342
Views
0
CrossRef citations to date
0
Altmetric
Review

Progress in The Development of Paper-Based Diagnostics for Low-Resource Point-Of-Care Settings

, &
Pages 2821-2836 | Published online: 21 Nov 2013

References

  • Asiello PJ , BaeumnerAJ. Miniaturized isothermal nucleic acid amplification, a review. Lab Chip11(8), 1420–1430 (2011).
  • Lin C-C . Wang J-H, Wu H-W, Lee G-B. Microfluidic Immunoassays. J. Lab. Autom. 15(3), 253–274 (2010).
  • Martinez AW , PhillipsST, ButteMJ, WhitesidesGM. Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angew. Chem. Int. Ed. Engl. 46(8), 1318–1320 (2007).
  • Martinez AW , PhillipsST, WhitesidesGM. Three-dimensional microfluidic devices fabricated in layered paper and tape. Proc. Natl Acad. Sci. USA105(50), 19606–19611 (2008).
  • Martinez AW , PhillipsST, NieZet al. Programmable diagnostic devices made from paper and tape. Lab Chip10(19), 2499–2504 (2010).
  • Vella SJ , BeattieP, CademartiriRet al. Measuring markers of liver function using a micropatterned paper device designed for blood from a fingerstick. Anal. Chem. 84(6), 2883–2891 (2012).
  • Martinez A , PhillipsS, WhitesidesG, CarrilhoE. Diagnostics for the developing world: microfluidic paper-based analytical devices. Anal. Chem. 82(1), 3–10 (2010).
  • Pelton R . Bioactive paper provides a low-cost platform for diagnostics. Trends Analyt. Chem. 28(8), 925–942 (2009).
  • Fridley GE , HolsteinCA, OzaSB, YagerP. The evolution of nitrocellulose as a material for bioassays. MRS Bull. 38(4), 326–330 (2013).
  • Ballerini DR , LiX, ShenW. Patterned paper and alternative materials as substrates for low-cost microfluidic diagnostics. Microfluid. Nanofluidics13(5), 769–787 (2012).
  • Li X , BalleriniDR, ShenW. A perspective on paper-based microfluidics: current status and future trends. Biomicrofluidics6(1), 11301–1130113 (2012).
  • Coltro WKT , de Jesus DP, da Silva JAF, do Lago CL, Carrilho E. Toner and paper-based fabrication techniques for microfluidic applications. Electrophoresis31(15), 2487–2498 (2010).
  • Nie Z , NijhuisCA, GongJet al. Electrochemical sensing in paper-based microfluidic devices. Lab Chip10(4), 477–483 (2010).
  • Maxwell EJ , MazzeoAD, WhitesidesGM. Paper-based electroanalytical devices for accessible diagnostic testing. MRS Bull. 38(4), 309–314 (2013).
  • Liana DD , RaguseB, GoodingJJ, ChowE. Recent advances in paper-based sensors. Sensors (Basel)12(9), 11505–11526 (2012).
  • Tobjork D , OsterbackaR. Paper electronics. Adv. Mater. 23(17), 1935–1961 (2011).
  • Bazin I , NabaisE, Lopez-FerberM. Rapid visual tests: fast and reliable detection of ochratoxin A. Toxins (Basel)2(9), 2230–2241 (2010).
  • Shah P , ZhuXN, LiCZ. Development of paper-based analytical kit for point-of-care testing. Expert Rev. Mol. Diagn. 13(1), 83–91 (2013).
  • Kuo JS , ChiuDT. Disposable microfluidic substrates: transitioning from the research laboratory into the clinic. Lab Chip11(16), 2656–2665 (2011).
  • Phillips ST , LewisGG. Advances in materials that enable quantitative point-of-care assays. MRS Bull. 38(4), 315–319 (2013).
  • Zheng G , CuiY, KarabulutE, WagbergL, ZhuH, HuL. Nanostructured paper for flexible energy and electronic devices. MRS Bull. 38(4), 320–325 (2013).
  • Sicard C , BrennanJD. Bioactive paper: biomolecule immobilization methods and applications in environmental monitoring. MRS Bull. 38(4), 331–334 (2013).
  • Rolland JP , MoureyDA. Paper as a novel material platform for devices. MRS Bull. 38(4), 299–305 (2013).
  • Yetisen AK , AkramMW, LoweCR. Paper-based microfluidic point-of-care diagnostic devices. Lab Chip13(12), 2210–2251 (2013).
  • Gerlach J , SequeiraM, AlvaradoVet al. Cost analysis of centralized viral load testing for antiretroviral therapy monitoring in Nicaragua, a low-HIV prevalence, low-resource setting. J. Int. AIDS Soc. 13(1), (2010).
  • Mabey D , PeelingRW, UstianowskiA, PerkinsMD. Diagnostics for the developing world. Nat. Rev. Microbiol. 2(3), 231–240 (2004).
  • Wong R , TseH. Lateral Flow Immunoassay. Humana Press, NY, USA (2010).
  • Fu E , KauffmanP, LutzB, YagerP. Chemical signal amplification in two-dimensional paper networks. Sens. Actuators B Chem. 149(1), 325–328 (2010).
  • Fu E , LiangT, HoughtalingJet al. Enhanced sensitivity of lateral flow tests Using a two-dimensional paper network format. Anal. Chem. 83(20), 7941–7946 (2011).
  • Fu E , LiangT, Spicar-MihalicP, HoughtalingJ, RamachandranS, YagerP. Two-dimensional paper network format that enables simple multistep assays for use in low-resource settings in the context of malaria antigen detection. Anal. Chem. 84(10), 4574–4579 (2012).
  • Fu E , LutzB, KauffmanP, YagerP. Controlled reagent transport in disposable 2D paper networks. Lab Chip10(7), 918–920 (2010).
  • Dharmaraja S , LafleurL, ByrnesSet al. Programming paper networks for point of care diagnostics. Proc. SPIE (2013).
  • Bell JM , CameronFK. The flow of liquids through capillary spaces. J. Phys. Chem. 10(8), 658–674 (1906).
  • Lucas R . The time law of the capillary rise of liquids. Colloid Polym. Sci. 23(1), 15–22 (1918).
  • Washburn EW . The dynamics of capillary flow. Phys. Rev. 17(3), 273–283 (1921).
  • Alava M , NiskanenK. The physics of paper. Rep. Prog. Phys. 69(3), 669–723 (2006).
  • Fu E , RamseyS, KauffmanP, LutzB, YagerP. Transport in two-dimensional paper networks. Microfluid. Nanofluidics10(1), 29–35 (2011).
  • Medina A , Perez Rosales C. Imbibition in pieces of paper with different shapes. Revista Mexicana De Fisica47(6), 537–541 (2001).
  • Darcy H Les Fontaines Publiques de la Ville de Dijon . Victor Dalmont (Ed.). Paris, France (1856).
  • Mendez S , FentonEM, GallegosGRet al. Imbibition in porous membranes of complex shape: quasi-stationary flow in thin rectangular segments. Langmuir26(2), 1380–1385 (2010).
  • Lutz B , LiangT, FuE, RamachandranS, KauffmanP, YagerP. Dissolvable fluidic time delays for programming multi-step assays in instrument-free paper diagnostics. Lab Chip13(14), 2840–2847 (2013).
  • Noh N , PhillipsST. Metering the capillary-driven flow of fluids in paper-based microfluidic devices. Anal. Chem. 82(10), 4181–4187 (2010).
  • Chen H , CogswellJ, AnagnostopoulosC, FaghriM. A fluidic diode, valves, and a sequential-loading circuit fabricated on layered paper. Lab Chip12(16), 2909–2913 (2012).
  • Koo C , HeF, NugenS. An inkjet-printed electrowetting valve for paper-fluidic sensors. Analyst138(17), 4998–5004 (2013).
  • Li X , ZwanenburgP, LiuX. Magnetic timing valves for fluid control in paper-based microfluidics. Lab Chip13(13), 2609–2614 (2013).
  • Li X , TianJF, ShenW. Progress in patterned paper sizing for fabrication of paper-based microfluidic sensors. Cellulose17(3), 649–659 (2010).
  • Martinez AW , PhillipsST, NieZHet al. Programmable diagnostic devices made from paper and tape. Lab Chip10(19), 2499–2504 (2010).
  • Du WB , LiL, NicholsKP, IsmagilovRF. SlipChip. Lab Chip9(16), 2286–2292 (2009).
  • Liu H , LiX, CrooksRM. Paper-based SlipPAD for high-throughput chemical sensing. Anal. Chem. 85(9), 4263–4267 (2013).
  • Lutz BR , TrinhP, BallC, FuE, YagerP. Two-dimensional paper networks: programmable fluidic disconnects for multi-step processes in shaped paper. Lab Chip11(24), 4274–4278 (2011).
  • Fridley GE , LeHQ, FuE, YagerP. Controlled release of dry reagents in porous media for tunable temporal and spatial distribution upon rehydration. Lab Chip12(21), 4321–4327 (2012).
  • Posthuma-Trumpie G , KorfJ, Amerongen v. lateral flow (immuno)assay: its strengths, weaknesses, opportunities and threats. A literature survey. Anal. Bioanal. Chem. 393(2), 569–582 (2009).
  • Fung KK , ChanCPY, RennebergR. Development of enzyme-based bar code-style lateral-flow assay for hydrogen peroxide determination. Anal. Chim. Acta634(1), 89–95 (2009).
  • Lou SC , PatelC, ChingSF, GordonJ. One-step competitive immunochromatographic assay for semiquantitative determination of lipoprotein A in plasma. Clin. Chem. 39(4), 619–624 (1993).
  • Cho JH , PaekSH. Semiquantitative, bar code version of immunochromatographic assay system for human serum albumin as model analyte. Biotechnol. Bioeng. 75(6), 725–732 (2001).
  • Leung W , ChanCP, RainerTH, IpM, CautherleyGWH, RennebergR. InfectCheck CRP barcode-style lateral flow assay for semi-quantitative detection of C-reactive protein in distinguishing between bacterial and viral infections. J. Immunol. Methods336(1), 30–36 (2008).
  • Lewis GG , DiTucciMJ, PhillipsST. Quantifying analytes in paper-based microfluidic devices without using external electronic readers. Angew. Chem. Int. Ed. Engl. 51(51), 12707–12710 (2012).
  • Zuk RF , GinsbergVK, HoutsTet al. Enzyme immunochromatography - a quantitative immunoassay requiring no instrumentation. Clin. Chem. 31(7), 1144–1150 (1985).
  • Chen R , LiTM, MerrickHet al. An internal clock reaction used in a one-step enzyme immunochromatographic assay of theophylline in whole-blood. Clin. Chem. 33(9), 1521–1525 (1987).
  • Cate DM , DungchaiW, CunninghamJC, VolckensJ, HenryCS. Simple, distance-based measurement for paper analytical devices. Lab Chip13(12), 2397–2404 (2013).
  • Hampton T . Recent advances in mobile technology benefit global health, research, and care. JAMA307(19), 2013–2014 (2012).
  • Kayingo G . Transforming global health with mobile technologies and social enterprises global health and innovation conference. Yale J. Biol. Med. 85(3), 424–426 (2012).
  • Martinez AW , PhillipsST, CarrilhoE, ThomasSW, SindiH, WhitesidesGM. Simple telemedicine for developing regions: camera phones and paper-based microfluidic devices for real-time, off-site diagnosis. Anal. Chem. 80(10), 3699–3707 (2008).
  • Stevens D . Development and Optical Analysis of a Microfluidic Point-of-Care Diagnostic Device [PhD thesis]. University of Washington, Seattle, DC, USA (2010).
  • Dell N , VenkatachalamS, StevensD, YagerP, BorrielloG. Towards a point-of-care diagnostic system: automated analysis of immunoassay test data on a cell phone. Proceedings of the 5th ACM Workshop on Networked Systems for Developing Regions. Washington, DC, USA, 28 June (2011).
  • Zhu HY , YaglidereO, SuTW, TsengD, OzcanA. Cost-effective and compact wide-field fluorescent imaging on a cell-phone. Lab Chip11(2), 315–322 (2011).
  • Mudanyali O , DimitrovS, SikoraU, PadmanabhanS, NavruzI, OzcanA. Integrated rapid-diagnostic-test reader platform on a cellphone. Lab Chip12(15), 2678–2686 (2012).
  • Coskun AF , WongJ, KhodadadiD, NagiR, TeyA, OzcanA. A personalized food allergen testing platform on a cellphone. Lab Chip13(4), 636–640 (2013).
  • Hilder M , Winther-JensenB, ClarkNB. Paper-based, printed zinc-air battery. J. Power Sources194(2), 1135–1141 (2009).
  • Liu H , CrooksRM. Paper-based electrochemical sensing platform with integral battery and electrochromic read-out. Anal. Chem. 84(5), 2528–2532 (2012).
  • Thom NK , YeungK, PillionMB, PhillipsST. Fluidic batteries in paper-based microfluidic devices. Lab Chip12(10), 1768–1770 (2012).
  • Preechaburana P , GonzalezMC, SuskaA, FilippiniD. Surface plasmon resonance chemical sensing on cell phones. Angew. Chem. Int. Ed. Engl. 51(46), 11585–11588 (2012).
  • Preechaburana P , SuskaA, FilippiniD. Embedded adaptive optics for ubiquitous lab-on-a-chip readout on intact cell phones. Sensors (Basel)12(7), 8586–8600 (2012).
  • Liu C , MaukMG, BauHH. A disposable, integrated loop-mediated isothermal amplification cassette with thermally actuated valves. Microfluid. Nanofluidics11(2), 209–220 (2011).
  • LaBarre P , HawkinsKR, GerlachJet al. A simple, inexpensive device for nucleic acid amplification without electricity-toward instrument-free molecular diagnostics in low-resource settings. Plos ONE6(5), e19738 (2011).
  • Govindarajan AV , RamachandranS, VigilGD, YagerP, BoehringerKF. A low cost point-of-care viscous sample preparation device for molecular diagnosis in the developing world; an example of microfluidic origami. Lab Chip12(1), 174–181 (2012).
  • Osborn JL , LutzB, FuE, KauffmanP, StevensDY, YagerP. Microfluidics without pumps: reinventing the T-sensor and H-filter in paper networks. Lab Chip10(20), 2659–2665 (2010).
  • Abbas A , BrimerA, SlocikJM, TianLM, NaikRR, SingamaneniS. Multifunctional analytical platform on a paper strip: separation, preconcentration, and subattomolar detection. Anal. Chem. 85(8), 3977–3983 (2013).
  • Lewis G , RobbinsJ, PhillipsS. Phase-switching depolymerizable poly(carbamate) oligomers for signal amplification in quantitative time-based assays. Macromolecules46, 5177–5183 (2013).
  • Rohrman BA , Richards-KortumRR. A paper and plastic device for performing recombinase polymerase amplification of HIV DNA. Lab Chip12(17), 3082–3088 (2012).
  • Ge L , WangSM, SongXR, GeSG, YuJH. 3D origami-based multifunction-integrated immunodevice: low-cost and multiplexed sandwich chemiluminescence immunoassay on microfluidic paper-based analytical device. Lab Chip12(17), 3150–3158 (2012).
  • Li W , LiL, GeSet al. A 3D origami multiple electrochemiluminescence immunodevice based on a porous silver-paper electrode and multi-labeled nanoporous gold-carbon spheres. Chem. Commun. (Camb.)49(70), 7687–7689 (2013).
  • Wang S , GeL, YanMet al. 3D microfluidic origami electrochemiluminescence immunodevice for sensitive point-of-care testing of carcinoma antigen 125. Sens. Actuators B Chem. 176, 1–8 (2013).
  • Becker H . Integrated microfluidic devices in diagnostics. Med. Device Technol. 1(4), (2010).
  • Mariella R Jr . Sample preparation: the weak link in microfluidics-based biodetection. Biomed. Microdevices10(6), 777–784 (2008).
  • Kaplan WA . Can the ubiquitous power of mobile phones be used to improve health outcomes in developing countries? Global. Health2(9), (2006).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.