4,463
Views
102
CrossRef citations to date
0
Altmetric
Research Article

Long-term trends and interannual variability of forest, savanna and agricultural fires in South America

, , , , , , & show all
Pages 617-638 | Published online: 10 Apr 2014

References

  • Taylor D. Biomass burning, humans and climate change in Southeast Asia. Biodivers. Conserv.19(4),1025–1042 (2010).
  • Mistry J. Fire in the cerrado (savannas) of Brazil: an ecological review. Prog. Phys. Geogr.22(4),425–448 (1998).
  • Romero-Ruiz M, Etter A, Sarmiento A, Tansey K. Spatial and temporal variability of fires in relation to ecosystems, land tenure and rainfall in savannas of northern South America. Glob. Chang. Biol.16(7),2013–2023 (2010).
  • Setzer AW, Pereira MC. Amazonia biomass burnings in 1987 and an estimate of their tropospheric emissions. Ambio20(1),19–22 (1991).
  • Schroeder W, Alencar A, Arima E, Setzer A. The spatial distribution and interannual variability of fire in Amazonia. In: Amazonia and Global Change. Gash J, Keller M, Silva Dias P (Eds). American Geophysical Union, Washington, DC, USA, 43–60 (2009).
  • Fearnside PM. Deforestation in Brazilian Amazonia: history, rates, and consequences. Conserv. Biol.19(3),680–688 (2005).
  • Nepstad DC, Verissimo A, Alencar A et al. Large-scale impoverishment of Amazonian forests by logging and fire. Nature398(6727),505–508 (1999).
  • Siegert F, Ruecker G, Hinrichs A, Hoffmann AA. Increased damage from fires in logged forests during droughts caused by El Niño. Nature414(6862),437–440 (2001).
  • Cochrane MA. Fire science for rainforests. Nature421(6926),913–919 (2003).
  • Bowman D, Balch JK, Artaxo P et al. Fire in the Earth System. Science324(5926),481–484 (2009).
  • Saatchi SS, Harris NL, Brown S et al. Benchmark map of forest carbon stocks in tropical regions across three continents. Proc. Natl Acad. Sci. USA108(24),9899–9904 (2011).
  • van Der Werf GR, Randerson JT, Giglio L et al. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmos. Chem. Phys.10,11707–11735 (2010).
  • Andreae MO, Merlet P. Emission of trace gases and aerosols from biomass burning. Global Biogeochem. Cycles15(4),955–966 (2001).
  • Martin ST, Andreae MO, Artaxo P et al. Sources and properties of Amazonian aerosol particles. Rev. Geophys.48(2),RG2002 (2010).
  • Andreae MO, Rosenfeld D, Artaxo P et al. Smoking rain clouds over the Amazon. Science303(5662),1337–1342 (2004).
  • Yu H, Fu R, Dickinson RE, Zhang Y, Chen M, Wang H. Interannual variability of smoke and warm cloud relationships in the Amazon as inferred from MODIS retrievals. Remote Sens. Environ.111(4),435–449 (2007).
  • Koren I, Martins JV, Remer LA, Afargan H. Smoke invigoration versus inhibition of clouds over the Amazon. Science321(5891),946–949 (2008).
  • Patadia F, Gupta P, Christopher SA, Reid JS. A Multisensor satellite-based assessment of biomass burning aerosol radiative impact over Amazonia. J. Geophys. Res.113(D12),D12214 (2008).
  • Zhang Y, Fu R, Yu HB et al. Impact of biomass burning aerosol on the monsoon circulation transition over Amazonia. Geophys. Res. Lett.36(10),L10814 (2009).
  • Koren I, Remer LA, Longo K. Reversal of trend of biomass burning in the Amazon. Geophys. Res. Lett.34(20),L20404 (2007).
  • Aragao L, Shimabukuro YE. The incidence of fire in Amazonian forests with implications for REDD. Science328(5983),1275–1278 (2010).
  • Hoffmann WA, Schroeder W, Jackson RB. Regional feedbacks among fire, climate, and tropical deforestation. J. Geophys. Res.108(D23),4721 (2003).
  • Li WH, Fu R, Dickinson RE. Rainfall and its seasonality over the Amazon in the 21st century as assessed by the coupled models for the IPCC AR4. J. Geophys. Res.111(D2),D02111 (2006).
  • Cox PM, Betts RA, Collins M, Harris PP, Huntingford C, Jones CD. Amazonian forest dieback under climate-carbon cycle projections for the 21st century. Theor. Appl. Climatol.78(1–3),137–156 (2004).
  • Cochrane MA, Alencar A, Schulze MD et al. Positive feedbacks in the fire dynamic of closed canopy tropical forests. Science284(5421),1832–1835 (1999).
  • van der Werf GR, Dempewolf J, Trigg SN et al. Climate regulation of fire emissions and deforestation in equatorial Asia. Proc. Natl Acad. Sci. USA105(51),20350–20355 (2008).
  • Morton DC, Defries RS, Shimabukuro YE et al. Cropland expansion changes deforestation dynamics in the southern Brazilian Amazon. Proc. Natl Acad. Sci. USA103(39),14637–14641 (2006).
  • Nepstad DC, Stickler CM, Almeida OT. Globalization of the Amazon soy and beef industries: Opportunities for conservation. Conserv. Biol.20(6),1595–1603 (2006).
  • Asner GP, Alencar A. Drought impacts on the Amazon forest: the remote sensing perspective. New Phytol.187(3),569–578 (2010).
  • Arino O, Rosaz J-M, Goloub P. The ATSR world Fire atlas. A synergy with “Polder” aerosol products. Earth Obs. Quarterly64,1–6 (1999).
  • Giglio L, Kendall JD, Mack R. A multi-year active fire dataset for the tropics derived from the TRMM VIRS. Int. J. Remote Sens.24(22),4505–4525 (2003).
  • Giglio L, Csiszar I, Justice CO. Global distribution and seasonality of active fires as observed with the Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) sensors. J. Geophys. Res. Biogeosci.111(G2),G02016 (2006).
  • Giglio L, Csiszar I, Restas A et al. Active fire detection and characterization with the advanced spaceborne thermal emission and reflection radiometer (ASTER). Remote Sens. Environ.112(6),3055–3063 (2008).
  • Schroeder W, Prins E, Giglio L et al. Validation of GOES and MODIS active fire detection products using ASTER and ETM plus data. Rremote Sens. Environ.112(5),2711–2726 (2008).
  • Randerson JT, Chen Y, van der Werf GR, Rogers BM, Morton DC. Global burned area and biomass burning emissions from small fires. J. Geophys. Res. Biogeosci.117(G4),G04012 (2012).
  • Roy DP, Boschetti L, Justice CO, Ju J. The collection 5 MODIS burned area product – global evaluation by comparison with the MODIS active fire product. Remote Sens. Environ.112(9),3690–3707 (2008).
  • Tansey K, Gregoire JM, Defourny P et al. A new, global, multi-annual (2000–2007) burnt area product at 1 km resolution. Geophys. Res. Lett.35,L01401 (2008).
  • Giglio L, Randerson JT, van der Werf GR et al. Assessing variability and long-term trends in burned area by merging multiple satellite fire products. Biogeosciences7(3),1171–1186 (2010).
  • Langmann B, Duncan B, Textor C, Trentmann J, van der Werf GR. Vegetation fire emissions and their impact on air pollution and climate. Atmos. Environ.43(1),107–116 (2009).
  • Hoelzemann JJ, Schultz MG, Brasseur GP, Granier C, Simon M. Global wildland fire emission model (GWEM): evaluating the use of global area burnt satellite data. J. Geophys. Res.109,D14S04 (2004).
  • Ito A, Penner JE. Global estimates of biomass burning emissions based on satellite imagery for the year 2000. J. Geophys. Res.109,D14S05 (2004).
  • Wooster MJ, Roberts G, Perry GLW, Kaufman YJ. Retrieval of biomass combustion rates and totals from fire radiative power observations: FRP derivation and calibration relationships between biomass consumption and fire radiative energy release. J. Geophys. Res.110,D24311 (2005).
  • Ichoku C, Giglio L, Wooster MJ, Remer LA. Global characterization of biomass-burning patterns using satellite measurements of fire radiative energy. Remote Sens. Environ.112(6),2950–2962 (2008).
  • Vermote E, Ellicott E, Dubovik O et al. An approach to estimate global biomass burning emissions of organic and black carbon from MODIS fire radiative power. J. Geophys. Res.114,D18205 (2009).
  • Kaiser JW, Heil A, Andreae MO et al. Biomass burning emissions estimated with a global fire assimilation system based on observed fire radiative power. Biogeosciences9,527–554 (2012).
  • Friedl MA, Mciver DK, Hodges JCF et al. Global land cover mapping from MODIS. algorithms and early results. Remote Sens. Environ.83(1–2),287–302 (2002).
  • Chen Y, Randerson JT, Morton DC et al. Forecasting fire season severity in South America using sea surface temperature anomalies. Science334(6057),787–791 (2011).
  • Morisette JT, Giglio L, Csiszar I et al. Validation of MODIS active fire detection products derived from two algorithms. Earth Interact.9,1–24 (2005).
  • Morisette JT, Giglio L, Csiszar I, Justice CO. Validation of the MODIS active fire product over Southern Africa with ASTER data. Int. J. Remote Sens.26(19),4239–4264 (2005).
  • Giglio L, van der Werf GR, Randerson JT, Collatz GJ, Kasibhatla P. Global estimation of burned area using MODIS active fire observations. Atmos. Chem. Phys.6,957–974 (2006).
  • Schroeder W, Csiszar I, Morisette J. Quantifying the impact of cloud obscuration on remote sensing of active fires in the Brazilian Amazon. Remote Sens. Environ.112(2),456–470 (2008).
  • Elvidge CD, Ziskin D, Baugh KE et al. A fifteen year record of global natural gas flaring derived from satellite data. Energies2(3),595–622 (2009).
  • Giglio L. Characterization of the tropical diurnal fire cycle using VIRS and MODIS observations. Remote Sens. Environ.108(4),407–421 (2007).
  • Arino O, Plummer S, Casadio S. Fire disturbance: the twelve years time series of the ATSR world fire atlas. Proceedings of the ENVISAT Symposium 2007. Montreux, Switzerland, 23–27 April 2007.
  • Hansen MC, Stehman SV, Potapov PV et al. Humid tropical forest clearing from 2000 to 2005 quantified by using multitemporal and multiresolution remotely sensed data. Proc. Natl Acad. Sci. USA105(27),9439–9444 (2008).
  • Morton DC, Defries RS, Randerson JT, Giglio L, Schroeder W, van der Werf GR. Agricultural intensification increases deforestation fire activity in Amazonia. Glob. Chang. Biol.14(10),2262–2275 (2008).
  • Keeley JE, Zedler PH. Large, high-intensity fire events in southern California shrublands: debunking the fine-grain age patch model. Ecol. Appl.19(1),69–94 (2009).
  • Fernandes K, Baethgen W, Bernardes S et al. North Tropical Atlantic influence on western Amazon fire season variability. Geophys. Res. Lett.38,L12701 (2011).
  • Chen Y, Velicogna I, Famiglietti JS, Randerson JT. Satellite observations of terrestrial water storage provide early warning information about drought and fire season severity in the Amazon. J. Geophys. Res.Biogeosci.118(2),495–504 (2013).
  • Randerson JT, van der Werf GR, Collatz GJ et al. Fire emissions from C-3 and C-4 vegetation and their influence on interannual variability of atmospheric CO2 and delta(CO2)-C-13. Global Biogeochem. Cycles19,GB2019 (2005).
  • van der Werf GR, Randerson JT, Giglio L, Gobron N, Dolman AJ. Climate controls on the variability of fires in the tropics and subtropics. Global Biogeochem. Cycles22,GB3028 (2008).
  • Swenson S, Wahr J. Post-processing removal of correlated errors in GRACE data. Geophys. Res. Lett.33(8),L08402 (2006).
  • Landerer FW, Swenson SC. Accuracy of scaled GRACE terrestrial water storage estimates. Water Resour. Res.48(4),W04531 (2012).
  • Rodell M, Velicogna I, Famiglietti JS. Satellite-based estimates of groundwater depletion in India. Nature460(7258),999–1002 (2009).
  • Famiglietti JS, Lo M, Ho SL et al. Satellites measure recent rates of groundwater depletion in California’s Central Valley. Geophys. Res. Lett.38(3),L03403 (2011).
  • Velicogna I, Tong J, Zhang T, Kimball JS. Increasing subsurface water storage in discontinuous permafrost areas of the Lena River basin, Eurasia, detected from GRACE. Geophys. Res. Lett.39(9),L09403 (2012).
  • Scott JH, Burgan RE. Standard Fire Behavior Fuel Models: A Comprehensive Set For Use With Rothermel’s Surface Fire Spread Model. US Department of Agriculture Forest Service, Washington, DC, USA (2005).
  • Macedo MN, Defries RS, Morton DC, Stickler CM, Galford GL, Shimabukuro YE. Decoupling of deforestation and soy production in the southern Amazon during the late 2000s. Proc. Natl Acad. Sci. USA109(4),1341–1346 (2012).
  • Nepstad D, Soares BS, Merry F et al. The end of deforestation in the Brazilian Amazon. Science326(5958),1350–1351 (2009).
  • Loarie SR, Asner GP, Field CB. Boosted carbon emissions from Amazon deforestation. Geophys. Res. Lett.36,L14810 (2009).
  • Aragao LEOC, Shimabukuro YE. The incidence of fire in Amazonian forests with implications for REDD. Science328(5983),1275–1278 (2010).
  • Schroeder W, Morisette JT, Csiszar I, Giglio L, Morton D, Justice CO. Characterizing vegetation fire dynamics in Brazil through multisatellite data: common trends and practical issues. Earth Interact.9,1–26 (2005).
  • Balch JK, Nepstad DC, Brando PM, Alencar A. Comment on “The incidence of fire in Amazonian forests with implications for REDD.” Science330(6011),1627 (2010).
  • Morton DC, Defries RS, Nagol J et al. Mapping canopy damage from understory fires in Amazon forests using annual time series of Landsat and MODIS data. Remote Sens. Environ.115(7),1706–1720 (2011).
  • Morton DC, Le Page Y, Defries R, Collatz GJ, Hurtt GC. Understorey fire frequency and the fate of burned forests in southern Amazonia. Philos. Trans. R. Soc. B Biol. Sci.368(1619),20120163 (2013).
  • Ray D, Nepstad D, Moutinho P. Micrometeorological and canopy controls of fire susceptibility in a forested amazon landscape. Ecol. Appl.15(5),1664–1678 (2005).
  • Uhl C, Kauffman JB. Deforestation, fire susceptibility, and potential tree responses to fire in the eastern Amazon. Ecology71(2),437–449 (1990).
  • Spracklen DV, Arnold SR, Taylor CM. Observations of increased tropical rainfall preceded by air passage over forests. Nature489(7415),282–285 (2012).
  • Malhi Y, Roberts JT, Betts RA, Killeen TJ, Li WH, Nobre CA. Climate change, deforestation, and the fate of the Amazon. Science319(5860),169–172 (2008).
  • Prins EM, Menzel WP. Geostationary satellite detection of biomass burning in South America. Int. J. Remote Sens.13(15),2783–2799 (1992).
  • Xu W, Wooster MJ, Roberts G, Freeborn P. New GOES imager algorithms for cloud and active fire detection and fire radiative power assessment across North, South and Central America. Remote Sens. Environ.114(9),1876–1895 (2010).
  • Freeborn PH, Wooster MJ, Roberts G, Malamud BD, Xu WD. Development of a virtual active fire product for Africa through a synthesis of geostationary and polar orbiting satellite data. Remote Sens. Environ.113(8),1700–1711 (2009).
  • Roberts G, Wooster M, Freeborn PH, Xu W. Integration of geostationary FRP and polar-orbiter burned area datasets for an enhanced biomass burning inventory. Remote Sens. Environ.115(8),2047–2061 (2011).
  • Mu M, Randerson JT, van der Werf GR et al. Daily and 3-hourly variability in global fire emissions and consequences for atmospheric model predictions of carbon monoxide. J. Geophys. Res.116,D24303 (2011).
  • Zhang XY, Kondragunta S, Quayle B. Estimation of biomass burned areas using multiple-satellite-observed active fires. IEEE Trans. Geosci. Remote Sens.49(11),4469–4482 (2011).
  • Hurtt GC, Chini LP, Frolking S et al. Harmonization of land-use scenarios for the period 1500–2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Clim. Change109(1–2),117–161 (2011).
  • Le Page Y, van der Werf GR, Morton DC, Pereira JMC. Modeling fire-driven deforestation potential in Amazonia under current and projected climate conditions. J. Geophys. Res.Biogeosci.115,G03012 (2010).
  • Thomson AM, Calvin KV, Chini LP et al. Climate mitigation and the future of tropical landscapes. Proc. Natl Acad. Sci. USA107(46),19633–19638 (2010).

Websites