84
Views
0
CrossRef citations to date
0
Altmetric
Short Communication

An Efficient Formulation Based on Cationic Porphyrins to Photoinactivate Staphylococcus Aureus and Escherichia Coli

, , , , , & show all
Pages 1821-1833 | Received 12 Jan 2018, Accepted 17 May 2018, Published online: 18 Jul 2018

References

  • Ventola CL . The antibiotic resistance crisis part 1: causes and threats. P&T40 (4), 277 – 283 (2015).
  • Davies J Davies D . Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev.74 (3), 417 – 433 (2010).
  • Alanis AJ . Resistance to antibiotics: are we in the post-antibiotic era?Arch. Med. Res.36, 697 – 705 (2005).
  • Wainwright M Maisch T Nonell S et al. Photoantimicrobials – are we afraid of the light? Lancet Infect Dis. 17, e49 – e55 (2017).
  • Lushniak BD . Surgeon general's perspectives: antibiotic resistance – a public health crisis. Public Health Rep.129 (4), 314 – 316 (2014).
  • Vecchio D Dai T Huang L Fantetti L Roncucci G Hamblin MR . Antimicrobial photodynamic therapy with RLP068 kills methicillin-resistant Staphylococcus aureus and improves wound healing in a mouse model of infected skin abrasion. J. Biophotonics742 (9), 733 – 742 (2013).
  • Coppellotti O Fabris C Soncin M et al. Porphyrin photosensitised processes in the prevention and treatment of water- and vector-borne diseases. Curr. Med. Chem.19 (6), 808 – 819 (2012).
  • Luksiene Z Brovko L . Antibacterial photosensitization-based treatment for food safety. Food Eng. Rev.5 (4), 185 – 199 (2013).
  • Bartolomeu M Reis S Neves MGPMS Faustino MAF Almeida A . Photodynamic action against wastewater microorganisms and chemical pollutants: an effective approach with low environmental impact. Water9 (630), 1 – 16 (2017).
  • Alves E Faustino MAF Neves MG Cunha A Nadais H Almeida A . Potential applications of porphyrins in photodynamic inactivation beyond the medical scope. J. Photochem. Photobiol. C Photochem. Rev.22, 34 – 57 (2015).
  • Alves E Faustino MA Neves MGPMS Cunha  Tomé J Almeida A . An insight on bacterial cellular targets of photodynamic inactivation. Future Med. Chem.6 (2), 141 – 164 (2014).
  • Alves E Santos N Melo T Maciel E Dória ML Faustino MAF et al. Photodynamic oxidation of Escherichia coli membrane phospholipids: new insights based on lipidomics. Rapid Commun. Mass Spectrom.27, 2717 – 2728 (2013).
  • Alves E Moreirinha C Faustino MF et al. Overall biochemical changes in bacteria photosensitized with cationic porphyrins monitored by infrared spectroscopy. Future Med. Chem.8 (6), 613 – 628 (2016).
  • Valduga G Breda B Giacometti GM Jori G Reddi E . Photosensitization of wild and mutant strains of Escherichia coli by meso-tetra(N-methyl-4-pyridyl)porphine. Biochem. Biophys. Res. Commun.256, 84 – 88 (1999).
  • Durantini EN . Photodynamic inactivation of bacteria. Curr. Bioact. Compd. (2), 127 – 142 (2006).
  • Alves E Faustino MAF Tomé JPC et al. Nucleic acid changes during photodynamic inactivation of bacteria by cationic porphyrins. Bioorg. Med. Chem.21 (14), 4311 – 4318 (2013).
  • Pereira MA Faustino MAF Neves MGPMS Cavaleiro JAS Almeida A . In fluence of external bacterial structures on the efficiency of photodynamic inactivation by a cationic porphyrin. Photochem. Photobiol. Sci.13, 680 – 690 (2014).
  • Preuss A Zeugner L Hackbarth S et al. Photoinactivation of Escherichia coli (SURE2) without intracellular uptake of the photosensitizer. J. Appl. Microbiol.114 (1), 36 – 43 (2012).
  • Winckler KD . Special section: focus on anti-microbial photodynamic therapy (PDT). J. Photochem. Photobiol. B86, 43 – 44 (2007).
  • Tavares A Carvalho CM Faustino MA et al. Antimicrobial photodynamic therapy: study of bacterial recovery viability and potential development of resistance after treatment. Mar. Drugs8, 91 – 105 (2010).
  • Pedigo LA Gibbs AJ Scott RJ Street CN Corporation OB Ne A . Absence of bacterial resistance following repeat exposure to photodynamic therapy. Proc. SPIE Int. Soc. Opt. Eng.7380, 1 – 7 (2009).
  • Costa L Tomé JPC Neves MGPMS et al. Evaluation of resistance development and viability recovery by a non-enveloped virus after repeated cycles of aPDT. Antiviral Res.91 (3), 278 – 282 (2011).
  • Jori G Coppellotti O . Inactivation of pathogenic microorganisms by photodynamic techniques: mechanistic aspects and perspective applications. Anti-Infect Agents Med. Chem.6, 119 – 131 (2007).
  • Almeida J Tomé JP Neves MGPMS et al. Photodynamic inactivation of multidrug-resistant bacteria in hospital wastewaters: influence of residual antibiotics. Photochem. Photobiol. Sci.13, 626 – 633 (2014).
  • Ormond AB Freeman HS . Dye sensitizers for photodynamic therapy. Materials6 (3), 817 – 840 (2013).
  • Abrahamse H Hamblin MR . New photosensitizers for photodynamic therapy. Biochem. J.473 (4), 347 – 364 (2016).
  • Almeida A Faustino MAF Tomé A Neves MGPMS . Porphyrins as antimicrobial photosensitizing agents. In : Microbial Pathogens: Medical and Environmental Applications.HamblinMRJoriG ( Eds). Royal Society of Chemistry, Cambridge, UK, 233 – 263 (2011).
  • St Denis TG Hamblin MR . An introduction to photoantimicrobials: photodynamic therapy as a novel method of microbial pathogen eradication. In : Science Against Microbial Pathogens: Communicating Current Research and Technological Advances. Méndez-VilasA ( Ed.). Formatex Research Center, Badajoz, Spain, 675 – 683 (2011).
  • Nakonieczna J Kossakowska-Zwierucho M Filipiak M Hewelt-Belka W Grinholc M Bielawski KP . Photoinactivation of Staphylococcus aureus using protoporphyrin IX: the role of haem-regulated transporter HrtA. Appl. Microbiol. Biotechnol.100 (3), 1393 – 1405 (2016).
  • Donnelly RF McCarron PA Tunney MM . Antifungal photodynamic therapy. Microbiol. Res.163 (1), 1 – 12 (2008).
  • Lobo CA Cursino-Santos JR Alhassan A Rodrigues M . Babesia: an emerging infectious threat in transfusion medicine. PLoS Pathog.9 (7), 9 – 11 (2013).
  • Sobotta L Skupin-Mrugalska P Mielcarek J Goslinski T Balzarini J . Photosensitizers mediated photodynamic inactivation against virus particles. Mini. Ver. Med. Chem.15 (6), 503 – 521 (2015).
  • Simões C Gomes MC Neves MG et al. Photodynamic inactivation of Escherichia coli with cationic meso-tetraarylporphyrins – the charge number and charge distributions effects. Catal. Today266, 197 – 204 (2015).
  • Alves E Costa L Carvalho CM et al. Charge effect on the photoinactivation of Gram-negative and Gram-positive bacteria by cationic meso-substituted porphyrins. BMC Microbiol.9 (1), 70 (2009).
  • Costa L Alves E Carvalho CM et al. Sewage bacteriophage photoinactivation by cationic porphyrins: a study of charge effect. Photochem. Photobiol. Sci.7 (4), 415 – 422 (2008).
  • Merchat M Spikes JD Bertoloni G Jori G . Studies on the mechanism of bacteria photosensitization by meso-substituted cationic porphyrins. J. Photochem. Photobiol. B.35 (3), 149 – 157 (1996).
  • Lazzeri D Durantini EN . Synthesis of meso -substituted cationic porphyrins as potential photodynamic agents. ARKIVOC10, 227 – 239 (2003).
  • Spesia MB Lazzeri D Pascual L Rovera M Durantini EN . Photoinactivation of Escherichia coli using porphyrin derivatives with different number of cationic charges. FEMS Immunol. Med. Microbiol.44, 289 – 295 (2005).
  • Lindsey JS . Synthesis of meso-substituted porphyrins. In : The Porphyrin Handbook (Volume 1).KadishKMSmithKMGuilardR ( Eds). Academic Press, CA, USA, 45 – 112 (2000).
  • Alves E Carvalho CM Tomé JP et al. Photodynamic inactivation of recombinant bioluminescent Escherichia coli by cationic porphyrins under artificial and solar irradiation. J. Ind. Microbiol. Biotechnol.35, 1447 – 1454 (2008).
  • Tavares A Dias SR Carvalho CM et al. Mechanisms of photodynamic inactivation of a Gram-negative recombinante bioluminescent bacterium by cationic porphyrins. Photochem. Photobiol. Sci.10, 1659 – 1669 (2011).
  • Lopes D Melo T Santos N Rosa L et al. Evaluation of the interplay among the charge of porphyrinic photosensitizers, lipid oxidation and photoinactivation efficiency in Escherichia coli. J. Photochem. Photobiol. B.141, 145 – 153 (2014)
  • Alves E Esteves AC Correia A et al. Protein profiles of Escherichia coli and Staphylococcus warneri are altered by photosensitization with cationic porphyrins. Photochem. Photobiol. Sci.14, 1169 – 1178 (2015)
  • Boyle RW Dolphin D . Structure and biodistribution relationships of photodynamic sensitizers. Photochem. Photobiol.64 (3), 469 – 485 (1996).
  • Caminos DA Spesia MB Durantini EN . Photodynamic inactivation of Escherichia coli by novel meso -substituted porphyrins by 4- (3- N, N, N -trimethylammoniumpropoxy) phenyl and 4- (trifluoromethyl) phenyl groups. Photochem. Photobiol. Sci.5, 56 – 65 (2006).
  • Maisch T Bosl C Szeimies R Lehn N Abels C . Photodynamic effects of novel XF porphyrin derivatives on prokaryotic and eukaryotic cells. Antimicrob. Agents Chemother.49 (4), 1542 – 1552 (2005).
  • Ragàs X Sánchez-García D Ruiz-González R et al. Cationic porphycenes as potential photosensitizers for antimicrobial photodynamic therapy. J. Med. Chem.53 (21), 7796 – 803 (2010).
  • Costa DCS Gomes MC Faustino MA et al. Comparative photodynamic inactivation of antibiotic resistant bacteria by first and second generation cationic photosensitizers. Photochem. Photobiol. Sci.11, 1905 – 1913 (2012).
  • Acedo P Stockert JC Cañete M Villanueva A . Two combined photosensitizers: a goal for more effective photodynamic therapy of cancer. Cell Death Dis.5 (3), e1122 (2014).
  • Villanueva A Acedo P Stockert JC Cañete M Camerin M Jori G . Synergistic effect on antiproliferative and apoptotic activity by combining two different photosensitizers: in vitro and in vivo studies. Int. J. Mol. Med.32 (1), 62 (2013).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.