289
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Probing the proteome of mpox virus for in silicodesign of a multiepitope vaccine

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Article: FDD86 | Received 11 Nov 2023, Accepted 22 Mar 2024, Published online: 23 May 2024

References

  • European Centre for Disease Prevention and Control. Risk assessment: monkeypox multi-country outbreak. (2022). www.ecdc.europa.eu/en/publications-data/risk-assessment-monkeypox-multi-country-outbreak
  • AdepojuOA, AfinowiOA, TauheedAMet al. Multisectoral perspectives on global warming and vector-borne diseases: a focus on southern Europe. Curr. Trop. Med. Rep. 10(2) (2023).
  • WHO. Mpox (monkeypox). (2023). www.who.int/news-room/fact-sheets/detail/monkeypox
  • CDC. Technical report 4: multi-national mpox outbreak, United States, 2022. (2023). www.cdc.gov/poxvirus/mpox/cases-data/technical-report/report-4.html
  • ManesNP, EstepRD, MottazHMet al. Comparative proteomics of human monkeypox and vaccinia intracellular mature and extracellular enveloped virions. J. Proteome Res. 7(3), 960–968 (2008).
  • KugelmanJR, JohnstonSC, MulembakaniPMet al. Genomic variability of monkeypox virus among humans, Democratic Republic of the Congo. Emerg. Infect. Dis. 20(2), 232–239 (2014).
  • Yinka-OgunleyeA, ArunaO, DalhatMet al. Outbreak of human monkeypox in Nigeria in 2017–18: a clinical and epidemiological report. Lancet Infect. Dis. 19(8), 872–879 (2019).
  • BeerEM, BhargaviRao V. A systematic review of the epidemiology of human monkeypox outbreaks and implications for outbreak strategy. PLoS Negl. Trop. Dis. 13(10), e0007791 (2019).
  • KisaluNK, MokiliJL. Toward understanding the outcomes of monkeypox infection in human pregnancy. J. Infect. Dis. 216(7), 795–797 (2017).
  • NguyenPY, AjisegiriWS, CostantinoV, ChughtaiAA, MacIntyreCR. Reemergence of human monkeypox and declining population immunity in the context of urbanization, Nigeria, 2017–2020. Emerg. Infect. Dis. 27(4), 1007–1014 (2021).
  • LapaD, CarlettiF, MazzottaVet al. Monkeypox virus isolation from a semen sample collected in the early phase of infection in a patient with prolonged seminal viral shedding. Lancet Infect. Dis. 22(9), 1267–1269 (2022).
  • FinePEM, JezekZ, GrabB, DixonH. The transmission potential of monkeypox virus in human populations. Int. J. Epidemiol. 17(3), 643–650 (1988).
  • PolandGA, KennedyRB, ToshPK. Prevention of monkeypox with vaccines: a rapid review. Lancet Infect. Dis. 22(12), e349–e358 (2022).
  • PetersenE, KanteleA, KoopmansMet al. Human monkeypox: epidemiologic and clinical characteristics, diagnosis, and prevention. Infect. Dis. Clin. North Am. 33(4), 1027–1043 (2019).
  • DanazumiAU, IliyasuGital S, IdrisS, BSDibba L, BalogunEO, GórnaMW. Immunoinformatic design of a putative multi-epitope vaccine candidate against Trypanosoma brucei gambiense. Comput. Struct. Biotechnol. J. 20 (2022).
  • KarT, NarsariaU, BasakSet al. A candidate multi-epitope vaccine against SARS-CoV-2. Sci. Rep. 10(1), 1–24 (2020).
  • AzizS, AlmajhdiFN, WaqasMet al. Contriving multi-epitope vaccine ensemble for monkeypox disease using an immunoinformatics approach. Front. Immunol. 13, 6148 (2022).
  • ImranMA, IslamMR, SahaA, FerdouseeS, MishuMA, GhoshA. Development of multi-epitope based subunit vaccine against Crimean–Congo hemorrhagic fever virus using reverse vaccinology approach. Int. J. Pept. Res. Ther. 28(4), 1–20 (2022).
  • GrossS, LennerzV, GalleraniEet al. Short peptide vaccine induces CD4+ T helper cells in patients with different solid cancers. Cancer Immunol. Res. 4(1), 18–25 (2016).
  • LennerzV, GrossS, GalleraniEet al. Immunologic response to the survivin-derived multi-epitope vaccine EMD640744 in patients with advanced solid tumors. Cancer Immunol. Immunother. 63(4), 381–394 (2014).
  • AkbariE, SeyedinkhorasaniM, BolhassaniA. Conserved multiepitope vaccine constructs: a potent HIV-1 therapeutic vaccine in clinical trials. Braz. J. Infect. Dis. 27(3), doi:10.1016/j.bjid.2023.102774. (2023) ( Online).
  • AimanS, AlhamhoomY, AliFet al. Multi-epitope chimeric vaccine design against emerging monkeypox virus via reverse vaccinology techniques – a bioinformatics and immunoinformatics approach. Front. Immunol. 13, 4645 (2022).
  • ShantierSW, MustafaMI, AbdelmoneimAH, FadlHA, ElbagerSG, MakhawiAM. Novel multi epitope-based vaccine against monkeypox virus: vaccinomic approach. Sci. Rep. 12(1), 1–17 (2022).
  • HallgrenJ, TsirigosKD, ArmenterosJJAet al. DeepTMHMM. (2021). https://biolib.com/DTU/DeepTMHMM/
  • AndreattaM, NielsenM. Gapped sequence alignment using artificial neural networks: application to the MHC class I system. Bioinformatics 32(4), 511–517 (2016).
  • JensenKK, AndreattaM, MarcatiliPet al. Improved methods for predicting peptide binding affinity to MHC class II molecules. Immunology 154(3), 394–406 (2018).
  • JespersenMC, PetersB, NielsenM, MarcatiliP. BepiPred-2.0: improving sequence-based B-cell epitope prediction using conformational epitopes. Nucleic Acids Res. 45(W1), W24–W29 (2017).
  • DoytchinovaIA, FlowerDR. VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinformatics 8(1), 1–7 (2007).
  • DimitrovI, FlowerDR, DoytchinovaI. AllerTOP – a server for in silico prediction of allergens. BMC Bioinformatics 14(Suppl. 6), S4 (2013).
  • DhandaSK, VirP, RaghavaGPS. Designing of interferon-gamma inducing MHC class-II binders. Biol. Direct 8(1), 1–15 (2013).
  • BaekM, DiMaioF, AnishchenkoIet al. Accurate prediction of protein structures and interactions using a 3-track neural network. Science 373(6557), 871 (2021).
  • KoJ, ParkH, HeoL, SeokC. GalaxyWEB server for protein structure prediction and refinement. Nucleic Acids Res. 40(W1), W294–W297 (2012).
  • Lindahl, Abraham, Hess, Spoelvan der. GROMACS 2021 manual. (2021). https://zenodo.org/record/4457591
  • PonomarenkoJ, BuiHH, LiWet al. ElliPro: a new structure-based tool for the prediction of antibody epitopes. BMC Bioinformatics 9(1), 1–8 (2008).
  • GasteigerE, HooglandC, GattikerAet al. Protein identification and analysis tools on the Expasy server. In: The Proteomics Protocols Handbook. Humana, NJ, USA, 571–607 (2005). https://link.springer.com/protocol/10.1385/1-59259-890-0:571
  • KozakovD, HallDR, XiaBet al. The ClusPro web server for protein–protein docking. Nat. Protoc. 12(2), 255 (2017).
  • PriceDJ, BrooksCL. A modified TIP3P water potential for simulation with Ewald summation. J. Chem. Phys. 121(20), 10096 (2004).
  • ParrinelloM, RahmanA. Polymorphic transitions in single crystals: a new molecular dynamics method. J. Appl. Phys. 52(12), 7182 (1998).
  • BussiG, DonadioD, ParrinelloM. Canonical sampling through velocity rescaling. J. Chem. Phys. 126(1) (2007).
  • WangE, SunH, WangJet al. End-point binding free energy calculation with MM/PBSA and MM/GBSA: strategies and applications in drug design. Chem. Rev. 119(16), 9478–9508 (2019).
  • RapinN, LundO, BernaschiM, CastiglioneF. Computational immunology meets bioinformatics: the use of prediction tools for molecular binding in the simulation of the immune system. PLOS ONE 5(4), 9862 (2010).
  • GroteA, HillerK, ScheerMet al. JCat: a novel tool to adapt codon usage of a target gene to its potential expression host. Nucleic Acids Res. 33(Suppl. 2), W526–W531 (2005).
  • Tahirul Qamar M, RehmanA, TusleemKet al. Designing of a next generation multiepitope based vaccine (MEV) against SARS-CoV-2: immunoinformatics and in silico approaches. PLOS ONE 15(12), e0244176 (2020).
  • CartyM, BowieAG. Recent insights into the role of Toll-like receptors in viral infection. Clin. Exp. Immunol. 161(3), 397 (2010).
  • OtuA, EbensoB, WalleyJ, BarcelóJM, OchuCL. Global human monkeypox outbreak: atypical presentation demanding urgent public health action. Lancet Microbe 3(8), e554–e555 (2022).
  • DanazumiAU, UmarHI. You must be flexible enough to be trained, Mr. Dynamics simulator. Mol. Divers. 1–3, doi:10.1007/s11030-023-10689-5 (2023) ( Online).
  • SklenovskáN, Van RanstM. Emergence of monkeypox as the most important orthopoxvirus infection in humans. Front. Public Health. 6, 241 (2018).
  • ZhangL. Multi-epitope vaccines: a promising strategy against tumors and viral infections. Cell. Mol. Immunol. 15(2), 182–184 (2017).
  • TostaSF de O, PassosMS, KatoRet al. Multi-epitope based vaccine against yellow fever virus applying immunoinformatics approaches. J. Biomol. Struct. Dyn. 39(1), 219–235 (2021).
  • ChauhanV, RungtaT, GoyalK, SinghMP. Designing a multi-epitope based vaccine to combat Kaposi sarcoma utilizing immunoinformatics approach. Sci. Rep. 9(1), doi:10.1038/s41598-019-39299-8 (2019) ( Online).
  • ToledoH, BalyA, CastroOet al. A phase I clinical trial of a multi-epitope polypeptide TAB9 combined with Montanide ISA 720 adjuvant in non-HIV-1 infected human volunteers. Vaccine 19(30), 4328–4336 (2001).
  • MolteniC, ForniD, CaglianiR, MozziA, ClericiM, SironiM. Evolution of the orthopoxvirus core genome. Virus Res. 323, 198975 (2023).
  • WriggersW, ChakravartyS, JenningsPA. Control of protein functional dynamics by peptide linkers. Biopolymers 80(6), 736–746 (2005).
  • ChenX, ZaroJL, ShenWC. Fusion protein linkers: property, design and functionality. Adv. Drug Deliv. Rev. 65(10), 1357–1369 (2013).
  • SartoriusR, TrovatoM, MancoR, D’ApiceL, DeBerardinis P. Exploiting viral sensing mediated by Toll-like receptors to design innovative vaccines. NPJ Vaccines 6(1), 1–15 (2021).
  • ToturaAL, WhitmoreA, AgnihothramSet al. Toll-like receptor 3 signaling via TRIF contributes to a protective innate immune response to severe acute respiratory syndrome coronavirus infection. mBio 6(3), 1–14 (2015).
  • AdamuRM, IbrahimB, IbrahimMA, BalogunEO. Identification of megacerotonic acid and a quinazoline derivative from Universal Natural Product Database as potential inhibitors of Trypanosoma brucei brucei alternative oxidase: molecular docking, molecular dynamic simulation and MM/PBSA analysis. J. Biomol. Struct. Dyn. 41(1), 45–54 (2023).
  • DanazumiAU, BalogunEO. Microsecond-long simulation reveals the molecular mechanism for the dual inhibition of falcipain-2 and falcipain-3 by antimalarial lead compounds. Front. Mol. Biosci. 9, doi:10.3389/fmolb.2022.1070080 (2022) ( Online).
  • TanC, ZhuF, PanP, WuA, LiC. Development of multi-epitope vaccines against the monkeypox virus based on envelope proteins using immunoinformatics approaches. Front. Immunol. 14, 1112816 (2023).
  • PhongsisayV, IizasaE, HaraH, YoshidaH. Evidence for TLR4 and FcRγ-CARD9 activation by cholera toxin B subunit and its direct bindings to TREM2 and LMIR5 receptors. Mol. Immunol. 66(2), 463–471 (2015).