165
Views
0
CrossRef citations to date
0
Altmetric
Review

Current and Future Bioanalytical Approaches for Stroke Assessment

, , &
Pages 1017-1035 | Published online: 12 May 2015

References

  • Hatano S . Experience from a multicentre stroke register: a preliminary report. Bull. World Health Organ. 54 (5), 541–553 (1976).
  • Sacco RL , KasnerSE, BroderickJPet al. An updated definition of stroke for the 21st century: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke44 (7), 2064–2089 (2013).
  • Saenger AK , ChristensonRH. Stroke biomarkers: progress and challenges for diagnosis, prognosis, differentiation, and treatment. Clin. Chem. 56, 21–33 (2010).
  • Schwamm LH , PancioliA, AckerJE3rdet al. Recommendations for the establishment of stroke systems of care: recommendations from the American Stroke Association’s Task Force on the Development of Stroke Systems. Stroke36 (3), 690–703 (2005).
  • Di CA , BaldereschiM, GandolfoCet al. Stroke in an elderly population: incidence and impact on survival and daily function: the Italian Longitudinal Study on Aging. Cerebrovasc. Dis. 16 (2), 141–150 (2003).
  • Ma VY , ChanL, CarruthersKJ. Incidence, prevalence, costs, and impact on disability of common conditions requiring rehabilitation in the United States: stroke spinal cord injury, traumatic brain injury, multiple sclerosis, osteoarthritis, rheumatoid arthritis, limb loss, and back pain. Arch. Phys. Med. Rehabil. 95 (5), 986–995.e1 (2014).
  • Gorelick PB , SaccoRL, SmithDBet al. Prevention of a first stroke: a review of guidelines and a multidisciplinary consensus statement from the National Stroke Association. JAMA281 (12), 1112–1120 (1999).
  • Alila Medical Media . www.alilamedicalmedia.com.
  • Go AS , MozaffarianD, RogerVLet al. Executive summary: Heart Disease and Stroke Statistics – 2014 update: a report from the American Heart Association. Circulation129 (3), 399–410 (2014).
  • Adams HP Jr. , BendixenBH, KappelleLJet al. Classification of subtype of acute ischemic stroke: definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in Acute Stroke Treatment. Stroke24 (1), 35–41 (1993).
  • Dirnagl U , IadecolaC, MoskowitzMA. Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci. 22 (9), 391–397 (1999).
  • Fisher M , GarciaJH. Evolving stroke and the ischemic penumbra. Neurology47 (4), 884–888 (1996).
  • Green AR , ShuaibA. Therapeutic strategies for the treatment of stroke. Drug Discov. Today11 (15–16), 681–693 (2006).
  • Litchfield WR , AndersonBF, WeissRJ, LiftonRP, DluhyRG. Intracranial aneurysm and hemorrhagic stroke in glucocorticoid-remediable aldosteronism. Hypertension31 (1 Pt 2), 445–450 (1998).
  • Ustrell-Roig X , Serena-LealJ. Stroke: diagnosis and therapeutic management of cerebrovascular disease. Rev. Esp. Cardiol. 60 (7), 753–769 (2007).
  • Andersen KK , OlsenTS, DehlendorffC, KammersgaardLP. Hemorrhagic and ischemic strokes compared: stroke severity, mortality, and risk factors. Stroke40, 2068–2072 (2009).
  • Artto V , PutaalaJ, StrbianDet al. Stroke mimics and intravenous thrombolysis. Ann. Emerg. Med. 59 (1), 27–32 (2012).
  • Hemmen TM , MeyerBC, McCleanTL, LydenPD. Identification of nonischemic stroke mimics among 411 code strokes at the University of California, San Diego, Stroke Center. J. Stroke Cerebrovasc. Dis. 17 (1), 23–25 (2008).
  • Brunser AM , IllanesS, LavadosPMet al. Exclusion criteria for intravenous thrombolysis in stroke mimics: an observational study. J. Stroke Cerebrovasc. Dis. 22 (7), 1140–1145 (2012).
  • Guillan M , Alonso-CanovasA, Gonzalez-ValcarcelJet al. Stroke mimics treated with thrombolysis: further evidence on safety and distinctive clinical features. Cerebrovasc. Dis. 34 (2), 115–120 (2012).
  • Norris JW , HachinskiVC. Misdiagnosis of stroke. Lancet1, 328–331 (1982).
  • McKeith IG . Consensus guidelines for the clinical and pathologic diagnosis of dementia with Lewy bodies (DLB): report of the Consortium on DLB International Workshop. J. Alzheimers Dis. 9 (3 Suppl.), 417–423 (2006).
  • Fisher CM , AdamsRD. Transient global amnesia. Acta Neurol. Scand. Suppl. 40 (Suppl. 9), 1–83 (1964).
  • Hand PJ , KwanJ, LindleyRI, DennisMS, WardlawJM. Distinguishing between stroke and mimic at the bedside: the brain attack study. Stroke37 (3), 769–775 (2006).
  • Libman RB , WirkowskiE, AlvirJ, RaoTH. Conditions that mimic stroke in the emergency department: implications for acute stroke trials. Arch. Neurol. 52 (11), 1119–1122 (1995).
  • Johnston SC , GressDR, BrownerWS, SidneyS. Short-term prognosis after emergency department diagnosis of TIA. JAMA284 (22), 2901–2906 (2000).
  • Lyden PD , HantsonL. Assessment scales for the evaluation of stroke patients. J. Stroke Cerebrovasc. Dis. 7 (2), 113–127 (1998).
  • Spence JD , DonnerA. Problems in design of stroke treatment trials. Stroke13 (1), 94–99 (1982).
  • Lyden P , BrottT, TilleyBet al. Improved reliability of the NIH Stroke Scale using video training: NINDS TPA Stroke Study Group. Stroke25 (11), 2220–2226 (1994).
  • Muir KW , WeirCJ, MurrayGD, PoveyC, LeesKR. Comparison of neurological scales and scoring systems for acute stroke prognosis. Stroke27 (10), 1817–1820 (1996).
  • Goldstein LB , BertelsC, DavisJN. Interrater reliability of the NIH stroke scale. Arch. Neurol. 46 (6), 660–662 (1989).
  • Lyden P , ClaessonL, HavstadS, AshwoodT, LuM. Factor analysis of the National Institutes of Health Stroke Scale in patients with large strokes. Arch. Neurol. 61 (11), 1677–1680 (2004).
  • Lyden PD , LuM, LevineSR, BrottTG, BroderickJ. A modified National Institutes of Health Stroke Scale for use in stroke clinical trials: preliminary reliability and validity. Stroke32 (6), 1310–1317 (2001).
  • Kasner SE . Clinical interpretation and use of stroke scales. Lancet Neurol. 5 (7), 603–612 (2006).
  • Cavanagh SJ , GordonVL. Grading scales used in the management of aneurysmal subarachnoid hemorrhage: a critical review. J. Neurosci. Nurs. 34 (6), 288–295 (2002).
  • Nour M , LiebeskindDS. Brain imaging in stroke: insight beyond diagnosis. Neurotherapeutics8, 330–339 (2011).
  • Adams HP Jr. , AdamsRJ, BrottTet al. Guidelines for the early management of patients with ischemic stroke: a scientific statement from the Stroke Council of the American Stroke Association. Stroke34 (4), 1056–1083 (2003).
  • Ezzeddine MA , LevMH, McDonaldCTet al. CT angiography with whole brain perfused blood volume imaging: added clinical value in the assessment of acute stroke. Stroke33 (4), 959–966 (2002).
  • Srinivasan A , GoyalM, AlAF, LumC. State-of-the-art imaging of acute stroke. Radiographics26 (Suppl. 1), S75–S95 (2006).
  • Mullins ME , SchaeferPW, SorensenAGet al. CT and conventional and diffusion-weighted MR imaging in acute stroke: study in 691 patients at presentation to the emergency department. Radiology224 (2), 353–360 (2002).
  • Ebinger M , FiebachJB, AudebertHJ. Mobile computed tomography: prehospital diagnosis and treatment of stroke. Curr. Opin. Neurol. 28 (1), 4–9 (2015).
  • Baird AE , WarachS. Magnetic resonance imaging of acute stroke. J. Cereb. Blood Flow Metab. 18 (6), 583–609 (1998).
  • Chalela JA , KidwellCS, NentwichLMet al. Magnetic resonance imaging and computed tomography in emergency assessment of patients with suspected acute stroke: a prospective comparison. Lancet369 (9558), 293–298 (2007).
  • Schellinger PD , JansenO, FiebachJB, HackeW, SartorK. A standardized MRI stroke protocol: comparison with CT in hyperacute intracerebral hemorrhage. Stroke30 (4), 765–768 (1999).
  • Medcalf RL . Plasminogen activation-based thrombolysis for ischaemic stroke: the diversity of targets may demand new approaches. Curr. Drug Targets12, 1772–1781 (2011).
  • Turner RC , Lucke-WoldB, Lucke-WoldNet al. Neuroprotection for ischemic stroke: moving past shortcomings and identifying promising directions. Int. J. Mol. Sci. 14, 1890–1917 (2013).
  • Hacke W , KasteM, BluhmkiEet al. Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke. N. Engl. J. Med. 359, 1317–1329 (2008).
  • Hacke W , KasteM, FieschiCet al. Intravenous thrombolysis with recombinant tissue plasminogen activator for acute hemispheric stroke The European Cooperative Acute Stroke Study (ECASS). JAMA274 (13), 1017–1025 (1995).
  • Hacke W , KasteM, FieschiCet al. Randomised double-blind placebo-controlled trial of thrombolytic therapy with intravenous alteplase in acute ischemic stroke (ECASS II). Lancet352 (9136), 1245–1251 (1998).
  • Clark WM , WissmanS, AlbersGW, JhamandasJH, MaddenKP, HamiltonS. Recombinant tissue-type plasminogen activator (Alteplase) for ischemic stroke 3 to 5 hours after symptom onset. The ATLANTIS study: a randomized controlled trial. JAMA282 (21), 2019–2026 (1999).
  • Lees KR , BluhmkiE, von KummerR. Time to treatment with intravenous alteplase and outcome in stroke: an updated pooled analysis of ECASS, ATLANTIS, NINDS, and EPITHET trials. Lancet375, 1695–1703 (2010).
  • Katzan IL , HammerMD, HixsonED, FurlanAJ, Abou-CheblA, NadzamDM. Utilization of intravenous tissue plasminogen activator for acute ischemic stroke. Arch. Neurol. 61 (3), 346–350 (2004).
  • Pereira AC , BrownMM. Aspirin or heparin in acute stroke. Br. Med. Bull. 56 (2), 413–421 (2000).
  • Sherman DG . Antithrombotic and hypofibrinogenetic therapy in acute ischemic stroke: what is the next step?Cerebrovasc. Dis. 17 (Suppl. 1), 138–143 (2004).
  • Camerlingo M , SalviP, BelloniG, GambaT, CesanaBM, MamoliA. Intravenous heparin started within the first 3 hours after onset of symptoms as a treatment for acute nonlacunar hemispheric cerebral infarctions. Stroke36 (11), 2415–2420 (2005).
  • Berkhemer OA , FransenPSS, BeumerDet al. A randomized trial of intraarterial treatment for acute ischemic stroke. N. Engl. J. Med. 372 (1), 11–20 (2015).
  • Goyal M , DemchukAM, MenonBKet al. Randomized assessment of rapid endovascular treatment of ischemic stroke. N. Engl. J. Med. ( Epub ahead of print) (2015).
  • Campbell BCV , MitchellPJ, KleinigTJet al. Endovascular therapy for ischemic stroke with perfusion-imaging selection. N. Engl. J. Med. ( Epub ahead of print) (2015).
  • Blanchette M , FortinD. Blood-brain barrier disruption in the treatment of brain tumors. Methods Mol. Biol. 686, 447–463 (2011).
  • Chen Y , LiuL. Modern methods for delivery of drugs across the blood–brain barrier. Adv. Drug Deliv. Rev. 64 (7), 640–665 (2012).
  • Rolls MM , AlbertsonR, ShihH-p, LeeC-y, DoeCQ. Drosophila aPKC regulates cell polarity and cell proliferation in neuroblasts and epithelia. J. Cell Biol. 163 (5), 1089–1098 (2003).
  • Abbott NJ , LarsR, ElisabethH. Astrocyte–endothelial interactions at the blood–brain barrier. Nat. Rev. Neurosc. 7 (1), 41–53 (2006).
  • Ransohoff RM , PerryVH. Microglial physiology: unique stimuli, specialized responses. Annu. Rev. Immunol. 27, 119–145 (2009).
  • Nag S , KapadiaA, StewartDJ. Review: molecular pathogenesis of blood-brain barrier breakdown in acute brain injury. Neuropathol. Appl. Neurobiol. 37 (1), 3–23 (2011).
  • Papadopoulos MC , SaadounS, DaviesDC, BellBA. Emerging molecular mechanisms of brain tumour oedema. Br. J. Neurosurg. 15 (2), 101–108 (2001).
  • Tsao N , HsuHP, WuCM, LiuCC, LeHY. Tumour necrosis factor-α causes an increase in blood-brain barrier permeability during sepsis. J. Med. Microbiol. 50 (9), 812–821 (2001).
  • Hallenbeck JM , DutkaAJ, TanishimaTet al. Polymorphonuclear leukocyte accumulation in brain regions with low blood flow during the early postischemic period. Stroke17 (2), 246–253 (1986).
  • Chou W-H , ChoiD-S, ZhangHet al. Neutrophil protein kinase Cδ as a mediator of stroke-reperfusion injury. J. Clin. Invest. 114 (1), 49–56 (2004).
  • Lawrence MB , SpringerTA. Leukocytes roll on a selectin at physiologic flow rates: distinction from and prerequisite for adhesion through integrins. Cell65 (5), 859–873 (1991).
  • Justicia C , PanesJ, SoleSet al. Neutrophil infiltration increases matrix metalloproteinase-9 in the ischemic brain after occlusion/reperfusion of the middle cerebral artery in rats. J. Cereb. Blood Flow Metab. 23 (12), 1430–1440 (2003).
  • Seo JH , GuoS, LokJet al. Neurovascular matrix metalloproteinases and the blood-brain barrier. Curr. Pharm. Des. 18, 3645–3648 (2012).
  • Rifai N , GilletteMA, CarrSA. Protein biomarker discovery and validation: the long and uncertain path to clinical utility. Nat. Biotechnol. 24 (8), 971–983 (2006).
  • Biomarkers Definitions Working Group . Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin. Pharmacol. Ther. 69 (3), 89–95 (2001).
  • Naylor S . Biomarkers: current perspectives and future prospects. Expert Rev. Mol. Diagn. 3 (5), 525–529 (2003).
  • Gibler WB , BlomkalnsAL, CollinsSP. Evaluation of chest pain and heart failure in the emergency department: impact of multimarker strategies and B-type natriuretic peptide. Rev. Cardiovasc. Med. 4 (Suppl. 4), S47–S55 (2003).
  • Penttila K , KoukkunenH, HalinenMet al. Myoglobin, creatine kinase MB isoforms and creatine kinase MB mass in early diagnosis of myocardial infarction in patients with acute chest pain. Clin. Biochem. 35 (8), 647–653 (2002).
  • Stein PD , HullRD, PatelKCet al. D-dimer for the exclusion of acute venous thrombosis and pulmonary embolism: a systematic review. Ann. Intern. Med. 140 (8), 589–602 (2004).
  • Ge S , SongL, PachterJS. Where is the blood-brain barrier… really?J. Neurosci. Res. 79 (4), 421–427 (2005).
  • Reynolds MA , KirchickHJ, DahlenJRet al. Early biomarkers of stroke. Clin. Chem. 49, 1733–1739 (2003).
  • Craig-Schapiro R , FaganAM, HoltzmanDM. Biomarkers of Alzheimer’s disease. Neurobiol. Dis. 35 (2), 128–140 (2009).
  • Yoon CW , KimSJ, BangOY, ChungCS, LeeKH, KimGM. Premorbid warfarin use and lower D-dimer levels are associated with a spontaneous early improvement in an atrial fibrillation-related stroke. J. Thromb. Haemost. 10 (11), 2394–2396 (2012).
  • Motoki H , TomitaT, AizawaKet al. Coagulation activity is increased in the left atria of patients with paroxysmal atrial fibrillation during the non-paroxysmal period: comparison with chronic atrial fibrillation. Circ. J73 (8), 1403–1407 (2009).
  • Rothermundt M , PetersM, PrehnJHM, AroltV. S100B in brain damage and neurodegeneration. Microsc. Res. Tech. 60 (6), 614–632 (2003).
  • Foerch C , WunderlichMT, DvorakFet al. Elevated serum S100B levels indicate a higher risk of hemorrhagic transformation after thrombolytic therapy in acute stroke. Stroke38 (9), 2491–2495 (2007).
  • Delgado P , Alvarez SabinJ, SantamarinaEet al. Plasma S100B level after acute spontaneous intracerebral hemorrhage. Stroke37 (11), 2837–2839 (2006).
  • Missler U , WiesmannM, FriedrichC, KapsM. S-100 protein and neuron-specific enolase concentrations in blood as indicators of infarction volume and prognosis in acute ischemic stroke. Stroke28 (10), 1956–1960 (1997).
  • Marchi N , CavagliaM, FazioV, BhudiaS, HalleneK, JanigroD. Peripheral markers of blood-brain barrier damage. Clin. Chim. Acta342 (1–2), 1–12 (2004).
  • Martens P , RaabeA, JohnssonP. Serum S-100 and neuron-specific enolase for prediction of regaining consciousness after global cerebral ischemia. Stroke29 (11), 2363–2366 (1998).
  • Dassan P , KeirG, BrownMM. Criteria for a clinically informative serum biomarker in acute ischaemic stroke: a review of S100B. Cerebrovasc. Dis. 27 (3), 295–302 (2009).
  • Pelinka LE , KroepflA, SchmidhammerRet al. Glial fibrillary acidic protein in serum after traumatic brain injury and multiple trauma. J. Trauma57 (5), 1006–1012 (2004).
  • Aurell A , RosengrenLE, KarlssonB, OlssonJE, ZbornikovaV, HaglidKG. Determination of S-100 and glial fibrillary acidic protein concentrations in cerebrospinal fluid after brain infarction. Stroke22 (10), 1254–1258 (1991).
  • Foerch C , CurdtI, YanBet al. Serum glial fibrillary acidic protein as a biomarker for intracerebral haemorrhage in patients with acute stroke. J. Neurol. Neurosurg. Psychiatry77 (2), 181–184 (2006).
  • Dvorak F , HabererI, SitzerM, FoerchC. Characterisation of the Diagnostic window of serum glial fibrillary acidic protein for the differentiation of intracerebral haemorrhage and ischaemic stroke. Cerebrovasc. Dis. 27 (1), 37–41 (2009).
  • Cohen SR , BrooksBR, HerndonRM, McKhannGM. A diagnostic index of active demyelination: myelin basic protein in cerebrospinal fluid. Ann. Neurol. 8 (1), 25–31 (1980).
  • Matias-Guiu J , Martinez-VazquezJ, RuibalA, ColomerR, BoadaM, CodinaA. Myelin basic protein and creatine kinase BB isoenzyme as CSF markers of intracranial tumors and stroke. Acta Neurol. Scand73 (5), 461–465 (1986).
  • Jauch EC , LindsellC, BroderickJ, FaganSC, TilleyBC, LevineSR. Association of serial biochemical markers with acute ischemic stroke: the National Institute of Neurological Disorders and Stroke Recombinant Tissue Plasminogen Activator Stroke Study. Stroke37 (10), 2508–2513 (2006).
  • Bharosay A , BharosayVV, VarmaM, SaxenaK, SodaniA, SaxenaR. Correlation of brain biomarker neuron specific enolase (NSE) with degree of disability and neurological worsening in cerebrovascular stroke. Indian J. Clin. Biochem. 27 (2), 186–190 (2012).
  • Foerch C , MontanerJ, SitzerM, WunderlichM. Elevated serum S100B levels indicate a higher risk of haemorrhagic transformation after thrombolytic therapy in acute stroke. Akt. Neurol. 34 (S 2), P575 (2007).
  • Tuttolomondo A , Di SciaccaR, Di RaimondoDet al. Plasma levels of inflammatory and thrombotic/fibrinolytic markers in acute ischemic strokes: relationship with TOAST subtype, outcome and infarct site. J. Neuroimmunol. 215 (1–2), 84–89 (2009).
  • Winbeck K , PoppertH, EtgenT, ConradB, SanderD. Prognostic relevance of early serial C-reactive protein measurements after first ischemic stroke. Stroke33 (10), 2459–2464 (2002).
  • Montaner J , MolinaCA, MonasterioJet al. Matrix metalloproteinase-9 pretreatment level predicts intracranial hemorrhagic complications after thrombolysis in human stroke. Circulation107 (4), 598–603 (2003).
  • Castellanos M , LeiraR, SerenaJet al. Plasma metalloproteinase-9 concentration predicts hemorrhagic transformation in acute ischemic stroke. Stroke34 (1), 40–46 (2003).
  • Lynch JR , BlessingR, WhiteWD, GrocottHP, NewmanMF, LaskowitzDT. Novel diagnostic test for acute stroke. Stroke35, 57–63 (2004).
  • Sotgiu S , ZandaB, MarchettiBet al. Inflammatory biomarkers in blood of patients with acute brain ischemia. Eur. J. Neurol. 13 (5), 505–513 (2006).
  • Allard L , LescuyerP, BurgessJet al. ApoC-I and ApoC-III as potential plasmatic markers to distinguish between ischemic and hemorrhagic stroke. Proteomics4 (8), 2242–2251 (2004).
  • Wunderlich MT , HanhoffT, GoertlerMet al. Release of brain-type and heart-type fatty acid-binding proteins in serum after acute ischaemic stroke. J. Neurol. 252 (6), 718–724 (2005).
  • Veerkamp JH , ZimmermanAW. Fatty acid-binding proteins of nervous tissue. J. Mol. Neurosci. 16 (2/3), 133–142 (2001).
  • Dambinova SA , KhounteevGA, IzykenovaGA, ZavolokovIG, IlyukhinaAY, SkorometsAA. Blood test detecting autoantibodies to N-methyl-D-aspartate neuroreceptors for evaluation of patients with transient ischemic attack and stroke. Clin. Chem. 49 (10), 1752–1762 (2003).
  • Sato M , SuzukiA, NagataK, UchiyamaS. Increased von Willebrand factor in acute stroke patients with atrial fibrillation. J. Stroke Cerebrovasc. Dis. 15 (1), 1–7 (2006).
  • Barber M , LanghorneP, RumleyA, LoweGD, StottDJ. d-dimer predicts early clinical progression in ischemic stroke confirmation using routine clinical assays. Stroke37 (4), 1113–1115 (2006).
  • Allard L , BurkhardPR, LescuyerPet al. PARK7 and nucleoside diphosphate kinase A as plasma markers for the early diagnosis of stroke. Clin. Chem. 51 (11), 2043–2051 (2005).
  • Persson L , HardemarkHG, GustafssonJet al. S-100 protein and neuron-specific enolase in cerebrospinal fluid and serum: markers of cell damage in human central nervous system. Stroke18 (5), 911–918 (1987).
  • Anand N , SteadLG. Neuron-specific enolase as a marker for acute ischemic stroke: a systematic review. Cerebrovasc. Dis. 20 (4), 213–219 (2005).
  • Casmiro M , MaitanS, DePF, CovaV, ScarpaE, VignatelliL. Cerebrospinal fluid and serum neuron-specific enolase concentrations in a normal population. Eur. J. Neurol. 12 (5), 369–374 (2005).
  • Dingledine R , BorgesK, BowieD, TraynelisSF. The glutamate receptor ion channels. Pharmacol. Rev. 51 (1), 7–61 (1999).
  • Pelsers MMAL , HanhoffT, vandVDet al. Brain- and heart-type fatty acid-binding proteins in the brain: tissue distribution and clinical utility. Clin. Chem. 50 (9), 1568–1575 (2004).
  • Licata G , TuttolomondoA, DiRD, CorraoS, DiSR, PintoA. Immuno-inflammatory activation in acute cardio-embolic strokes in comparison with other subtypes of ischaemic stroke. Thromb. Haemost. 101 (5), 929–937 (2009).
  • Mun-Bryce S , RosenbergGA. Matrix metalloproteinases in cerebrovascular disease. J. Cereb. Blood Flow Metab. 18 (11), 1163–1172 (1998).
  • Di NM , SchwaningerM, CappelliRet al. Evaluation of C-reactive protein measurement for assessing the risk and prognosis in ischemic stroke: a statement for health care professionals from the CRP pooling project members. Stroke36 (6), 1316–1329 (2005).
  • Mocco J , ChoudhriTF, MackWJet al. Elevation of soluble intercellular adhesion molecule-1 levels in symptomatic and asymptomatic carotid atherosclerosis. Neurosurgery48 (4), 718–721 ; discussion 721–712 (2001).
  • Hoshi T , KitagawaK, YamagamiH, FurukadoS, HougakuH, HoriM. Relation between interleukin-6 level and subclinical intracranial large-artery atherosclerosis. Atherosclerosis197 (1), 326–332 (2008).
  • Chamorro A , HallenbeckJ. The harms and benefits of inflammatory and immune responses in vascular disease. Stroke37 (2), 291–293 (2006).
  • Moore DF , LiH, JeffriesNet al. Using peripheral blood mononuclear cells to determine a gene expression profile of acute ischemic stroke. Circulation111, 212–221 (2005).
  • Tang Y , XuH, DuXet al. Gene expression in blood changes rapidly in neutrophils and monocytes after ischemic stroke in humans: a microarray study. J. Cereb. Blood Flow Metab. 26 (8), 1089–1102 (2006).
  • Barr TL , ConleyY, DingJet al. Genomic biomarkers and cellular pathways of ischemic stroke by RNA gene expression profiling. Neurology75, 1009–1014 (2010).
  • Han K-C , YangEG, AhnD-R. Elongated oligonucleotide-linked immunosorbent assay for sensitive detection of a biomarker in a microwell plate-based platform. Biosensors and Bioelectronics50 (0), 421–424 (2013).
  • de la Rica R , StevensMM. Plasmonic ELISA for the ultrasensitive detection of disease biomarkers with the naked eye. Nat. Nano7 (12), 821–824 (2012).
  • Stejskal D , SporovaL, SvestakM, KarpisekM. Determination of serum visinin like protein-1 and its potential for the diagnosis of brain injury due to the stroke: a pilot study. Biomed. Pap. 155 (3), 263–268 (2011).
  • Laterza OF , ModurVR, CrimminsDLet al. Identification of novel brain biomarkers. Clin. Chem. 52 (9), 1713–1721 (2006).
  • Zimmermann-Ivol CG , BurkhardPR, Floch-RohrJL, AllardL, HochstrasserDF, SanchezJ-C. Fatty acid binding protein as a serum marker for the early diagnosis of stroke. Mol. Cell. Proteomics3 (1), 66–72 (2004).
  • Collings FB , VaidyaVS. Novel technologies for the discovery and quantitation of biomarkers of toxicity. Toxicology245 (3), 167–174 (2008).
  • Wang G , HuangH, ZhangG, ZhangX, FangB, WangL. Dual amplification strategy for fabrication of highly sensitive Interleukin-6 amperometric immunosensor based on poly-dopamine. Langmuir27 (3), 1224–1231 (2011).
  • Zhang Y , XuQ, PengQ, CaoZ, WangX, LuJ. Magnetic beads-based chemiluminescence substrate-resolved duplex immunoassay for sequential detection of two ischemic stroke markers with two orders of concentration difference. Anal. Sci. 27, 739–743 (2011).
  • Peng L , WangN, SiH, WuC, ZhangX, YangQ. Rapid and sensitive determination of five amine biomarkers in plasma samples from stroke patients by MEKC with precolumn derivatization. Chromatographia75 (19–20), 1217–1221 (2012).
  • Palmer S , WiegandAP, MaldarelliF, BazmiH. New real-time reverse transcriptase-initiated PCR assay with single-copy sensitivity for human immunodeficiency virus type 1 RNA in plasma. J. Clin. Microbiol. 41, 4531–4536 (2003).
  • Adamski MG , GumannP, BairdAE. A method for quantitative analysis of standard and high-throughput qPCR expression data based on input sample quantity. PLoS One9, e103917 (2014).
  • Hudson MP , ChristensonRH, NewbyLK, KaplanAL, OhmanEM. Cardiac markers: point of care testing. Clin. Chim. Acta284, 223–237 (1999).
  • Chin CD , LinderV, SiaSK. Commercialization of microfluidic point-of-care diagnostic devices. Lab Chip12, 2118–2134 (2012).
  • Hu J , FerreiraA, Van EldikLJ. S100β induces neuronal cell death through nitric oxide release from astrocytes. J. Neurochem. 69 (6), 2294–2301 (1997).
  • Parton E , LagaeL, BorghsG. Stroke diagnosis with lab-on-a-chip. Med. Device Technol. 20, 15–17 (2009).
  • Cima MJ . Microsystem technologies for medical applications. Annu. Rev. Chem. Biomol. Eng. 2, 355–378 (2011).
  • Knauer C , KnauerK, MullerSet al. A biochemical marker panel in MRI-proven hyperacute ischemic stroke-a prospective study. BMC Neurol. 12, 14 (2012).
  • Sibon I , RouanetF, MeissnerW, OrgogozoJM. Use of the triage stroke panel in a neurologic emergency service. Am. J. Emerg. Med. 27, 558–562 (2009).
  • Laskowitz DT , KasnerSE, SaverJ, RemmelKS, JauchEC. Clinical usefulness of a biomarker-based diagnostic test for acute stroke: the Biomarker Rapid Assessment in Ischemic Injury (BRAIN) study. Stroke40, 77–85 (2009).
  • Vanni S , PolidoriG, PepeGet al. Use of biomarkers in triage of patients with suspected stroke. J. Emerg. Med. 40, 499–505 (2011).
  • Jackson JM , WitekMA, HupertMLet al. UV activation of polymeric high aspect ratio microstructures: ramifications in antibody surface loading for circulating tumor cell selection. Lab Chip14 (1), 106–117 (2014).
  • Kamande JW , HupertML, WitekMAet al. Modular microsystem for the isolation, enumeration, and phenotyping of circulating tumor cells in patients with pancreatic cancer. Anal. Chem. 85 (19), 9092–9100 (2013).
  • Pullagurla SR , WitekMA, JacksonJMet al. Parallel affinity-based isolation of leukocyte subsets using microfluidics: application for stroke diagnosis. Anal. Chem. 86 (8), 4058–4065 (2014).
  • Baird AE . Blood biologic markers of stroke: improved management, reduced cost?Curr. Atheroscler. Rep. 8, 267–275 (2006).
  • Peng Z , YoungB, BairdAE, SoperSA. Single-pair fluorescence resonance energy transfer analysis of mRNA transcripts for highly sensitive gene expression profiling in near real time. Anal. Chem. 85, 7851–7858 (2013).
  • Alison E . BairdDFM, EhudG, KoryJ. WO/2008/008846 (2010).
  • Group Nr-PSS . Tissue plasminogen activator for acute ischemic stroke. N. Engl. J. Med. 333, 1581–1487 (1995).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.