2,795
Views
0
CrossRef citations to date
0
Altmetric
Editorial

Does ‘Big Data’ Exist in Medicinal Chemistry, and If So, How can It Be Harnessed?

, &
Pages 1801-1806 | Received 01 Aug 2016, Accepted 12 Aug 2016, Published online: 15 Sep 2016

References

  • Tetko IV , EngkvistO, KochU, ReymondJL, ChenH. BIGCHEM: challenges and opportunities for Big Data analysis in chemistry. Mol. Inform. doi:10.1002/minf.201600073 (2016) ( Epub ahead of print).
  • Muresan S , PetrovP, SouthanCet al. Making every SAR point count: the development of Chemistry Connect for the large-scale integration of structure and bioactivity data. Drug Discov. Today16 (23–24), 1019–1030 (2011).
  • Mondal K . Design issues of Big Data parallelisms. Adv. Intell. Syst. Comput.434, 209–217 (2016).
  • PubChem BioAssay Database . http://pubchem.ncbi.nlm.nih.gov.
  • Inside eBay's 90PB data warehouse . www.itnews.com.au/news/inside-ebay8217s-90pb-data-warehouse-342615.
  • How Amazon Works. http://money.howstuffworks.com/amazon1.htm.
  • Mervin LH , AfzalAM, DrakakisG, LewisR, EngkvistO, BenderA. Target prediction utilising negative bioactivity data covering large chemical space. J. Cheminform.7, 51 (2015).
  • Tetko IV , SushkoY, NovotarskyiSet al. How accurately can we predict the melting points of drug-like compounds? J. Chem. Inf. Model. 54 (12), 3320–3329 (2014).
  • Tetko IV , LoweD, WilliamsAJ. The development of models to predict melting and pyrolysis point data associated with several hundred thousand compounds mined from PATENTS. J. Cheminform.8, 2 (2016).
  • Sushko I , NovotarskyiS, KornerRet al. Online chemical modeling environment (OCHEM): web platform for data storage, model development and publishing of chemical information. J. Comput. Aided. Mol. Des.25 (6), 533–554 (2011).
  • Online Chemical Database . http://ochem.eu
  • Bergstrom CA , NorinderU, LuthmanK, ArturssonP. Molecular descriptors influencing melting point and their role in classification of solid drugs. J. Chem. Inf. Comput. Sci.43 (4), 1177–1185 (2003).
  • Ran Y , YalkowskySH. Prediction of drug solubility by the general solubility equation (GSE). J. Chem. Inf. Comput. Sci.41 (2), 354–357 (2001).
  • Balakin KV , SavchukNP, TetkoIV. In silico approaches to prediction of aqueous and DMSO solubility of drug-like compounds: trends, problems and solutions. Curr. Med. Chem.13 (2), 223–241 (2006).
  • Varnek A , GaudinC, MarcouG, BaskinI, PandeyAK, TetkoIV. Inductive transfer of knowledge: application of multi-task learning and feature net approaches to model tissue-air partition coefficients. J. Chem. Inf. Model.49 (1), 133–144 (2009).
  • Ramsundar B , KearnesS, RileyP, WebsterD, KonerdingD, PandeV. Massively multitask networks for drug discovery. ArXiv e-prints 1502.02072 (2015).
  • Baskin I , WinklerD, TetkoIV. A renaissance of neural networks in drug discovery. Expert Opin. Drug Discov.11 (8), 785–795 (2016).
  • Gawehn E , HissJA, SchneiderG. Deep learning in drug discovery. Mol. Inf.35 (1), 3–14 (2016).
  • 96.7% recognition rate for handwritten Chinese characters using AI that mimics the human brain. http://phys.org/news/2015-09-recognition-handwritten-chinese-characters-ai.html.
  • Borowiec S . AlphaGo seals 4–1 victory over Go grandmaster Lee Sedol. The Guardian 15 March (2016). www.theguardian.com/technology/2016/mar/15/googles-alphago-seals-4-1-victory-over-grandmaster-lee-sedol
  • Mayr A , KlambauerG, UnterthinerT, HochreiterS. DeepTox: toxicity prediction using deep learning. Front. Environ. Sci.3, 80 (2016).
  • Tetko IV . Associative neural network. Methods Mol. Biol.458, 185–202 (2008).
  • Abdelaziz A , Spahn-LangguthH, Werner-SchrammK, TetkoIV. Consensus modeling for HTS assays using in silico descriptors calculates the best balanced accuracy in Tox21 challenge. Front. Environ. Sci.4, 2 (2016).
  • Novotarskyi S , AbdelazizA, SushkoY, KornerR, VogtJ, TetkoIV. ToxCast EPA in vitro to in vivo challenge: insight into the rank-i model. Chem. Res. Toxicol.29 (5), 768–775 (2016).
  • Simm J , AranyA, ZakeriPet al. Macau: scalable bayesian multi-relational factorization with side information using MCMC. ArXiv e-prints 1509.04610 (2015). https://arxiv.org/abs/1509.04610
  • Zawbaa HM , SzlekJ, GrosanC, JachowiczR, MendykA. Computational intelligence modeling of the macromolecules release from PLGA microspheres – focus on feature selection. PLoS ONE11 (6), e0157610 (2016).
  • Arany A , SimmJ, ZakeriPet al. Highly scalable tensor factorization for prediction of drug–protein interaction type. ArXiv e-prints 1512.00315 (2015). https://arxiv.org/pdf/1512.00315.pdf.
  • Unterthiner T , MayrA, KlambauerGet al. Deep learning as an opportunity in virtual screening. Presented at : NIPS 2014 Deep Learning and Representation Learning Workshop. Montreal, Canada, 8–13 December 2014.
  • Exascalable Compound Activity Prediction Engines . www.excape-h2020.eu.
  • Tetko IV , JaroszewiczI, PlattsJA, Kuduk-JaworskaJ. Calculation of lipophilicity for Pt(II) complexes: experimental comparison of several methods. J. Inorg. Biochem.102 (7), 1424–1437 (2008).
  • Ruddigkeit L , Van DeursenR, BlumLC, ReymondJL. Enumeration of 166 billion organic small molecules in the chemical universe database GDB-17. J. Chem. Inf. Model.52 (11), 2864–2875 (2012).
  • Tetko IV , BruneauP, MewesHW, RohrerDC, PodaGI. Can we estimate the accuracy of ADME-Tox predictions?Drug Discov. Today11 (15–16), 700–707 (2006).
  • Norinder U , CarlssonL, BoyerS, EklundM. Introducing conformal prediction in predictive modeling. A transparent and flexible alternative to applicability domain determination. J. Chem. Inf. Model.54 (6), 1596–1603 (2014).
  • Vainio MJ , KogejT, RaubacherF. Automated recycling of chemistry for virtual screening and library design. J. Chem. Inf. Model.52 (7), 1777–1786 (2012).
  • Lessel U , WellenzohnB, LilienthalM, ClaussenH. Searching fragment spaces with feature trees. J. Chem. Inf. Model.49 (2), 270–279 (2009).
  • Wellenzohn B , LesselU, BellerA, IsambertT, HoenkeC, NosseB. Identification of new potent GPR119 agonists by combining virtual screening and combinatorial chemistry. J. Med. Chem.55 (24), 11031–11041 (2012).
  • Peng Z . Very large virtual compound spaces: construction, storage and utility in drug discovery. Drug Discov. Today Technol.10 (3), e387–394 (2013).
  • Peng Z , YangB, MattapartiSet al. PGVL Hub: An integrated desktop tool for medicinal chemists to streamline design and synthesis of chemical libraries and singleton compounds. Methods Mol. Biol.685, 295–320 (2011).
  • Teng M , ZhuJ, JohnsonMDet al. Structure-based design and synthesis of (5-arylamino-2H-pyrazol-3-yl)-biphenyl-2′,4′-diols as novel and potent human CHK1 inhibitors. J. Med. Chem.50 (22), 5253–5256 (2007).
  • Nicolaou CA , WatsonIA, HuH, WangJ. The proximal lilly collection: mapping, exploring and exploiting feasible chemical space. J. Chem. Inf. Model.56 (7), 1253–1266 (2016).
  • BigChem . http://bigchem.eu.