155
Views
0
CrossRef citations to date
0
Altmetric
Review

Exploring Bacterial Resistome and Resistance Dessemination: an Approach of Whole Genome Sequencing

&
Pages 247-260 | Received 28 May 2018, Accepted 29 Nov 2018, Published online: 25 Feb 2019

References

  • Ghosh AR . Appraisal of microbial evolution to commensalism and pathogenicity in humans . Clin. Med. Insights Gastroenterol.6 , 1 – 1 ( 2013 ).
  • Walsh C Fanning S . Antimicrobial resistance in foodborne pathogens: a cause for concern?Curr. Drug Targets9 ( 9 ), 808 – 815 ( 2008 ).
  • Frieden DT . Antibiotic resistance threats in the United States . 6 ( 2013 ) www.cdc.gov/drugresistance/threat-report-2013/index.html
  • Coculescu BI . Antimicrobial resistance induced by genetic changes . J. Med. Life2 ( 2 ), 114 ( 2009 ).
  • Wright GD . The antibiotic resistome: the nexus of chemical and genetic diversity . Nat. Rev. Microbiol.5 ( 3 ), 175 – 186 ( 2007 ).
  • Luepke KH Suda KJ Boucher H et al. Past, present, and future of antibacterial economics: increasing bacterial resistance, limited antibiotic pipeline, and societal implications . Pharmacotherapy37 ( 1 ), 71 – 84 ( 2016 ).
  • Butler MS Blaskovich MAT Cooper MA . Antibiotics in the clinical pipeline at the end of 2015 . J. Antibiot.70 ( 1 ), 3 – 24 ( 2016 ).
  • Koser CU Ellington MJ Cartwright EJP et al. Routine use of microbial whole genome sequencing in diagnostic and public health microbiology . PLoS Pathog.8 ( 8 ), e1002824 ( 2012 ).
  • Van Boeckel TP Gandra S Ashok A et al. Global antibiotic consumption 2000 to 2010: an analysis of national pharmaceutical sales data . Lancet Infect. Dis.14 ( 8 ), 742 – 750 ( 2014 ).
  • Van Boeckel TP Bowers C Gilbert M et al. Global trends in antimicrobial use in food animals . Proc. Natl Acad. Sci. USA112 ( 18 ), 5649 – 5654 ( 2015 ).
  • Lubbert C Baars C Dayakar A et al. Environmental pollution with antimicrobial agents from bulk drug manufacturing industries in Hyderabad, South India, is associated with dissemination of extended-spectrum beta-lactamase and carbapenemase-producing pathogens . Infection45 ( 4 ), 479 – 491 ( 2017 ).
  • Khan AU Parvez S . Detection of bla(NDM-4) in Escherichia coli from hospital sewage . J. Med. Microbiol.63 ( 10 ), 1404 – 1406 ( 2014 ).
  • Davies J Davies D . Origins and evolution of antibiotic resistance . Microbiol. Mol. Biol. Rev.74 ( 3 ), 417 – 433 ( 2010 ).
  • Shah NS Wright A Bai GH et al. Worldwide emergence of extensively drug-resistant tuberculosis . Emerg. Infect. Diseases.13 ( 3 ), 380 ( 2007 ).
  • Sotgiu G Ferrara G Matteelli A et al. Epidemiology and clinical management of XDR-TB: a systematic review by TBNET . Eur. Respir. J.33 ( 4 ), 871 – 881 ( 2009 ).
  • Velayati AA Masedi MR Farnia P et al. Emergence of new forms of totally drug-resistant tuberculosis bacilli: super extensively drug-resistant tuberculosis or totally drug-resistant strains in Iran . Chest J.136 ( 2 ), 420 – 425 ( 2009 ).
  • Magiorakos AP Srinivasan A Carey RB et al. Multidrug resistant, extensively drug resistant and pandrug resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance . Clin. Microbiol. Infect.18 ( 3 ), 268 – 281 ( 2012 ).
  • Siegel JD Rhinehart E Jackson M Chiarello L . Management of multidrug-resistant organisms in healthcare settings . Am. J. Infect. Control.35 ( 10; Suppl. 2 ), S165 – S193 ( 2007 ).
  • Garneau-Tsodikova S Labby KJ . Mechanisms of resistance to aminoglycoside antibiotics: overview and perspectives . Med. Chem. Comm.7 ( 1 ), 11 – 27 ( 2016 ).
  • Bush K . Bench-to-bedside review: the role of beta-lactamases in antibiotic-resistant Gram-negative infections . Crit. Care14 ( 3 ), 224 ( 2010 ).
  • Zapun A Macheboeuf P Vernet T . Penicillin-binding proteins and beta-lactam resistance . FEMS Microbiol. Rev.32 ( 2 ), 177 – 211 ( 2008 ).
  • Thenmozhi S Moorthy K Sureshkumar BT Mickymaray S . Antibiotic resistance mechanism of ESBL producing Enterobacteriaceae in clinical field: a review . Int. J. Pure Appl. Biosci.2 ( 3 ), 207 – 226 ( 2014 ).
  • Poirel L Naas T Nordmann P . Diversity, epidemiology, and genetics of class D beta-lactamases . Antimicrob. Agents Chemother.54 ( 1 ), 24 – 38 ( 2010 ).
  • Roberts MC Schwarz S . Tetracycline and chloramphenicol resistance mechanisms . In : Antimicrobial Drug Resistance. Infectious diseases . MayersDL . ( Ed. ) Humana press , NY, USA183 – 193 ( 2017 ).
  • Binda E Marinelli F Marcone GL . Old and new glycopeptide antibiotics: action and resistance . Antibiotics3 ( 4 ), 572 – 594 ( 2014 ).
  • Ungureanu V . Macrolides, lincosamides, streptogramines (MLS): mechanisms of action and resistance . Bacteriol. Virusol. Parazitol. Epidemiol.55 ( 2 ), 131 – 138 ( 2010 ).
  • Fabrega A Madurga S Giralt E Vila J . Mechanism of action of and resistance to quinolones . Microb. Biotechnol.2 ( 1 ), 40 – 61 ( 2009 ).
  • Fernandez L Hancock RE . Adaptive and mutational resistance: role of porins and efflux pumps in drug resistance . Clin. Microbiol. Rev.25 ( 4 ), 661 – 681 ( 2012 ).
  • Culyba MJ Mo CY Kohli RM . Targets for combating the evolution of acquired antibiotic resistance . Biochemistry54 ( 23 ), 3573 – 3582 ( 2015 ).
  • Olivares J Bernardini A Garcia-Leon G Corona FB Sanchez M Martinez JL . The intrinsic resistome of bacterial pathogens . Front. Microbiol.4 , 103 ( 2013 ).
  • Morar M Wright GD . The genomic enzymology of antibiotic resistance . Annu. Rev. Genet.44 , 25 – 51 ( 2010 ).
  • Enne VI Bennett PM . Methods to determine antibiotic resistance gene silencing . Methods Mol. Biol.642 , 29 – 44 ( 2010 ).
  • Barlow M . What antimicrobial resistance has taught us about horizontal gene transfer. Horizontal gene transfer . Methods Mol. Biol.532 , 397 – 411 ( 2009 ).
  • van Hoek AHAM Mevius D Guerra B Mullany P Roberts AP Aarts HJM . Acquired antibiotic resistance genes: an overview . Front. Microbiol.2 , 203 ( 2011 ).
  • Ramirez MS Traglia GM Lin DL Tran T Tolmasky ME . Plasmid-mediated antibiotic resistance and virulence in gram-negatives: the Klebsiella pneumoniae paradigm . Microbiol. Spectr.2 ( 5 ), 1 ( 2014 ).
  • Boucher HW Talbot GH Benjamin DK et al. 10x'20 progress-development of new drugs active against gram-negative bacilli: an update from the Infectious Diseases Society of America . Clin. Infect. Dis.56 ( 12 ), 1685 – 1694 ( 2013 ).
  • Siguier P Filee J Chandler M . Insertion sequences in prokaryotic genomes . Curr. Opin. Microbiol.9 ( 5 ), 526 – 531 ( 2006 ).
  • Lopes BS Evans BA Amyes SGB . Disruption of the blaOXA-51 like gene by ISAba16 and inactivation of the blaOXA-58 gene leading to carbapenem resistance in Acinetobacter baumannii Ab244 . J. Antimicrob. Chemother.67 ( 1 ), 59 – 63 ( 2012 ).
  • Ploy MC Lambert T Couty JP Denis F . Integrons: an antibiotic resistance gene capture and expression system . Clin. Chem. Lab. Med.38 ( 6 ), 483 – 487 ( 2000 ).
  • Botelho Jo Grosso F Peixe L . Characterization of the pJB12 plasmid from Pseudomonas aeruginosa reveals Tn6352, a novel putative transposon associated with mobilization of the blaVIM-2-harboring In58 integron . Antimicrob. Agents. Chemother.61 ( 5 ), e02532 – 16 ( 2017 ).
  • Wong L Liu G . Protein interactome analysis for countering pathogen drug resistance . J. Comput. Sci. Technol.25 ( 1 ), 124 – 130 ( 2010 ).
  • Nikaido H . Multidrug resistance in bacteria . Annu. Rev. Biochem.78 , 119 – 146 ( 2009 ).
  • Hancock REW . Alterations in outer membrane permeability . Annu. Rev. Microbiol.38 ( 1 ), 237 – 264 ( 1984 ).
  • Xu WX Zhang L Mai JT et al. The Wag31 protein interacts with AccA3 and coordinates cell wall lipid permeability and lipophilic drug resistance in Mycobacterium smegmatis . Biochem. Biophys. Res. Commun.448 ( 3 ), 255 – 260 ( 2013 ).
  • Lavigne JP Sotto A Nicolas-Chanoine MH Bouziges N Pages JM Davin-Regli A . An adaptive response of Enterobacter aerogenes to imipenem: regulation of porin balance in clinical isolates . Int. J. Antimicrob. Agents.41 ( 2 ), 130 – 136 ( 2012 ).
  • Martinez JL Sanchez MB Martinez-Solano L et al. Functional role of bacterial multidrug efflux pumps in microbial natural ecosystems . FEMS Microbiol. Rev.33 ( 2 ), 430 – 449 ( 2009 ).
  • Lubelski J Konings WN Driessen AJM . Distribution and physiology of ABC-type transporters contributing to multidrug resistance in bacteria . Microbiol. Mol. Biol. Rev.71 ( 3 ), 463 – 476 ( 2007 ).
  • Law CJ Maloney PC Wang DN . Ins and outs of major facilitator superfamily antiporters . Annu. Rev. Microbiol.62 , 289 – 305 ( 2008 ).
  • Tseng TT Gratwick KS Kollman J et al. The RND permease superfamily: an ancient, ubiquitous and diverse family that includes human disease and development proteins . J. Mol. Microbiol. Biotechnol.1 ( 1 ), 107 – 125 ( 1999 ).
  • Moriyama Y Hiasa M Matsumoto T Omote H . Multidrug and toxic compound extrusion (MATE)-type proteins as anchor transporters for the excretion of metabolic waste products and xenobiotics . Xenobiotica38 ( 7–8 ), 1107 – 1118 ( 2008 ).
  • Chung YJ Saier MH Jr . SMR-type multidrug resistance pumps . Curr. Opin. Drug. Discov. Devel.4 ( 2 ), 237 – 245 ( 2001 ).
  • Dreier J Ruggerone P . Interaction of antibacterial compounds with RND efflux pumps in Pseudomonas aeruginosa . Front. Microbiol.6 , 660 ( 2015 ).
  • Munita JM Arias CA . Mechanisms of antibiotic resistance . Microbiol. Spectr.4 ( 2 ), VMBF-0016-2015 ( 2016 ).
  • Doi Y Paterson DL . Carbapenemase-producing Enterobacteriaceae . Semin. Respir. Crit. Care. Med.36 ( 1 ), 74 – 84 ( 2015 ).
  • O'Neill AJ Larsen AR Henrikson AS Chopra I . A fusidic acid-resistant epidemic strain of Staphylococcus aureus carries the fusB determinant, whereas fusA mutations are prevalent in other resistant isolates . Antimicrob. Agents. Chemother.48 ( 9 ), 3594 – 3597 ( 2004 ).
  • Tomlinson JH Thompson GS Kalverda AP Zhuravleva A O'Neill AJ . A target-protection mechanism of antibiotic resistance at atomic resolution: insights into FusB-type fusidic acid resistance . Sci. Rep.6 , 19524 ( 2016 ).
  • Howden BP Grayson ML . Dumb and dumber – the potential waste of a useful antistaphylococcal agent: emerging fusidic acid resistance in Staphylococcus aureus . Clin. Infect. Dis.42 ( 3 ), 394 – 400 ( 2006 ).
  • Long KS Vester B . Resistance to linezolid caused by modifications at its binding site on the ribosome . Antimicrob. Agents. Chemother.56 ( 2 ), 603 – 612 ( 2011 ).
  • Olaitan AO Morand S Rolain JM . Mechanisms of polymyxin resistance: acquired and intrinsic resistance in bacteria . Front. Microbiol.5 , 643 ( 2014 ).
  • Dar D Shamir M Mellin JR et al. Term-seq reveals abundant ribo-regulation of antibiotics resistance in bacteria . Science352 ( 6282 ), aad9822 ( 2016 ).
  • Dar D Sorek R . Regulation of antibiotic-resistance by non-coding RNAs in bacteria . Curr. Opin. Microbiol.36 , 111 – 117 ( 2017 ).
  • Gryczan TJ Grandi G Hahn J Grandi R Dubnau D . Conformational alteration of mRNA structure and the posttranscriptional regulation of erythromycin-induced drug resistance . Nucleic Acids Res.8 ( 24 ), 6081 – 6097 ( 1980 ).
  • Narayanan CS Dubnau D . Demonstration of erythromycin-dependent stalling of ribosomes on the ermC leader transcript . J. Biol. Chem.262 ( 4 ), 1766 – 1771 ( 1987 ).
  • Horinouchi S Weisblum B . Posttranscriptional modification of mRNA conformation: mechanism that regulates erythromycin-induced resistance . Proc. Natl Acad. Sci. USA77 ( 12 ), 7079 – 7083 ( 1980 ).
  • Behjati S Tarpey PS . What is next generation sequencing?Arch. Dis. Child. Educ. Pract.98 ( 6 ), 236 – 238 ( 2013 ).
  • Didelot X Bowden R Wilson DJ Peto TEA Crook DW . Transforming clinical microbiology with bacterial genome sequencing . Nat. Rev. Genet.13 ( 9 ), 601 ( 2012 ).
  • Bertelli C Greub G . Rapid bacterial genome sequencing: methods and applications in clinical microbiology . Clin. Microbiol. Infect.19 ( 9 ), 803 – 813 ( 2013 ).
  • Salipante SJ SenGupta DJ Cummings LA Land TA Hoogestraat DR Cookson BT . Application of whole-genome sequencing for bacterial strain typing in molecular epidemiology . J. Clin. Microbiol.53 ( 4 ), 1072 – 1079 ( 2015 ).
  • Kluytmans Van Den Bergh MFQ Rossen JW Bruijning-Verhagen PC et al. Whole-genome multilocus sequence typing of extended-spectrum-beta-lactamase-producing Enterobacteriaceae . J. Clin. Microbiol.54 ( 12 ), 2919 – 2927 ( 2016 ).
  • Ruppe E Olearo F Pires D et al. Clonal or not clonal? Investigating hospital outbreaks of KPC-producing Klebsiella pneumoniae with whole-genome sequencing . Clin. Microbiol. Infect.23 ( 7 ), 470 – 475 ( 2017 ).
  • Wall JD Tang LF Zerbe B et al. Estimating genotype error rates from high-coverage next-generation sequence data . Genome Res.24 ( 11 ), 1734 – 1739 ( 2014 ).
  • Harismendy O Ng PC Strausberg RL et al. Evaluation of next generation sequencing platforms for population targeted sequencing studies . Genome Biol.10 ( 3 ), R32 ( 2009 ).
  • AppliedBiosystems© . SOLiD System Accuray ( 2008 ). www3.appliedbiosystems.com/cms/groups/mcb_marketing/documents/generaldocuments/cms_057511.pdf
  • Bentley DR Balasubramanian S Serdlow HP et al. Accurate whole human genome sequencing using reversible terminator chemistry . Nature456 ( 7218 ), 53 – 59 ( 2008 ).
  • Kozarewa I Ning Z Quail MA Sanders MJ Berriman M Turner DJ . Amplification-free Illumina sequencing-library preparation facilitates improved mapping and assembly of (G+ C)-biased genomes . Nat. Methods6 ( 4 ), 291 – 295 ( 2009 ).
  • Dohm JC Lottaz C Borodina T Himmelbauer H . Substantial biases in ultra-short read data sets from high-throughput DNA sequencing . Nucleic Acids Res.36 ( 16 ), e105 ( 2008 ).
  • Quail MA Kozarewa I Smith F et al. A large genome center's improvements to the Illumina sequencing system . Nat. Methods5 ( 12 ), 1005 – 1010 ( 2008 ).
  • Nakano K Shiroma A Shimoji M et al. Advantages of genome sequencing by long-read sequencer using SMRT technology in medical area . Hum. Cell.30 ( 3 ), 149 – 161 ( 2017 ).
  • Rhoads A Au KF . PacBio sequencing and its applications . Genomics Proteomics Bioinformatics13 ( 5 ), 278 – 289 ( 2015 ).
  • Jain M Olsen HE Paten B Akeson M . The Oxford Nanopore MinION: delivery of nanopore sequencing to the genomics community . Genome Biol.17 ( 1 ), 239 ( 2016 ).
  • Lu H Giordano F Ning Z . Oxford Nanopore MinION sequencing and genome assembly . Genomics Proteomics Bioinformatics14 ( 5 ), 265 – 279 ( 2016 ).
  • Zankari E Hasman H Cosentino S et al. Identification of acquired antimicrobial resistance genes . J. Antimicrob. Chemother.67 ( 11 ), 2640 – 2644 ( 2012 ).
  • Langmead B Salzberg SL . Fast gapped-read alignment with Bowtie 2 . Nat. Methods.9 ( 4 ), 357 – 359 ( 2012 ).
  • Clausen PT Zankari E Aarestrup FM Lund O . Benchmarking of methods for identification of antimicrobial resistance genes in bacterial whole genome data . J. Antimicrob. Chemother.71 ( 9 ), 2484 – 2488 ( 2016 ).
  • Scaria J Chandramouli U Verma SK . Antibiotic resistance genes online (ARGO): a database on vancomycin and beta-actam resistance genes . Bioinformation.1 ( 1 ), 5 ( 2005 ).
  • Liu B Pop M . ARDB-Antibiotic resistance genes database . Nucleic Acids Res.37 , D443 – D447 ( 2008 ).
  • Tsafnat G Copty J Partridge SR . RAC: repository of antibiotic resistance cassettes . Database. 2011 , 2011 , bar054 ( 2011 ).
  • McArthur AG Waglechner N Nizam F et al. The comprehensive antibiotic resistance database . Antimicrob. Agents. Chemother.57 ( 7 ), 3348 – 3357 ( 2013 ).
  • Gibson MK Forsberg KJ Dantas G . Improved annotation of antibiotic resistance determinants reveals microbial resistomes cluster by ecology . ISME J.9 ( 1 ), 207 – 216 ( 2015 ).
  • Zankari E Allesoe R Joensen KG Cavaco LM Lund O Aarestrup FM . PointFinder: a novel web tool for WGS-based detection of antimicrobial resistance associated with chromosomal point mutations in bacterial pathogens . J. Antimicrob. Chemother.67 ( 11 ), 2640 – 2644 ( 2017 ).
  • de Man TJB Limbago BM . SSTAR, a stand-alone easy-to-use antimicrobial resistance gene predictor . mSphere1 ( 1 ), e00050 – e00150 ( 2016 ).
  • Petkau A Mabon P Sieffert C et al. SNVPhyl: a single nucleotide variant phylogenomics pipeline for microbial genomic epidemiology . Microb. Genom.3 ( 6 ), e000116 ( 2016 ).
  • Shcherbina A . FASTQSim: platform-independent data characterization and in silico read generation for NGS datasets . BMC Res. Notes.7 ( 1 ), 533 ( 2014 ).
  • Escalona M Rocha S Posada D . A comparison of tools for the simulation of genomic next-generation sequencing data . Nat. Rev. Genet.17 ( 8 ), 459 – 469 ( 2016 ).
  • Malinga L Brand J Jansen van Rensburg C Cassell G van der Walt M . Investigation of isoniazid and ethionamide cross-resistance by whole genome sequencing and association with poor treatment outcomes of multidrug-resistant tuberculosis patients in South Africa . Int. J. Mycobacteriol.5 ( 5 ), 36 ( 2016 ).
  • Koser CU Ellington MJ Peacock SJ . Whole-genome sequencing to control antimicrobial resistance . Trends Genet.30 ( 9 ), 401 – 407 ( 2014 ).
  • Caspers P Locher HH Pfaff P et al. Different resistance mechanisms for Cadazolid and Linezolid in C. difficile found by whole genome sequencing analysis . Antimicrob. Agents Chemother.61 ( 8 ), e-00384 – 17 ( 2017 ).
  • Locher HH Caspers P Bruyere T et al. Investigations of the mode of action and resistance development of cadazolid, a new antibiotic for treatment of Clostridium difficile infections . Antimicrob. Agents Chemother.58 ( 2 ), 901 – 908 ( 2014 ).
  • Tsiodras S Gold HS Sakoulas G et al. Linezolid resistance in a clinical isolate of Staphylococcus aureus . Lancet358 ( 9277 ), 207 – 208 ( 2001 ).
  • Holzel CS Harms KS Schwaiger K Bauer J . Resistance to linezolid in a porcine Clostridium perfringens strain carrying a mutation in the rplD gene encoding the ribosomal protein L4 . Antimicrob. Agents Chemother.54 ( 3 ), 1351 – 1353 ( 2010 ).
  • Zhao S Tyson GH Chen Y et al. Whole-genome sequencing analysis accurately predicts antimicrobial resistance phenotypes in Campylobacter spp . Appl. Environ. Microbiol.82 ( 2 ), 459 – 466 ( 2016 ).
  • Seth-Smith HM Harris SR Scott P et al. Generating whole bacterial genome sequences of low-abundance species from complex samples with IMS-MDA . Nat. Protoc.8 ( 12 ), 2404 ( 2013 ).
  • Seth-Smith HM Harris SR Skilton RJ et al. Whole-genome sequences of Chlamydia trachomatis directly from clinical samples without culture . Genome Res.23 ( 5 ), 855 – 866 ( 2013 ).
  • Dean FB Hosono S Fang L et al. Comprehensive human genome amplification using multiple displacement amplification . Proc. Natl Acad. Sci. USA99 ( 8 ), 5261 – 5266 ( 2002 ).
  • McLean JS Lasken RS . Single cell genomics of bacterial pathogens: outlook for infectious disease research . Genome Med.6 ( 11 ), 108 ( 2014 ).
  • McVean G Awadalla P Fearnhead P . A coalescent-based method for detecting and estimating recombination from gene sequences . Genetics160 ( 3 ), 1231 – 1241 ( 2002 ).
  • Mostowy R Croucher NJ Andam CP et al. Analysis of recent and ancestral recombination reveals high-resolution population structure in Streptococcus pneumoniae . Mol. Biol. Evol.34 ( 5 ), 1167 – 1182 ( 2017 ).
  • WHO Global antimicrobial resistance surveillance system (GLASS) . AndreaPHeseltineE ( Eds ). WHO Press , Geneva, Switzerland , 44 ( 2015 ). http://apps.who.int/iris/bitstream/10665/188783/1/9789241549400_eng.pdf?ua=1
  • Pawlowski AC Wang W Koteva K Barton HA McArthur AG Wright GD . A diverse intrinsic antibiotic resistome from a cave bacterium . Nat. Commun.7 , 13803 ( 2016 ).
  • Rutebemberwa E Mpeka B Pariyo G et al. High prevalence of antibiotic resistance in nasopharyngeal bacterial isolates from healthy children in rural Uganda: a cross-sectional study . Ups. J. Med. Sci.120 ( 4 ), 249 – 256 ( 2015 ).
  • Pan F Han L Huang W et al. Serotype distribution, antimicrobial susceptibility, and molecular epidemiology of Streptococcus pneumoniae isolated from children in Shanghai, China . PLoS ONE10 ( 11 ), e0142892 ( 2015 ).
  • Grundmann H . Towards a global antibiotic resistance surveillance system: a primer for a roadmap . Ups. J. Med. Sci.119 ( 2 ), 87 – 95 ( 2014 ).
  • Long SW Linsoin SE Saavedra MO et al. Whole-genome sequencing of human clinical Klebsiella pneumoniae isolates reveals misidentification and misunderstandings of Klebsiella pneumoniae, Klebsiella variicola, and Klebsiella quasipneumoniae . mSphere2 ( 4 ), e00290 – 17 ( 2017 ).
  • Holt KE Wertheim H Zadoks RN et al. Genomic analysis of diversity, population structure, virulence, and antimicrobial resistance in Klebsiella pneumoniae, an urgent threat to public health . Proc. Natl Acad. Sci. USA112 ( 27 ), E3574 – E3581 ( 2015 ).
  • Brisse S Passet V Grimont PA . Description of Klebsiella quasipneumoniae sp. nov., isolated from human infections, with two subspecies, Klebsiella quasipneumoniae subsp. quasipneumoniae subsp. nov. and Klebsiella quasipneumoniae subsp. similipneumoniae subsp. nov., and demonstration that Klebsiella singaporensis is a junior heterotypic synonym of Klebsiella variicola . Int. J. Sys. Evol. Microbiol.64 ( 9 ), 3146 – 3152 ( 2014 ).
  • Martinez-Romero E Silva-Sanchez J Barrios H et al. Draft genome sequences of Klebsiella variicola plant isolates . Genom. Announc.3 ( 5 ), e01015 – 15 ( 2015 ).
  • Snitkin ES Zelazny AM Thomas PJ et al. Tracking a hospital outbreak of carbapenem-resistant Klebsiella pneumoniae with whole-genome sequencing . Sci. Transl. Med.4 ( 148 ), 148ra116 ( 2012 ).
  • Jombart T Eggo RM Dodd PJ Balloux F . Reconstructing disease outbreaks from genetic data: a graph approach . Heredity106 ( 2 ), 383 ( 2011 ).
  • Pecora ND Li N Allard M et al. Genomically informed surveillance for carbapenem-resistant Enterobacteriaceae in a health care system . MBio.6 ( 4 ), e01030 – 15 ( 2015 ).
  • Fricke WF Rasko DA . Bacterial genome sequencing in the clinic: bioinformatic challenges and solutions . Nat. Rev. Genet.15 ( 1 ), nrg3624 ( 2014 ).
  • Kumar A Roberts D Wood KE et al. Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock . Crit. Care Med.34 ( 6 ), 1589 – 96 ( 2006 ).
  • Boehme CC Nicol MP Michael MS et al. Feasibility, diagnostic accuracy, and effectiveness of decentralised use of the Xpert MTB/RIF test for diagnosis of tuberculosis and multidrug resistance: a multicentre implementation study . Lancet377 ( 9776 ), 1495 – 1505 ( 2011 ).
  • Miotto P Piana F Cirillo DM Migliori GB . Genotype MTBDRplus: a further step toward rapid identification of drug-resistant Mycobacterium tuberculosis . J. Clin. Microbiol.46 ( 1 ), 393 – 394 ( 2008 ).
  • Hillemann D Rusch-Gerdes S Richter E . Feasibility of the GenoType MTBDRsl assay for fluoroquinolone, amikacin-capreomycin, and ethambutol resistance testing of Mycobacterium tuberculosis strains and clinical specimens . J. Clin. Microbiol.47 ( 6 ), 1767 – 1772 ( 2009 ).
  • Votintseva AA Bradley P Pankhurst L et al. Same-day diagnostic and surveillance data for tuberculosis via whole-genome sequencing of direct respiratory samples . J. Clin. Microbiol.55 ( 5 ), 1285 – 1298 ( 2017 ).
  • Fricke WF Rasko DA . Bacterial genome sequencing in the clinic: bioinformatic challenges and solutions . Nat. Rev. Genet.15 ( 1 ), nrg3624 ( 2015 ).
  • Pesesky MW Hussain T Wallace M et al. Evaluation of machine learning and rules-based approaches for predicting antimicrobial resistance profiles in Gram-negative Bacilli from whole genome sequence data . Front. Microbiol.7 , 1887 ( 2017 ).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.