamagataH. Ethidium bromide and SYBR Green I enhance the genotoxicity of UV-irradiation and chemical mutagens inE. coli. Mutat. Res. 492, 91–97 (2001).
  • Suenaga E , NakamuraH. Prestaining method as a useful tool for the agarose gel electrophoretic detection of polymerase chain reaction products with a fluorescent dye SYBR gold nucleic acid gel stain. Anal. Sci. 21, 619–623 (2005).
  • Zhu ZX , CongWT, HeHZet al. Vitamin C-silver: an environmentally benign choice for DNA visualization on polyacrylamide gels. Anal. Sci. 28, 379–384 (2012).
  • Hwang SY , JinLT, YooGS, ChoiJK. Counterion – dye staining for DNA in electrophoresed gels using indoine blue and methyl orange. Electrophoresis27, 1744–1748 (2006).
  • Daru YS , RameshK. Protocols for the visualization of DNA in electrophoretic gels by a safe and inexpensive alternative to ethidium bromide. J. Methods Cell Mol. Biol. 1, 183–187 (1989).
  • Torres JS , NoyalaP. A novel stain for DNA in agarose gels. Tech. Tips9(2), 40 (1993).
  • Cong WT , ZhuZX, HeHZet al. A visible dye-based staining method for DNA in polyacrylamide gels by ethyl violet. Anal. Biochem. 402, 99–101 (2010).
  • Yang YI , HongHY, LeeIS, BaiDG, YooGS, ChoiJK. Detection of DNA using a visible dye, Nile blue, in electrophoresed gels. Anal. Biochem. 280, 322–324 (2000).
  • Kilcoyne M , GerlachJQ, FarrellMP, BhavanandanVP, JoshiL. Periodic acid-Schiff’s reagent assay for carbohydrates in a microtiter plate format. Anal. Biochem. 416, 18–26 (2011)
  • Doerner KC , WhiteBA. Detection of glycoproteins separated by nondenaturing polyacrylamide gel electrophoresis using the periodic acid-Schiff stain. Anal. Biochem. 187, 147–150 (1990)
  • Gordon C , Van Deun A, Lumb R. Evaluating the performance of basic fuchsin for the Ziehl–Neelsen stain. Int. J. Tuberc. Lung. Dis. 13, 130–135 (2009).
  • Frisch T , S⊘rensenMS, BretlauP. Recognition of basic fuchsin prestained microfissures of intravital origin with fluorescence microscopy: validation of a shortcut. Eur. Arch. Otorhinolaryngol. 258, 55–60 (2001).
  • Liu JG , ZhangQL, ShiXF, JiLN. Interaction of [Ru(dmp)2(dppz)]2+ and [Ru(dmb)2(dppz)]2+ with DNA: effects of the ancillary ligands on the DNA-binding behaviors. Inorg. Chem. 40, 5045–5050 (2001).
  • Michael TC , MarisolR, AllenJB. Voltammetric studies of the interaction of metal chelates with DNA. 2. Tris-chelated complexes of cobalt(III) and iron(II) with 1,10-phenanthroline and 2,2´-bipyridine. J. Am. Chem. Soc. 111, 8901–8911 (1989).
  • Kumar CV , AsuncionEH. DNA binding studies and site selective fluorescence sensitization of an anthryl probe. J. Am. Chem. Soc. 115, 8547–8553 (1993).
  • Zeng YB , YangN, LiuWS, TangN. Synthesis, characterization and DNA-binding properties of La(III) complex of chrysin. J. Inorg. Biochem. 97, 258–264 (2003).
  • Eriksson M , LeijonM, HiortC, NordenB, GradslundA. Binding of delta- and lambda -[Ru(phen)3]2+ to [d(CGCGATCGCG)]2 studied by NMR. Biochemistry33, 5031–5040 (1994).
  • Gupta VK , MittalA, GajbeV, MittalJ. Adsorption of basic fuchsin using waste materials--bottom ash and deoiled soya-as adsorbents. J. Colloid. Interface. Sci. 319, 30–39 (2008).
  • Ye LY , ZhangXX, YinYW, TuS, ShaY. The removal of color from fuchsin basic dye wastewater using activated carbon. Adv. Mater. Res. 356, 2616–2619 (2012).
  • Hengen PN . Methods and reagents: disposal of ethidium bromide. Trends Biochem. Sci. 19, 257–258 (1994).
  • Yu Y , LongCY, SunSQ, LiuJP. Application of an alkaloid as a novel fluorescence probe in the determination of DNA. Anal. Lett. 34, 2659–2669 (2001).
  • Wan KX , ShibueT, GrossML. Non-covalent complexes between DNA-binding drugs and double-stranded oligodeoxynucleotides: a study by ESI ion-trap mass spectrometry. J. Am. Chem. Soc. 122, 300–307 (2000).
  • Lipscomb LA , ZhouFX, PresnellSRet al. Structure of DNA–porphyrin complex. Biochemistry35, 2818–2823 (1996).
  • Teng MK , UsmanN, FrederickCA, WangAH. The molecular structure of the complex of Hoechst 33258 and the DNA dodecamer d(CGCGAATTCGCG). Nucleic Acids Res. 16, 2671–2690 (1988).
  • Kumar CV , AsuncionEH. DNA binding studies and site selective fluorescence sensitization of an anthryl probe. J. Am. Chem. Soc. 115, 8547–8553 (1993).
  • Li WY , LuH, XuCX, ZhangJB, LuZH. Spectroscopic and binding properties of berberine to DNA and its application to DNA detection. Spectrosc. Lett. 31, 1287–1298 (1998).
  • LePecq JB , YotP, PaolettiC. Interaction du bromhydrate D´´ ethidium (BET) avec les acids nucléiques (AN). etude spectrofluorimétrique. CR Hebd Seances Acad. Sci. 259, 1786–1789 (1964).
  • Lerman LS . Structural considerations in the interaction of DNA and acridines. J. Mol. Biol. 3, 18–30 (1961).
  • Berman HM , YoungPB. The interaction of intercalating drugs with nucleic acids. Ann. Rev. Biophys. Bioeng. 10, 87–114 (1981).
  • Kumar CV , AsuncionEH. Sequence dependent energy transfer from DNA to a simple aromatic chromophore. J. Chem. Soc. Chem. Commun. 6, 470–472 (1992).
  • Kumar CV , TurnerRS, AsuncionEH. Groove binding of a styrylcyanine dye to the DNA double helix: the salt effect. J. Photochem. Photobiol. A74, 231–238 (1993).
  • Adkins S , BurmeisterM. Visualization of DNA in agarose gels as migrating colored bands: applications for preparative gels and educational demonstrations. Anal. Biochem. 240, 17–23 (1996).
  • LePecq JB , PaolettiC. A fluorescent complex between ethidium bromide and nucleic acids. Physical-chemical characterization. J. Mol. Biol. 27, 87–106 (1967).
  • Shahabadi N , KashanianS, PurfouladM. DNA interaction studies of a platinum(II) complex, PtCl2(NN) (NN=4,7-dimethyl-10-phenanthroline), using different instrumental methods. Spectrochim. Acta A72, 757–761 (2009).
  • Sasmal PK , PatraAK, ChakravartyAR. Synthesis, structure, DNA binding and DNA cleavage activity of oxovanadium(IV) N-salicylidene-S-methyldithiocarbazate complexes of phenanthroline bases. J. Inorg. Biochem. 102, 1463–1472 (2008).
  • Sasmal PK , SahaS, MajumdarR, DigheRR, ChakravartyAR. Photocytotoxic oxovanadium(IV) complexes showing light-induced DNA and protein cleavage activity. J. Inorg. Chem. 49, 849–859 (2010).
  • Khan NU , PandyaN, MaityNCet al. Influence of chirality of V(V) Schiff base complexes on DNA, BSA binding and cleavage activity. Eur. J. Med. Chem. 46, 5074–5085 (2011).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.