127
Views
0
CrossRef citations to date
0
Altmetric
Short Communication

Analysis of 8q24.21 miRNA Cluster Expression and Copy Number Variation in Gastric Cancer

, , , , , , , , , , , , , & show all
Pages 947-958 | Received 22 Sep 2018, Accepted 28 Jan 2019, Published online: 29 May 2019

References

  • WHO . World health statistics (2015). www.who.int/
  • Guggenheim DE , ShahMA. Gastric cancer epidemiology and risk factors. J. Surg. Oncol.107(3), 230–236 (2013).
  • Mclean MH , El-OmarEM. Genetics of gastric cancer. Nat. Rev. Gastroenterol. Hepatol.11(11), 664–674 (2014).
  • Assumpcao PP , IshakG , ChenESet al. Numerical aberrations of chromosome 8 detected by conventional cytogenetics and fluorescence in situ hybridization in individuals from northern Brazil with gastric adenocarcinoma. Cancer Genet. Cytogenet.169(1), 45–49 (2006).
  • Burbano RR , AssumpcaoPP , LealMFet al. C-MYC locus amplification as metastasis predictor in intestinal-type gastric adenocarcinomas: CGH study in Brazil. Anticancer Res.26(4B), 2909–2914 (2006).
  • Calcagno DQ , LealMF , SeabraADet al. Interrelationship between chromosome 8 aneuploidy, C-MYC amplification and increased expression in individuals from northern Brazil with gastric adenocarcinoma. World J. Gastroenterol.12(38), 6207–6211 (2006).
  • Calcagno DQ , LealMF , TakenSSet al. Aneuploidy of chromosome 8 and C-MYC amplification in individuals from northern Brazil with gastric adenocarcinoma. Anticancer Res.25(6B), 4069–4074 (2005).
  • Costa Guimarães A , GonçalvesQuintana L , FerreiraLeal Met al. Aneuploidy of chromosome 8 detected by fluorescence in situ hybridisation in ACP01 cell line gastric adenocarcinoma. Clin. Exp. Med.6(3), 129–133 (2006).
  • Leal MF , MartinsDo Nascimento JL , DaSilva CEet al. Establishment and conventional cytogenetic characterization of three gastric cancer cell lines. Cancer Genet. Cytogenet.195(1), 85–91 (2009).
  • Lima EM , RissinoJD , HaradaMLet al. Conventional cytogenetic characterization of a new cell line, ACP01, established from a primary human gastric tumor. Braz. J. Med. Biol. Res.37(12), 1831–1838 (2004).
  • Ottini L , FalchettiM , LupiRet al. Patterns of genomic instability in gastric cancer: clinical implications and perspectives. Ann. Oncol.17(Suppl. 7), vii97–vii102 (2006).
  • Calcagno DQ , LealMF , AssumpcaoPP , SmithMA , BurbanoRR. MYC and gastric adenocarcinoma carcinogenesis. World J. Gastroenterol.14(39), 5962–5968 (2008).
  • Calcagno DQ , LealMF , DemachkiSet al. MYC in gastric carcinoma and intestinal metaplasia of young adults. Cancer Genet. Cytogenet.202(1), 63–66 (2010).
  • Silva TC , LealMF , CalcagnoDQet al. hTERT, MYC and TP53 deregulation in gastric preneoplastic lesions. BMC Gastroenterol.12, 85 (2012).
  • Carramusa L , ContinoF , FerroAet al. The PVT-1 oncogene is a Myc protein target that is overexpressed in transformed cells. J. Cell. Physiol.213(2), 511–518 (2007).
  • Tseng YY , BagchiA. The PVT1-MYC duet in cancer. Mol. Cell. Oncol.2(2), e974467 (2015).
  • Calcagno DQ , FreitasVM , LealMFet al. MYC, FBXW7 and TP53 copy number variation and expression in gastric cancer. BMC Gastroenterol.13, 141 (2013).
  • Calcagno DQ , GuimaraesAC , LealMFet al. MYC insertions in diffuse-type gastric adenocarcinoma. Anticancer Res.29(7), 2479–2483 (2009).
  • Costa Raiol LC , FigueiraSilva EC , MendesDa Fonseca Det al. Interrelationship between MYC gene numerical aberrations and protein expression in individuals from northern Brazil with early gastric adenocarcinoma. Cancer Genet. Cytogenet.181(1), 31–35 (2008).
  • De Souza CR , LealMF , CalcagnoDQet al. MYC deregulation in gastric cancer and its clinicopathological implications. PLoS ONE8(5), e64420 (2013).
  • Leal MF , CalcagnoDQ , Borgesda Costa JD et al. MYC, TP53, and chromosome 17 copy-number alterations in multiple gastric cancer cell lines and in their parental primary tumors. J. Biomed. Biotechnol.2011, 631268 (2011).
  • Ribeiro HF , AlcantaraDF , MatosLAet al. Cytogenetic characterization and evaluation of c-MYC gene amplification in PG100, a new Brazilian gastric cancer cell line. Braz. J. Med. Biol. Res.43(8), 717–721 (2010).
  • Borges Da Costa J , LealMF , SilvaTCRet al. Experimental gastric carcinogenesis in Cebus apella nonhuman primates. PLoS ONE6(7), e21988 (2011).
  • Tong AW , NemunaitisJ. Modulation of miRNA activity in human cancer: a new paradigm for cancer gene therapy?Cancer Gene Ther.15(6), 341–355 (2008).
  • Wang D , FanZ , LiuF , ZuoJ. Hsa-miR-21 andHsa-miR-29 in tissue as potential diagnostic and prognostic biomarkers for gastric cancer. Cell. Physiol. Biochem.37(4), 1454–1462 (2015).
  • Srivastava K , SrivastavaA. Comprehensive review of genetic association studies and meta-analyses on miRNA polymorphisms and cancer risk. PLoS ONE7(11), e50966 (2012).
  • Da Silva Oliveira KC , ThomazAraújo TM , AlbuquerqueCIet al. Role of miRNAs and their potential to be useful as diagnostic and prognostic biomarkers in gastric cancer. World J. Gastroenterol.22(35), 7951–7962 (2016).
  • Iorio MV , CroceCM. MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Mol. Med.4(3), 143–159 (2012).
  • Nebbioso A , TambaroFP , Dell’AversanaC , AltucciL. Cancer epigenetics: moving forward. PLOS Genet.14(6), e1007362 (2018).
  • Schwarzenbach H , NishidaN , CalinGA , PantelK. Clinical relevance of circulating cell-free microRNAs in cancer. Nat. Rev. Clin. Oncol.11, 145 (2014).
  • Zhang Y , GuanDH , BiRXet al. Prognostic value of microRNAs in gastric cancer: a meta-analysis. Oncotarget8(33), 55489–55510 (2017).
  • Huang KH , LanYT , FangWL et al. The correlation between miRNA and lymph node metastasis in gastric cancer. Biomed. Res. Int.2015, 543163 (2015).
  • Chen L , LuMH , ZhangDet al. miR-1207-5p and miR-1266 suppress gastric cancer growth and invasion by targeting telomerase reverse transcriptase. Cell Death Dis.5, e1034 (2014).
  • Lauren P . The two histological main types of gastric carcinoma: diffuse and so-called intestinal-type carcinoma. An attempt at a histo-clinical classification. Acta Pathol. Microbiol. Scand.64, 31–49 (1965).
  • UICC. Union for International Cancer Control (2009). www.uicc.org/
  • Scholte GHA , Van DoornLJ , QuintWGV , LindemanJ. Polymerase chain reaction for the detection of Helicobacter pylori in formaldehyde-sublimate fixed, paraffin-embedded gastric biopsies. Diagn. Mol. Pathol.6(4), 238–243 (1997).
  • Wisnieski F , CalcagnoDQ , LealMFet al. Differential expression of histone deacetylase and acetyltransferase genes in gastric cancer and their modulation by trichostatin A. Tumour Biol.35(7), 6373–6381 (2014).
  • Anauate AC , LealMF , WisnieskiFet al. Identification of suitable reference genes for miRNA expression normalization in gastric cancer. Gene621, 59–68 (2017).
  • Sekar D , KrishnanR , ThirugnanasambanthamKet al. Significance of microRNA 21 in gastric cancer. Clin. Res. Hepatol. Gastroenterol.40(5), 538–545 (2016).
  • Irmak-Yazicioglu MB . Mechanisms of microRNA deregulation and microRNA targets in gastric cancer. Oncol. Res. Treat.39(3), 136–139 (2016).
  • Wang JL , HuY , KongXet al. Candidate microRNA biomarkers in human gastric cancer: a systematic review and validation study. PLoS ONE8(9), e73683 (2013).
  • Shrestha S , HsuSD , HuangWYet al. A systematic review of microRNA expression profiling studies in human gastric cancer. Cancer Med.3(4), 878–888 (2014).
  • Wang Z , CaiQ , JiangZet al. Prognostic role of microRNA-21 in gastric cancer: a meta-analysis. Med. Sci. Monit.20, 1668–1674 (2014).
  • Grampp S , PlattJL , LauerVet al. Genetic variation at the 8q24.21 renal cancer susceptibility locus affects HIF binding to a MYC enhancer. Nat. Commun.7, 13183 (2016).
  • Takeno SS , LealMF , LisboaLCet al. Genomic alterations in diffuse-type gastric cancer as shown by high-resolution comparative genomic hybridization. Cancer Genet. Cytogenet.190(1), 1–7 (2009).
  • Ma J , HongL , ChenZ , NieY , FanD. Epigenetic regulation of microRNAs in gastric cancer. Dig. Dis. Sci.59(4), 716–723 (2014).
  • Huppi K , VolfovskyN , RunfolaTet al. The identification of microRNAs in a genomically unstable region of human chromosome 8q24. Mol. Cancer Res.6(2), 212–221 (2008).
  • Barsotti AM , BeckermanR , LaptenkoOet al. p53-Dependent induction of PVT1 and miR-1204. J. Biol. Chem.287(4), 2509–2519 (2012).
  • Veigaard C , KjeldsenE. Exploring the genome-wide relation between copy number status and microRNA expression. Genomics104(4), 271–278 (2014).
  • O’donnell KA , WentzelEA , ZellerKI , DangCV , MendellJT. c-Myc-regulated microRNAs modulate E2F1 expression. Nature435, 839 (2005).
  • Lee EJ , BaekM , GusevYet al. Systematic evaluation of microRNA processing patterns in tissues, cell lines, and tumors. RNA14(1), 35–42 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.