301
Views
2
CrossRef citations to date
0
Altmetric
Review

Alternative Matrices for Therapeutic Drug Monitoring of Immunosuppressive Agents Using LC–MS/MS

&
Pages 1037-1058 | Published online: 12 May 2015

References

  • Schiff J , ColeE, CantarovichM. Therapeutic monitoring of calcineurin inhibitors for the nephrologist. Clin. J. Am. Soc. Nephrol. 2 (2), 374–384 (2007).
  • Johnston A , HoltDW. Ther. Drug Monit. of immunosuppressant drugs. Br. J. Clin. Pharmacol. 47 (4), 339–350 (1999).
  • Staatz CE , TettSE. Clinical pharmacokinetics and pharmacodynamics of tacrolimus in solid organ transplantation. Clin. pharmacokinet. 43 (10), 623–653 (2004).
  • Staatz CE , TettSE. Clinical pharmacokinetics and pharmacodynamics of mycophenolate in solid organ transplant recipients. Clin. pharmacokinet. 46 (1), 13–58 (2007).
  • Mohammadpour N , ElyasiS, VahdatiN, MohammadpourAH, ShamsaraJ. A review on Ther. Drug Monit. of immunosuppressant drugs. Iran. J. Basic Med. Sci. 14 (6), 485–498 (2011).
  • Korecka M , ShawLM. Review of the newest HPLC methods with mass spectrometry detection for determination of immunosuppressive drugs in clinical practice. Ann. Transplant. 14 (2), 61–72 (2009).
  • Sallustio BC . LC–MS/MS for immunosuppressant therapeutic drug monitoring. Bioanalysis2 (6), 1141–1153 (2010).
  • Vogeser M , KirchhoffF. Progress in automation of LC–MS in laboratory medicine. Clin. Biochem. 44 (1), 4–13 (2011).
  • Marinova M , ArtusiC, BrugnoloL, AntonelliG, ZaninottoM, PlebaniM. Immunosuppressant Ther. Drug Monit. by LC–MS/MS: workflow optimization through automated processing of whole blood samples. Clin. Biochem. 46 (16–17), 1723–1727 (2013).
  • Spooner N , LadR, BarfieldM. Dried blood spots as a sample collection technique for the determination of pharmacokinetics in clinical studies: considerations for the validation of a quantitative bioanalytical method. Analy. Chem. 81 (4), 1557–1563 (2009).
  • Webb NJ , CoulthardMG, TrompeterRSet al. Correlation between finger-prick and venous ciclosporin levels: association with gingival overgrowth and hypertrichosis. Pediatr. Nephrol. 22 (12), 2111–2118 (2007).
  • Yonan N , MartyszczukR, MachaalA, BaynesA, KeevilBG. Monitoring of cyclosporine levels in transplant recipients using self-administered fingerprick sampling. Clin. Transplant. 20 (2), 221–225 (2006).
  • Keevil BG , TierneyDP, CooperDP, MorrisMR, MachaalA, YonanN. Simultaneous and rapid analysis of cyclosporin A and creatinine in finger prick blood samples using liquid chromatography tandem mass spectrometry and its application in C2 monitoring. Ther. Drug Monit. 24 (6), 757–767 (2002).
  • Webb NJ , RobertsD, PreziosiR, KeevilBG. Fingerprick blood samples can be used to accurately measure tacrolimus levels by tandem mass spectrometry. Pediatr. Transplant. 9 (6), 729–733 (2005).
  • Leichtle AB , CeglarekU, WitzigmannH, GabelG, ThieryJ, FiedlerGM. Potential of dried blood self-sampling for cyclosporine c(2) monitoring in transplant outpatients. J. Transplant. 2010, 201918 (2010).
  • Murthy JN , YatscoffRW, SoldinSJ. Cyclosporine metabolite cross-reactivity in different cyclosporine assays. Clin. Biochem. 31 (3), 159–163 (1998).
  • Murthy JN , DavisDL, YatscoffRW, SoldinSJ. Tacrolimus metabolite cross-reactivity in different tacrolimus assays. Clin. Biochem. 31 (8), 613–617 (1998).
  • Dietemann J , BerthouxP, Gay-MontchampJP, BatieM, BerthouxF. Comparison of ELISA method versus MEIA method for daily practice in the therapeutic monitoring of tacrolimus. Nephrol. Dialysis Transplant. 16 (11), 2246–2249 (2001).
  • Napoli KL . Is microparticle enzyme-linked immunoassay (MEIA) reliable for use in tacrolimus TDM? Comparison of MEIA to liquid chromatography with mass spectrometric detection using longitudinal trough samples from transplant recipients. Ther. Drug Monit. 28 (4), 491–504 (2006).
  • Moes DJ , PressRR, de FijterJW, GuchelaarHJ, den HartighJ. Liquid chromatography-tandem mass spectrometry outperforms fluorescence polarization immunoassay in monitoring everolimus therapy in renal transplantation. Ther. Drug Monit. 32 (4), 413–419 (2010).
  • Buchwald A , WinklerK, EptingT. Validation of an LC–MS/MS method to determine five immunosuppressants with deuterated internal standards including MPA. BMC Clin. Pharmacol. 12, 2 (2012).
  • Zimmer D . Introduction to Quantitative Liquid Chromatography-Tandem Mass Spectrometry. Chromatographia57 (Suppl.), S325–S332 (2003).
  • Holcapek M , KolarovaL, NobilisM. High-performance liquid chromatography-tandem mass spectrometry in the identification and determination of phase I and phase II drug metabolites. Anal. Bioanal. Chem. 391 (1), 59–78 (2008).
  • Belostotsky V , AdawayJ, KeevilBG, CohenDR, WebbNJ. Measurement of saliva tacrolimus levels in pediatric renal transplant recipients. Pediatr. Nephrol. 26 (1), 133–138 (2011).
  • Shen B , LiS, ZhangYet al. Determination of total, free and saliva mycophenolic acid with a LC–MS/MS method: application to pharmacokinetic study in healthy volunteers and renal transplant patients. J. Pharm. Biomed. Anal. 50 (3), 515–521 (2009).
  • Dams R , HuestisMA, LambertWE, MurphyCM. Matrix effect in bio-analysis of illicit drugs with LC–MS/MS: influence of ionization type, sample preparation, and biofluid. J. Am. Soc. Mass Spectrom. 14 (11), 1290–1294 (2003).
  • Mei H , HsiehY, NardoCet al. Investigation of matrix effects in bioanalytical high-performance liquid chromatography/tandem mass spectrometric assays: application to drug discovery. Rapid Commun. Mass Spectrom. 17 (1), 97–103 (2003).
  • Chambers E , Wagrowski-DiehlDM, LuZ, MazzeoJR. Systematic and comprehensive strategy for reducing matrix effects in LC/MS/MS analyses. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 852 (1–2), 22–34 (2007).
  • Feller K , le PetitG. On the distribution of drugs in saliva and blood plasma. Int. J. Clin. Pharmacol. Biopharm. 15 (10), 468–469 (1977).
  • Horning MG , BrownL, NowlinJ, LertratanangkoonK, KellawayP, ZionTE. Use of saliva in therapeutic drug monitoring. Clin. Chem. 23 (2 Pt. 1), 157–164 (1977).
  • Mucklow JC , BendingMR, KahnGC, DolleryCT. Drug concentration in saliva. Clin. Pharmacol. Ther. 24 (5), 563–570 (1978).
  • Drobitch RK , SvenssonCK. Ther. Drug Monit. in saliva. An update. Clin. pharmacokinet. 23 (5), 365–379 (1992).
  • Gorodischer R , KorenG. Salivary excretion of drugs in children: theoretical and practical issues in therapeutic drug monitoring. Dev. Pharmacol. Ther. 19 (4), 161–177 (1992).
  • Haeckel R . Factors influencing the saliva/plasma ratio of drugs. Ann. NY Acad. Sci. 694, 128–142 (1993).
  • Jusko WJ , MilsapRL. Pharmacokinetic principles of drug distribution in saliva. Ann. NY Acad. Sci. 694, 36–47 (1993).
  • Coates JE , LamSF, McGawWT. Radioimmunoassay of salivary cyclosporine with use of 125I-labeled cyclosporine. Clin. Chem. 34 (8), 1545–1551 (1988).
  • Wiesen MH , FarowskiF, FeldkotterM, HoppeB, MullerC. Liquid chromatography-tandem mass spectrometry method for the quantification of mycophenolic acid and its phenolic glucuronide in saliva and plasma using a standardized saliva collection device. J. Chromatogr. A, 1241, 52–59 (2012).
  • Mendonza AE , GohhRY, AkhlaghiF. Analysis of mycophenolic acid in saliva using liquid chromatography tandem mass spectrometry. Ther. Drug Monit. 28 (3), 402–406 (2006).
  • Mendonza A , GohhR, AkhlaghiF. Determination of cyclosporine in saliva using liquid chromatography-tandem mass spectrometry. Ther. Drug Monit. 26 (5), 569–575 (2004).
  • Swallow V , HughesJ, RobertsD, WebbNJ. Assessing children’s and parents’ opinions on salivary sampling for therapeutic drug monitoring. Nurse Res. 19 (3), 32–37 (2012).
  • Tennison M , AliI, MilesMV, D’CruzO, VaughnB, GreenwoodR. Feasibility and acceptance of salivary monitoring of antiepileptic drugs via the US Postal Service. Ther. Drug Monit. 26 (3), 295–299 (2004).
  • Gorodischer R , BurtinP, HwangP, LevineM, KorenG. Saliva versus blood sampling for Ther. Drug Monit. in children: patient and parental preferences and an economic analysis. Ther. Drug Monit. 16 (5), 437–443 (1994).
  • Zahir H , McCaughanG, GleesonM, NandRA, McLachlanAJ. Changes in tacrolimus distribution in blood and plasma protein binding following liver transplantation. Ther. Drug Monit. 26 (5), 506–515 (2004).
  • Akhlaghi F , AshleyJ, KeoghA, BrownK. Cyclosporine plasma unbound fraction in heart and lung transplantation recipients. Ther. Drug Monit. 21 (1), 8–16 (1999).
  • Haeckel R , HaneckeP. Application of saliva for drug monitoring. An in vivo model for transmembrane transport. Eur. J. Clin. Chem. Clin. Biochem. 34 (3), 171–191 (1996).
  • Kaufman E , LamsterIB. The diagnostic applications of saliva--a review. Crit. Rev. Oral Biol. Med. 13 (2), 197–212 (2002).
  • Lipinski CA , LombardoF, DominyBW, FeeneyPJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 46 (1–3), 3–26 (2001).
  • Liu H , DelgadoMR. Therapeutic drug concentration monitoring using saliva samples. Focus on anticonvulsants. Clin. Pharmacokinet. 36 (6), 453–470 (1999).
  • Lindholm A , HenricssonS. Intra- and interindividual variability in the free fraction of cyclosporine in plasma in recipients of renal transplants. Ther. Drug Monit. 11 (6), 623–630 (1989).
  • Kovarik JM , SabiaHD, FigueiredoJet al. Influence of hepatic impairment on everolimus pharmacokinetics: implications for dose adjustment. Clin. Pharmacol. Ther. 70 (5), 425–430 (2001).
  • Peveling-Oberhag J , ZeuzemS, YongWPet al. Effects of hepatic impairment on the pharmacokinetics of everolimus: a single-dose, open-label, parallel-group study. Clin. Ther. 35 (3), 215–225 (2013).
  • Ionita IA , OgasawaraK, GohhRY, AkhlaghiF. Pharmacokinetics of total and unbound prednisone and prednisolone in stable kidney transplant recipients with diabetes mellitus. Ther. Drug Monit. 36 (4), 448–455 (2014).
  • Reece PA , DisneyAP, StaffordI, ShastryJC. Prednisolone protein binding in renal transplant patients. Br. J. Clin. Pharmacol. 20 (2), 159–162 (1985).
  • MacDonald A , ScarolaJ, BurkeJT, ZimmermanJJ. Clinical pharmacokinetics and thererapeutic drug monitoring of sirolimus. Clin. Ther. 22 (Suppl. B), B101–B121 (2000).
  • ChemSpider . http://www.chemspider.com.
  • DrugBank . http://www.drugbank.ca.
  • Idkaidek NM . Interplay of biopharmaceutics, biopharmaceutics drug disposition and salivary excretion classification systems. Saudi Pharm. J. 22 (1), 79–81 (2014).
  • Idkaidek N , ArafatT. Saliva versus plasma pharmacokinetics: theory and application of a salivary excretion classification system. Mol. Pharm. 9 (8), 2358–2363 (2012).
  • Drummer OH . Introduction and review of collection techniques and applications of drug testing of oral fluid. Ther. Drug Monit. 30 (2), 203–206 (2008).
  • Granger DA , ShirtcliffEA, BoothA, KivlighanKT, SchwartzEB. The “trouble” with salivary testosterone. Psychoneuroendocrinology29 (10), 1229–1240 (2004).
  • Groschl M , KohlerH, TopfHG, RupprechtT, RauhM. Evaluation of saliva collection devices for the analysis of steroids, peptides and therapeutic drugs. J. Pharm. Biomed. Anal. 47 (3), 478–486 (2008).
  • Shaefer MS , CollierDS, HavenMCet al. Falsely elevated FK-506 levels caused by sampling through central venous catheters. Transplantation56 (2), 475–476 (1993).
  • Blifeld C , EttengerRB. Measurement of cyclosporine levels in samples obtained from peripheral sites and indwelling lines. N. Engl. J. Med. 317 (8), 509 (1987).
  • Lillsunde P . Analytical techniques for drug detection in oral fluid. Ther. Drug Monit. 30 (2), 181–187 (2008).
  • Langel K , EngblomC, PehrssonA, GunnarT, AriniemiK, LillsundeP. Drug testing in oral fluid-evaluation of sample collection devices. J. Anal. Toxicol. 32 (6), 393–401 (2008).
  • Kivlighan KT , GrangerDA, SchwartzEB, NelsonV, CurranM, ShirtcliffEA. Quantifying blood leakage into the oral mucosa and its effects on the measurement of cortisol, dehydroepiandrosterone, and testosterone in saliva. Horm. Behav. 46 (1), 39–46 (2004).
  • Akhlaghi F , TrullAK. Distribution of cyclosporin in organ transplant recipients. Clin. pharmacokinet. 41 (9), 615–637 (2002).
  • Akhlaghi F , McLachlanAJ, KeoghAM, BrownKF. Effect of simvastatin on cyclosporine unbound fraction and apparent blood clearance in heart transplant recipients. Br. J. Clin. Pharmacol. 44 (6), 537–542 (1997).
  • Akhlaghi F , KeoghAM, BrownKF. Unbound cyclosporine and allograft rejection after heart transplantation. Transplantation67 (1), 54–59 (1999).
  • Zahir H , McCaughanG, GleesonM, NandRA, McLachlanAJ. Factors affecting variability in distribution of tacrolimus in liver transplant recipients. Br. J. Clin. Pharmacol. 57 (3), 298–309 (2004).
  • Vogeser M , ZachovalR, SpohrerU, JacobK. Potential lack of specificity using electrospray tandem-mass spectrometry for the analysis of mycophenolic acid in serum. Ther. Drug Monit. 23 (6), 722–724 (2001).
  • Spies CM , StrehlC, van der GoesMC, BijlsmaJW, ButtgereitF. Glucocorticoids. Best Pract. Res. Clin. Rheumatol. 25 (6), 891–900 (2011).
  • Bergmann TK , BarracloughKA, LeeKJ, StaatzCE. Clinical pharmacokinetics and pharmacodynamics of prednisolone and prednisone in solid organ transplantation. Clin. Pharmacokinet. 51 (11), 711–741 (2012).
  • Meffin PJ , BrooksPM, SallustioBC. Alterations in prednisolone disposition as a result of time of administration, gender and dose. Br. J. Clin. Pharmacol. 17 (4), 395–404 (1984).
  • Teeninga N , GuanZ, FreijerJet al. Monitoring prednisolone and prednisone in saliva: a population pharmacokinetic approach in healthy volunteers. Ther. Drug Monit. 35 (4), 485–492 (2013).
  • Ruiter AF , TeeningaN, NautaJ, EndertE, AckermansMT. Determination of unbound prednisolone, prednisone and cortisol in human serum and saliva by on-line solid-phase extraction liquid chromatography tandem mass spectrometry and potential implications for drug monitoring of prednisolone and prednisone in saliva. Biomed. Chromatogr. 26 (7), 789–796 (2012).
  • den Burger JC , WilhelmAJ, ChahbouniA, VosRM, SinjewelA, SwartEL. Analysis of cyclosporin A, tacrolimus, sirolimus, and everolimus in dried blood spot samples using liquid chromatography tandem mass spectrometry. Anal. Bioanal. Chem. 404 (6–7), 1803–1811 (2012).
  • Hinchliffe E , AdawayJE, KeevilBG. Simultaneous measurement of cyclosporin A and tacrolimus from dried blood spots by ultra high performance liquid chromatography tandem mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 883–884, 102–107 (2012).
  • Hoogtanders K , van der HeijdenJ, ChristiaansM, van de PlasA, van HooffJ, StolkL. Dried blood spot measurement of tacrolimus is promising for patient monitoring. Transplantation83 (2), 237–238 (2007).
  • Koop DR , BleyleLA, MunarM, CheralaG, Al-UzriA. Analysis of tacrolimus and creatinine from a single dried blood spot using liquid chromatography tandem mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 926, 54–61 (2013).
  • Sadilkova K , BusbyB, DickersonJA, RutledgeJC, JackRM. Clinical validation and implementation of a multiplexed immunosuppressant assay in dried blood spots by LC–MS/MS. Clin. Chim. Acta421, 152–156 (2013).
  • van der Heijden J , de BeerY, HoogtandersKet al. Therapeutic Drug Monitoring of everolimus using the dried blood spot method in combination with liquid chromatography-mass spectrometry. J. Pharm. Biomed. Anal. 50 (4), 664–670 (2009).
  • Wilhelm AJ , den BurgerJC, VosRM, ChahbouniA, SinjewelA. Analysis of cyclosporin A in dried blood spots using liquid chromatography tandem mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 877 (14–15), 1595–1598 (2009).
  • Lampe D , ScholzD, PrumkeHJ, BlankW, HullerH. Capillary blood, dried on filter paper, as sample for monitoring cyclosporin A concentrations. Clin. Chem. 33 (9), 1643–1644 (1987).
  • Cheung CY , van der HeijdenJ, HoogtandersKet al. Dried blood spot measurement: application in tacrolimus monitoring using limited sampling strategy and abbreviated AUC estimation. Transplant Int. 21 (2), 140–145 (2008).
  • Keevil BG . The analysis of dried blood spot samples using liquid chromatography tandem mass spectrometry. Clin. Biochem. 44 (1), 110–118 (2011).
  • Acott PD . Home fingerprick sampling for immunosuppressant drug monitoring in pediatric renal transplant patients. Nat. Clin. Pract. Nephrol. 2 (6), 304–305 (2006).
  • Hoogtanders K , van der HeijdenJ, ChristiaansM, EdelbroekP, van HooffJP, StolkLM. Ther. Drug Monit. of tacrolimus with the dried blood spot method. J. Pharm. Biomed. Anal. 44 (3), 658–664 (2007).
  • Li Q , CaoD, HuangY, XuH, YuC, LiZ. Development and validation of a sensitive LC–MS/MS method for determination of tacrolimus on dried blood spots. Biomed. Chromatogr. 27 (3), 327–334 (2013).
  • Bowen CL , DopsonW, KempDC, LewisM, LadR, OvervoldC. Investigations into the environmental conditions experienced during ambient sample transport: impact to dried blood spot sample shipments. Bioanalysis3 (14), 1625–1633 (2011).
  • Holub M , TuschlK, RatschmannRet al. Influence of hematocrit and localisation of punch in dried blood spots on levels of amino acids and acylcarnitines measured by tandem mass spectrometry. Clin. Chim. Acta373 (1–2), 27–31 (2006).
  • Koster RA , AlffenaarJW, GreijdanusB, UgesDR. Fast LC–MS/MS analysis of tacrolimus, sirolimus, everolimus and cyclosporin A in dried blood spots and the influence of the hematocrit and immunosuppressant concentration on recovery. Talanta115, 47–54 (2013).
  • Heinig K , BucheliF, HartenbachR, Gajate-PerezA. Determination of mycophenolic acid and its phenyl glucuronide in human plasma, ultrafiltrate, blood, DBS and dried plasma spots. Bioanalysis2 (8), 1423–1435 (2010).
  • LifeSciences GH . Grade 31ET Chr Cellulose Chromatography Papers). www.gelifesciences.com/webapp/wcs/stores/servlet/productById/en/GELifeSciences/28419331.
  • Li W , TseFL. Dried blood spot sampling in combination with LC–MS/MS for quantitative analysis of small molecules. Biomed. Chromatogr. 24 (1), 49–65 (2010).
  • PerkinElmer . PerkinElmer 226 Sample Collection Devices – Clinical. www.perkinelmer.com/pages/060/newbornscreening/customdevices.xhtml.
  • Besarab A , BoltonWK, BrowneJKet al. The effects of normal as compared with low hematocrit values in patients with cardiac disease who are receiving hemodialysis and epoetin. N. Engl. J. Med. 339 (9), 584–590 (1998).
  • Wilhelm AJ , den BurgerJC, ChahbouniA, VosRM, SinjewelA. Analysis of mycophenolic acid in dried blood spots using reversed phase high performance liquid chromatography. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 877 (30), 3916–3919 (2009).
  • Spooner N , DenniffP, MichielsenLet al. A device for dried blood microsampling in quantitative bioanalysis: overcoming the issues associated blood hematocrit. Bioanalysis1–7 (2014) ( Epub ahead of print).
  • Denniff P , SpoonerN. Volumetric absorptive microsampling: a dried sample collection technique for quantitative bioanalysis. Analy. Chem. 86 (16), 8489–8495 (2014).
  • Merton G , JonesK, LeeM, JohnstonA, HoltDW. Accuracy of cyclosporin measurements made in capillary blood samples obtained by skin puncture. Ther. Drug Monit. 22 (5), 594–598 (2000).
  • Wallemacq P , ArmstrongVW, BrunetMet al. Opportunities to optimize tacrolimus therapy in solid organ transplantation: report of the European consensus conference. Ther. Drug Monit. 31 (2), 139–152 (2009).
  • Batiuk TD , PazderkaF, EnnsJ, DeCastroL, HalloranPF. Cyclosporine inhibition of calcineurin activity in human leukocytes in vivo is rapidly reversible. J. Clin. Invest. 96 (3), 1254–1260 (1995).
  • Thomson AW , BonhamCA, ZeeviA. Mode of action of tacrolimus (FK506): molecular and cellular mechanisms. Ther. Drug Monit. 17 (6), 584–591 (1995).
  • Dumont FJ , SuQ. Mechanism of action of the immunosuppressant rapamycin. Life Sci. 58 (5), 373–395 (1996).
  • Kemnitz J , UysalA, HaverichAet al. Multidrug resistance in heart transplant patients: a preliminary communication on a possible mechanism of therapy-resistant rejection. J. Heart Lung Transplant. 10 (2), 201–210 (1991).
  • Albermann N , Schmitz-WinnenthalFH, Z’GraggenKet al. Expression of the drug transporters MDR1/ABCB1, MRP1/ABCC1, MRP2/ABCC2, BCRP/ABCG2, and PXR in peripheral blood mononuclear cells and their relationship with the expression in intestine and liver. Biochem. Pharmacol. 70 (6), 949–958 (2005).
  • Chaudhary PM , MechetnerEB, RoninsonIB. Expression and activity of the multidrug resistance P-glycoprotein in human peripheral blood lymphocytes. Blood80 (11), 2735–2739 (1992).
  • Cattaneo D , RuggenentiP, BaldelliSet al. ABCB1 genotypes predict cyclosporine-related adverse events and kidney allograft outcome. J. Am. Soc. Nephrol. 20 (6), 1404–1415 (2009).
  • Crettol S , VenetzJP, FontanaMet al. Influence of ABCB1 genetic polymorphisms on cyclosporine intracellular concentration in transplant recipients. Pharmacogenet. Genomics18 (4), 307–315 (2008).
  • Ansermot N , RebsamenM, ChabertJet al. Influence of ABCB1 gene polymorphisms and P-glycoprotein activity on cyclosporine pharmacokinetics in peripheral blood mononuclear cells in healthy volunteers. Drug Metabol. Lett. 2 (2), 76–82 (2008).
  • Capron A , MouradM, De MeyerMet al. CYP3A5 and ABCB1 polymorphisms influence tacrolimus concentrations in peripheral blood mononuclear cells after renal transplantation. Pharmacogenomics11 (5), 703–714 (2010).
  • Chen N , WeissD, ReyesJet al. No clinically significant drug interactions between lenalidomide and Pglycoprotein substrates and inhibitors: results from controlled phase I studies in healthy volunteers. Cancer Chemother. Pharmacol. 73 (5), 1031–1039 (2014).
  • Anglicheau D , PalletN, RabantMet al. Role of P-glycoprotein in cyclosporine cytotoxicity in the cyclosporine-sirolimus interaction. Kidney Int. 70 (6), 1019–1025 (2006).
  • Laplante A , DemeuleM, MurphyGF, BeliveauR. Interaction of immunosuppressive agents rapamycin and its analogue SDZ-RAD with endothelial P-gp. Transplant. Proc. 34 (8), 3393–3395 (2002).
  • Grude P , BoleslawskiE, ContiF, ChouzenouxS, CalmusY. MDR1 gene expression in peripheral blood mononuclear cells after liver transplantation. Transplantation73 (11), 1824–1828 (2002).
  • Goto M , MasudaS, KiuchiTet al. Relation between mRNA expression level of multidrug resistance 1/ABCB1 in blood cells and required level of tacrolimus in pediatric living-donor liver transplantation. J. Pharmacol. Exp. Ther. 325 (2), 610–616 (2008).
  • Robertsen I , FalckP, AndreassenAKet al. Endomyocardial, intralymphocyte, and whole blood concentrations of ciclosporin A in heart transplant recipients. Transplant. Res. 2 (1), 5 (2013).
  • Lemaitre F , AntignacM, FernandezC. Monitoring of tacrolimus concentrations in peripheral blood mononuclear cells: Application to cardiac transplant recipients. Clin. Biochem. 46 (15), 1538–1541 (2013).
  • Ansermot N , FathiM, VeutheyJL, DesmeulesJ, HochstrasserD, RudazS. Quantification of cyclosporine A in peripheral blood mononuclear cells by liquid chromatography-electrospray mass spectrometry using a column-switching approach. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 857 (1), 92–99 (2007).
  • Falck P , GuldsethH, AsbergA, MidtvedtK, ReubsaetJL. Determination of ciclosporin A and its six main metabolites in isolated T-lymphocytes and whole blood using liquid chromatography-tandem mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 852 (1–2), 345–352 (2007).
  • Brozmanova H , PerinovaI, HalvovaP, GrundmannM. Liquid chromatography-tandem mass spectrometry method for simultaneous determination of cyclosporine A and its three metabolites AM1, AM9 and AM4N in whole blood and isolated lymphocytes in renal transplant patients. J. Sep. Sci. 33 (15), 2287–2293 (2010).
  • Capron A , LerutJ, LatinneD, RahierJ, HaufroidV, WallemacqP. Correlation of tacrolimus levels in peripheral blood mononuclear cells with histological staging of rejection after liver transplantation: preliminary results of a prospective study. Transplant Int. 25 (1), 41–47 (2012).
  • Capron A , MusuambaF, LatinneDet al. Validation of a liquid chromatography-mass spectrometric assay for tacrolimus in peripheral blood mononuclear cells. Ther. Drug Monit. 31 (2), 178–186 (2009).
  • Gustafsson F , BarthD, DelgadoDH, NsouliM, SheedyJ, RossHJ. The impact of everolimus versus mycophenolate on blood and lymphocyte cyclosporine exposure in heart-transplant recipients. Eur. J. Clin. Pharmacol. 65 (7), 659–665 (2009).
  • Falck P , AsbergA, GuldsethHet al. Declining intracellular T-lymphocyte concentration of cyclosporine a precedes acute rejection in kidney transplant recipients. Transplantation85 (2), 179–184 (2008).
  • Lepage JM , Lelong-BoulouardV, LecoufA, DebruyneD, Hurault de LignyB, CoquerelA. Cyclosporine monitoring in peripheral blood mononuclear cells: feasibility and interest. A prospective study on 20 renal transplant recipients. Transplant. Proc. 39 (10), 3109–3110 (2007).
  • Barbari A , StephanA, MasriMet al. Cyclosporine lymphocyte level and lymphocyte count: new guidelines for tailoring immunosuppressive therapy. Transplant. Proc. 35 (7), 2742–2744 (2003).
  • Barbari A , MasriMA, StephanAet al. Cyclosporine lymphocyte versus whole blood pharmacokinetic monitoring: correlation with histological findings. Transplant. Proc. 33 (5), 2782–2785 (2001).
  • Masri MA , BarbariA, StephanA, RizkS, KilanyH, KamelG. Measurement of lymphocyte cyclosporine levels in transplant patients. Transplant. Proc. 30 (7), 3561–3562 (1998).
  • Masri M , RizkS, BarbariA, StephanA, KamelG, RostM. An assay for the determination of sirolimus levels in the lymphocyte of transplant patients. Transplant. Proc. 39 (4), 1204–1206 (2007).
  • Roullet-Renoleau F , LemaitreF, AntignacM, ZahrN, FarinottiR, FernandezC. Everolimus quantification in peripheral blood mononuclear cells using ultra high performance liquid chromatography tandem mass spectrometry. J. Pharm. Biomed. Anal. 66, 278–281 (2012).
  • Starkel P , SempouxC, Van Den BergeVet al. CYP 3A proteins are expressed in human neutrophils and lymphocytes but are not induced by rifampicin. Life Sci. 64 (8), 643–653 (1999).
  • Dey A , YadavS, DhawanA, SethPK, ParmarD. Evidence for cytochrome P450 3A expression and catalytic activity in rat blood lymphocytes. Life Sci. 79 (18), 1729–1735 (2006).
  • Hesselink DA , van SchaikRH, van der HeidenIPet al. Genetic polymorphisms of the CYP3A4, CYP3A5, and MDR-1 genes and pharmacokinetics of the calcineurin inhibitors cyclosporine and tacrolimus. Clin. Pharmacol. Ther. 74 (3), 245–254 (2003).
  • Kamdem LK , StreitF, ZangerUMet al. Contribution of CYP3A5 to the in vitro hepatic clearance of tacrolimus. Clin. Chem. 51 (8), 1374–1381 (2005).
  • Miura M , NiiokaT, KagayaHet al. Pharmacogenetic determinants for interindividual difference of tacrolimus pharmacokinetics 1 year after renal transplantation. J. Clin. Pharm. Ther. 36 (2), 208–216 (2011).
  • Uesugi M , MasudaS, KatsuraT, OikeF, TakadaY, InuiK. Effect of intestinal CYP3A5 on postoperative tacrolimus trough levels in living-donor liver transplant recipients. Pharmacogenet. Genomics16 (2), 119–127 (2006).
  • Lensmeyer GL , WiebeDA, CarlsonIH, SubramanianR. Concentrations of cyclosporin A and its metabolites in human tissues postmortem. J. Anal. Toxicol. 15 (3), 110–115 (1991).
  • Sandborn WJ , LawsonGM, CodyTJet al. Early cellular rejection after orthotopic liver transplantation correlates with low concentrations of FK506 in hepatic tissue. Hepatology21 (1), 70–76 (1995).
  • Sandborn WJ , LawsonGM, KromRA, WiesnerRH. Hepatic allograft cyclosporine concentration is independent of the route of cyclosporine administration and correlates with the occurrence of early cellular rejection. Hepatology15 (6), 1086–1091 (1992).
  • Capron A , LerutJ, VerbaandertCet al. Validation of a liquid chromatography-mass spectrometric assay for tacrolimus in liver biopsies after hepatic transplantation: correlation with histopathologic staging of rejection. Ther. Drug Monit. 29 (3), 340–348 (2007).
  • Noll BD , CollerJK, SomogyiAAet al. Measurement of cyclosporine A in rat tissues and human kidney transplant biopsies--a method suitable for small (<1 mg) samples. Ther. Drug Monit. 33 (6), 688–693 (2011).
  • Noll BD , CollerJK, SomogyiAAet al. Validation of an LC–MS/MS Method to Measure Tacrolimus in Rat Kidney and Liver Tissue and its Application to Human Kidney Biopsies. Ther. Drug Monit. (2013).
  • Ting LS , PartoviN, LevyRD, RiggsKW, EnsomMH. Pharmacokinetics of mycophenolic acid and its phenolic-glucuronide and ACYl glucuronide metabolites in stable thoracic transplant recipients. Ther. Drug Monit. 30 (3), 282–291 (2008).
  • Elens L , CapronA, KerckhoveVVet al. 1199G>A and 2677G>T/A polymorphisms of ABCB1 independently affect tacrolimus concentration in hepatic tissue after liver transplantation. Pharmacogenet. Genomics17 (10), 873–883 (2007).
  • Smans L , LentjesE, HermusA, ZelissenP. Salivary cortisol day curves in assessing glucocorticoid replacement therapy in Addison’s disease. Hormones12 (1), 93–100 (2013).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.