303
Views
0
CrossRef citations to date
0
Altmetric
Review

The Potential of Electrophoretic Sample Pretreatment Techniques and New Instrumentation for Bioanalysis, with A Focus on Peptidomics and Metabolomics

, &
Pages 2785-2801 | Published online: 21 Nov 2013

References

  • Schulz-Knappe P , SchraderM, Zucht H-D. The peptidomics concept. Comb. Chem. High Throughput Screen. 8, 697–704 (2005).
  • Griffin JL . Metabolic profiles to define the genome: can we hear the phenotypes? Philos. Trans. R. Soc. Lond. B. Biol. Sci. 359, 857–871 (2004).
  • Inez Finoulst I , PinkseM, Van Dongen W, Verhaert P. Sample preparation techniques for the untargeted LC–MS-based discovery of peptides in complex biological matrices. J. Biomed. Biotechnol. 245–291 (2011).
  • Aristoteli LP , MolloyMP, BakerMS. Evaluation of endogenous plasma peptide extraction methods for mass spectrometric biomarker discovery. J. Proteome Res. 6, 571–581 (2007).
  • Ramautar R , SomsenGW, De Jong, GJ. CE–MS in metabolomics. Electrophoresis30, 276–291 (2009).
  • Vuckovic D . Current trends and challenges in sample preparation for global metabolomics using liquid chromatography–mass spectrometry. Anal. Bioanal. Chem. 403, 1523–1548 (2012).
  • Dunn WB , EllisDI. Metabolomics: current analytical platforms and methodologies. Trends Analyt. Chem. 24, 285–294 (2005).
  • Villas-Bôas SG , H⊘jer-PedersenJ, ÅkessonM, SmedsgaardJ, NielsenJ. Global metabolite analysis of yeast: evaluation of sample prep-aration methods. Yeast22, 1155–1169 (2005).
  • Griffiths WJ , SjövallJ. Analytical strategies for characterization of bile acid and oxysterol metabolomes. Biochem. Biophys. Res. Commun. 396, 80–84 (2010).
  • Montona MRN , TerabeS. Sample enrichment techniques in capillary electrophoresis: focus on peptides and proteins. J. Chromatogr. B841, 88–95 (2006).
  • Britz-Kibbin P , TerabeS. Online preconcentration strategies for trace analysis of metabolites by capillary electrophoresis. J. Chromatogr. A1000, 917–934 (2003).
  • Breadmore MC , DawodM, QuirinoJP. Recent advances in enhancing the sensitivity of electrophoresis and electrochromatography in capillaries and microchips (2008–2010). Electrophoresis32, 127–148 (2011).
  • Riekkola M-L . Jönsson JÅ, Smith RM. Terminology for analytical capillary electromigration techniques (IUPAC Recommendations 2003). Pure Appl. Chem. 76, 443–451 (2004).
  • Anderson NL , AndersonNG. The human plasma proteome history, character, and diagnostic prospects. Mol. Cell. Proteomics1, 845–867 (2002).
  • Chien R-L , BurgiDS. Field amplified sample injection in high-performance capillary electrophoresis. J Chromatogr. 559, 141–152 (1991).
  • Ramautar R , NevedomskayaE, MayborodaOAet al. Metabolic profiling of human urine by CE-MS using a positively charged capillary coating and comparison with UPLC–MS. Mol. Biosyst. 7, 194–199 (2011).
  • Kašička V . From micro to macro: conversion of capillary electrophoretic separations of biomolecules and bioparticles to preparative free-flow electrophoresis scale. Electrophoresis30(Suppl. 1), S40–S52 (2009).
  • Song Y-A . Chan M, Celio C, Tannenbaum SR, Wishnok JS, Han J. Free-flow zone electro-phoresis of peptides and proteins in PDMS microchip for narrow pI range sample prefractionation coupled with mass spectrom-etry. Anal. Chem. 82, 2317–2232 (2010).
  • Righetti PG , SimóC, SebastianoR, CitterioA. Carrier ampholytes for IEF, on their fortieth anniversary (1967–2007), brought to trial in court: the verdict. Electrophoresis28, 3799–3381 (2007).
  • Xie H , BandhakaviS, RoeMR, GriffinTJ. Preparative peptide isoelectric focusing as a tool for improving the identification of lysine-acetylated peptides from complex mixtures. J. Proteome Res. 6, 2019–2026 (2007).
  • Moritz RL , HongJ, SchützFet al. A proteome strategy for fractionating proteins and peptides using continuous free-flow electrophoresis coupled off-line to reversed-phase high-performance liquid chromatography. Anal. Chem. 76, 4811–4824 (2004).
  • Malmström J , LeeH, NesvizhskiiAIet al. Optimized peptide separation and identification for mass spectrometry based proteomics via free-flow electrohoresis. J. Proteome Res. 5, 2241–2249 (2006).
  • Davidsson P , WestmanA, PuchadesM, NilssonCL, BlennowK. Characterization of proteins from human cerebrospinal fluid by a combination of preparative two-dimensional liquid-phase electrophoresis and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal. Chem. 71, 642–647 (1999).
  • Westman-Brinkmalm A , DavidssonP. Comparison of preparative and analytical two-dimensional electrophoresis for isolation and matrix-assisted laser desorption/ionization–time-of-flight mass spectrometric analysis of transthyretin in cerebrospinal fluid. Anal. Biochem. 301, 161–167 (2002).
  • Bandhakavi S , StoneMD, OnsongoG, Van Riper SK, Griffin TJ. A dynamic range compression and three-dimensional peptide fractionation analysis platform expands proteome coverage and the diagnostic potential of whole saliva. J. Proteome Res. 8, 5590–5600 (2009).
  • Chen J , LeeCS, ShenY, SmithRD, BaehreckeEH. Integration of capillary isoelectric focusing with capillary reversed-phase liquid chromatography for two-dimensional proteomics separation. Electrophoresis23, 3143–3148 (2002).
  • Wang W , GuoT, RudnickPAet al. Membrane proteome analysis of microdissected ovarian tumor tissues using capillary isoelectric focusing/reversed-phase liquid chromatography–tandem MS. Anal. Chem. 79, 1002–1009 (2007).
  • Wang Y , RudnickPA, EvansELet al. Proteome analysis of microdissected tumor tissue using a capillary isoelectric focusing-based multidimensional separation platform coupled with ESI-tandem MS. Anal. Chem. 77, 6549–6556 (2005).
  • Xie H , OnsongoG, PopkoJet al. Proteomics analysis of cells in whole saliva from oral cancer patients via value-added three-dimensional peptide fractionation and tandem mass spectrometry. J. Mol. Cell. Proteomics7, 486–498 (2008).
  • Petr J , MaierV, HorákováJ, ŠevcíkJ, StránskýZ. Capillary isotachophoresis from the student point of view – images and the reality. J. Sep. Sci. 29, 2705–2715 (2006).
  • Kvasnička F , JarošM, GašB. New configuration in capillary isotachophoresis–capillary zone electrophoresis coupling. J. Chromatogr. A916, 131–142 (2001).
  • Weber G , BocekP. Interval isotachophoresis for purification and isolation of ionogenic species. Electrophoresis19, 3090–3093 (1998).
  • Hanna M , SimpsonC, PerrettD. Novel three-dimensional capillary electrophoresis system for complex and trace analysis. J.Chromatogr. A894, 117–128 (2000).
  • Mikuš P , KovalM, MarákovaK, Piešt’anskýJ, HavránekE. Seperation possibilities of three-dimensional electrophoresis. Talanta103, 294–300 (2013).
  • Fang X , WangW, YangLet al. Application of capillary isotachophoresis-based multidimensional separations coupled with electrospray ionization–tandem mass spectrometry for characterization of mouse brain mitochondrial proteome. Electrophoresis29, 2215–2223 (2008).
  • Fang X , BalgleyBM, WangW, ParkDM, LeeCS. Comparison of multidimensional shotgun technologies targeting tissue proteomics. Electrophoresis30, 4063–4070 (2009).
  • Staňová A , MarákJ, RezeliM, PágerC, KilárF, KanianskyD. Analysis of therapeutic peptides in human urine by combination of capillary zone electrophoresis–electrospray mass spectrometry with preparative capillary isotachophoresis sample pretreatment. J. Chromatogr. A1218, 8701–8707 (2011).
  • Marák J , StaňováA, GajdoštínováS, SkultétyL, KanianskyD. Some possibilities of an analysis of complex samples by a mass spectrometry with a sample pretreatment by an offline coupled preparative capillary isotachophoresis. Electrophoresis32, 1273–1281 (2011).
  • Buscher BAP , TjadenUR, van der Greef J. Three-compartment electrodialysis device for online sample clean-up and enrichment prior to capillary electrophoresis. J. Chromatogr. A788, 165–172 (1997).
  • Kamphorst JJ , TjadenUR, van der Heijden R, DeGroot J, van der Greef J Hankemeier T. Feasibility of electrodialysis as a fast and selective sample preparation method for the profiling of low-abundant peptides in biofluids. Electrophoresis30, 2284–2292 (2009).
  • Buscher BAP , TjadenUR, van der Greef J. Online electrodialysis-capillary zone electrophoresis of adenosine triphosphate and inositol phosphates. J. Chromatogr. A764, 135–142 (1997).
  • Buscher BAP , HofteAJP, TjadenUR, van der Greef J. Online electrodialysis-capillary zone electrophoresis–mass spectrometry of inositol phosphates in complex matrices. J. Chromatogr. A777, 51–60 (1997).
  • Doan TK , KubáňP, KubáňP, KiplagatIK, BočekP. Analysis of inorganic cations in biological samples by the combination of micro-electrodialysis and capillary electrophoresis with capacitively coupled contactless conductivity detection. Electrophoresis32, 464–471 (2011).
  • Pedersen-Bjergaard S , RasmussenKE. Electrokinetic migration across artificial liquid membranes: new concept for rapid sample preparation of biological fluids. J. Chromatogr. A1109, 183–190 (2006).
  • Kjelsen IJ , GjelstadA, RasmussenKE, Pedersen-BjergaardS. Low-voltage electromembrane extraction of basic drugs from biological samples. J. Chromatogr. A1180, 1–9 (2008).
  • Seip KF , GjelstadA, Pedersen-BjergaardS. The potential application of electromembrane extraction for the analysis of peptides in biological fluids. Bioanalysis4(16), 1971–1973 (2012).
  • Balchen M , ReubsaetL, Pedersen-BjergaardS. Electromembrane extraction of peptides. J. Chromatogr. A1194, 143–149 (2008).
  • Balchen M , HalvorsenTG, ReubsaetL, Pedersen-BjergaardS. Rapid isolation of angiotensin peptides from plasma by electromembrane extraction. J. Chromatogr. A1216, 6900–6905 (2009).
  • Balchen M , LundH, ReubsaetL, Pedersen-BjergaardS. Fast, selective, and sensitive analysis of low-abundance peptides in human plasma by electromembrane extraction. Anal. Chem. Acta716, 16–23 (2012).
  • Strieglerová L , KubánP, BočekP. Electromembrane extraction of amino acids from body fluids followed by capillary electrophoresis with capacitively coupled contactless conductivity detection. J. Chromatogr. A1218, 6248–6255 (2011).
  • Kubán P , BočekP. Online coupling of a clean-up device with supported liquid membrane to capillary electrophoresis for direct injection and analysis of serum and plasma samples. J. Chromatogr. A1234, 2–8 (2012).
  • Petersen NJ , PedersenJS, PoulsenNNet al. On-chip electromembrane extraction for monitoring drug metabolism in real time by electrospray ionization mass spectrometry. Analyst137, 3321–3327 (2012).
  • Scott TC . Use of electric fields in solvent extraction: a review and prospectus. Sep. Purif. Rev. 18, 65–109 (1989).
  • Lindenburg PW , SeitzingerR, TempelsFWA, TjadenUR, van der Greef J, Hankemeier T. Online capillary liquid–liquid electroextraction of peptides as fast pre-concentration prior to LC–MS. Electrophoresis31, 3903–3912 (2010).
  • Lindenburg PW , TempelsFWA, TjadenUR, van der Greef J, Hankemeier T. Online large-volume electroextraction coupled to liquid chromatography–mass spectrometry to improve detection of peptides. J. Chromatogr. A1249, 17–24 (2012).
  • Lindenburg PW , TjadenUR, van der Greef J, Hankemeier T. Feasibility of electroextraction as versatile sample preconcentration for fast and sensitive analysis of urine metabolites, demonstrated on acylcarnitines. Electrophoresis33, 2987–2995 (2012).
  • Raterink RJ , LindenburgPW, VreekenRJ, HankemeierT. 3-phase electroextraction: a new (online) sample purification and enrichment method for bioanalysis. Anal Chem. 85, 7762–7768 (2013).
  • Yu L , JiangC, HuangS, GongX, WangS, ShenP. Analysis of urinary metabolites for breast cancer patients receiving chemotherapy by CE-MS coupled with online concentration. Clin. Biochem. 46, 1065–1073 (2013).
  • Kelly RT , WoolleyAT. Electric field gradient focusing. J. Sep. Sci. 28, 1985–1993 (2005).
  • Shackman JG , RossD. Counter-flow gradient electrofocusing. Electrophoresis28, 556–571 (2007).
  • Tracey NI , HuangZ, IvoryCF. Design and construction of a preparative-scale dynamic field gradient focusing apparatus. Biotechnol. Prog. 24, 444–451 (2008).
  • Tracey NI , IvoryCF. Protein separation using preparative-scale dynamic field gradient focusing. Electrophoresis29, 2820–2827 (2008).
  • Burke JM , SmithCD, IvoryCF. Development of a membrane-less dynamic field gradient focusing device for the separation of low-molecular-weight molecules. Electrophoresis31, 902–909 (2010).
  • Liu C , LuoY, MaxwellEJ, FangN, ChenDD. Potential of two-dimensional electro-fluid-dynamic devices for continuous purification of multiple components from complex samples. Anal. Chem. 83, 8208–8214 (2011).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.