90
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Hemocompatibility of Amyloid and/or Brain Targeted Liposomes

, , , &
Pages 693-705 | Received 11 Jun 2018, Accepted 14 Jan 2019, Published online: 09 Apr 2019

References

  • Michanetzis GPAK Missirlis YF Antimisiaris SG . Haemocompatibility of nanosized drug delivery systems: has it been adequately considered?J. Biomed. Nanotechnol.4 ( 3 ), 218 – 233 ( 2008 ).
  • Alsaleh NB Brown JM . Immune responses to engineered nanomaterials: current understanding and challenges . Curr. Opin. Toxicol.10 , 8 – 14 ( 2018 ).
  • Mourtas S Michanetzis GPAK Missirlis YF Antimisiaris SG . Haemolytic activity of liposomes: effect of vesicle size, lipid concentration and polyethylene glycol-lipid or arsonolipid incorporation . J. Biomed. Nanotechnol.5 ( 4 ), 409 – 415 ( 2009 ).
  • Vonarbourg A Passirani C Saulnier P Simard P Leroux JC Benoit JP . Evaluation of PEGylated lipid nanocapsules versus complement system activation and macrophage uptake . J. Biomed. Mater. Res. A78 ( 3 ), 620 – 628 ( 2006 ).
  • Bartlett DW Davis ME . Physicochemical and biological characterization of targeted, nucleic acid-containing nanoparticles . Bioconjugate Chem.18 ( 2 ), 456 – 468 ( 2007 ).
  • Nagayama S Ogawara K Fukuoka Y Higaki K Kimura T . Time-dependent changes in opsonin amount associated on nanoparticles alter their hepatic uptake characteristics . Int. J. Pharm.342 ( 1–2 ), 215 – 221 ( 2007 ).
  • Al-Hanbali O Rutt KJ Sarker DK Hunter AC Moghimi SM . Concentration dependent structural ordering of poloxamine 908 on polystyrene nanoparticles and their modulatory role on complement consumption . J. Nanosci. Nanotechnol.6 ( 9–10 ), 3126 – 3133 ( 2006 ).
  • Bertholon I Vauthier C Labarre D . Complement activation by core-shell poly(isobutylcyanoacrylate)-polysaccharide nanoparticles: influences of surface morphology, length, and type of polysaccharide . Pharm. Res.23 ( 6 ), 1313 – 1323 ( 2006 ).
  • Xu Y Ma M Ippolito GC Schroeder HW Jr Carroll MC Volanakis JE . Complement activation in factor D-deficient mice . Proc. Natl Acad. Sci. USA98 ( 25 ), 14577 – 14582 ( 2001 ).
  • Mourtas S Canovi M Zona C et al. Curcumin-decorated nanoliposomes with very high affinity for amyloid-β1-42 peptide . Biomaterials32 ( 6 ), 1635 – 1645 ( 2011 ).
  • Markoutsa E Papadia K Clemente C Flores O Antimisiaris SG . Anti-Aβ-MAb and dually decorated nanoliposomes: effect of Aβ1-42 peptides on interaction with hCMEC/D3 cells . Eur. J. Pharm. Biopharm.81 ( 1 ), 49 – 56 ( 2012 ).
  • Lazar AN Mourtas S Youssef I et al. Curcumin-conjugated nanoliposomes with high affinity for Aβ deposits: possible applications to Alzheimer disease . Nanomedicine9 ( 5 ), 712 – 721 ( 2013 ).
  • Markoutsa E Mourtas S Bereczki E et al. Comparison of various types of ligand decorated nanoliposomes for their ability to inhibit amyloid aggregation and to reverse amyloid cytotoxicity . Curr. Top. Med. Chem.15 ( 22 ), 2267 – 2276 ( 2015 ).
  • Markoutsa E Papadia K Giannou AD et al. Mono and dually decorated nanoliposomes for brain targeting, in vitro and in vivo studies . Pharm. Res.31 ( 5 ), 1275 – 1289 ( 2014 ).
  • Mourtas S Lazar AN Markoutsa E Duyckaerts C Antimisiaris SG . Multifunctional nanoliposomes with curcumin-lipid derivative and brain targeting functionality with potential applications for Alzheimer disease . Eur. J. Med. Chem.80 , 175 – 183 ( 2014 ).
  • Papadia K Giannou AD Markoutsa E et al. Multifunctional LUV liposomes decorated for BBB and amyloid targeting. B. In vivo brain targeting potential in wild-type and APP/PS1 mice . Eur. J. Pharm. Sci.102 , 180 – 187 ( 2017 ).
  • Papadia K Markoutsa E Mourtas S et al. Multifunctional LUV liposomes decorated for BBB and amyloid targeting. A. In vitro proof-of-concept . Eur. J. Pharm. Sci.101 , 140 – 148 ( 2017 ).
  • Canovi M Markoutsa E Lazar AN et al. The binding affinity of anti-Aβ1-42 MAb-decorated nanoliposomes to Aβ1-42 peptides in vitro and to amyloid deposits in post-mortem tissue . Biomaterials32 ( 23 ), 5489 – 5497 ( 2011 ).
  • Re F Cambianica I Sesana S et al. Functionalization with ApoE-derived peptides enhances the interaction with brain capillary endothelial cells of nanoliposomes binding amyloid-beta peptide . J. Biotechnol.156 ( 4 ), 341 – 346 ( 2010 ).
  • Pham CTN Mitchell LM Huang JL et al. Variable antibody-dependent activation of complement by functionalized phospholipid nanoparticle surfaces . J. Biol. Chem.286 , 123 – 130 ( 2011 ).
  • Stewart JCM . Colorimetric determination of phospholipids with ammonium ferrothiocyanate . Anal. Biochem.104 ( 1 ), 10 – 14 ( 1980 ).
  • Dey RK Ray AR . Synthesis, characterization, and blood compatibility of polyamidoamines copolymers . Biomaterials24 ( 18 ), 2985 – 2993 ( 2003 ).
  • Rhodes NP Williams DF . Plasma recalcification as a measure of contact phase activation and heparinization efficacy after contact with biomaterials . Biomaterials15 ( 1 ), 35 – 37 ( 1994 ).
  • van den Hoven JM Nemes R Metselaar JM et al. Complement activation by PEGylated liposomes containing prednisolone . Eur. J. Pharm. Sci.49 ( 2 ), 265 – 271 ( 2013 ).
  • Taylor M Moore S Mourtas S et al. Effect of curcumin-associated and lipid ligand-functionalized nanoliposomes on aggregation of the Alzheimer's Aβ peptide . Nanomedicine7 ( 5 ), 541 – 550 ( 2011 ).
  • Bulbake U Doppalapudi S Kommineni N Khan W . Liposomal formulations in clinical use: an updated review . Pharmaceutics9 ( 2 ), 12 ( 2017 ).
  • Moghimi SM Hamad I Andresen TL J⊘rgensen K Szebeni J . Methylation of the phosphate oxygen moiety ofphospholipid-methoxy(polyethylene glycol)conjugate prevents PEGylated liposome-mediated complement activation and anaphylatoxin production . FASEB J.20 ( 14 ), 2591 – 2593 ( 2006 ).
  • Moghimi SM Hamad I . Liposome-mediated triggering of complement cascade . J. Lip. Res.18 ( 3 ), 195 – 209 ( 2008 ).
  • Szebeni J . Complement activation-related pseudoallergy caused by amphiphilic drug carriers: the role of lipoproteins . Curr. Drug Deliv.2 ( 4 ), 443 – 449 ( 2005 ).
  • Moghimi SM Andersen AJ Ahmadvand D Wibroe PP Andresen TL Hunter AC . Material properties in complement activation . Adv. Drug Deliv. Rev.63 ( 12 ), 1000 – 1007 ( 2011 ).
  • Chonn A Cullis PR Devine DV . The role of surface charge in the activation of the classical and alternative pathways of complement by liposomes . J. Immunol.146 ( 12 ), 4234 – 4241 ( 1991 ).
  • Devine DV Wong K Serrano K Chonn A Cullis PR . Liposome-complement interactions in rat serum: implications for liposome survival studies . Biochim. Biophys. Acta1191 ( 1 ), 43 – 51 ( 1994 ).
  • Alving CR Richards RL Guirguis AA . Cholesterol-dependent human complement activation resulting in damage to liposomal model membranes . J. Immunol.118 ( 1 ), 342 – 347 ( 1977 ).
  • Scieszka JF Maggiora LL Wright SD Cho J . Role of complements C3 and C5 in the phagocytosis of liposomes by human neutrophils . Pharm. Res.8 ( 1 ), 65 – 69 ( 1997 ).
  • Liu D Hu Q Song YK . Liposome clearance from blood: different animal species have different mechanisms . Biochim. Biophys. Acta1240 ( 2 ), 277 – 284 ( 1995 ).
  • Harashima H Sakata K Funato K Kiwada H . Enhanced hepatic uptake of liposomes through complement activation depending on the size of liposomes . Pharm. Res.11 ( 3 ), 402 – 406 ( 1994 ).
  • Szebeni J . Hemocompatibility testing for nanomedicines and biologicals: predictive assays for complement mediated infusion reactions . Eur. J. Nanomed.4 ( 1 ), 33 – 53 ( 2012 ).
  • Neun BW Ilinskaya AN Dobrovolskaia MA . Analysis of complement activation by nanoparticles . Methods Mol. Biol.1682 , 149 – 160 ( 2018 ).
  • Wang G Chen F Banda NK et al. Activation of human complement system by dextran-coated iron oxide nanoparticles is not affected by dextran/Fe Ratio, hydroxyl modifications, and crosslinking . Front. Immunol.7 , 418 ( 2016 ).
  • Quach QH Kong RLX Kah JCY . Complement activation by PEGylated gold nanoparticles . Bioconj. Chem.29 ( 4 ), 976 – 981 ( 2018 ).
  • Chanan-Khan A Szebeni J Savay S et al. Complement activation following first exposure to PEGylated liposomal doxorubicin (Doxil): possible role in hypersensitivity reactions . Ann. Oncol.14 ( 9 ), 1430 – 1437 ( 2003 ).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.