444
Views
0
CrossRef citations to date
0
Altmetric
Review

Mn(II) Compounds as an Alternative to Gd-Based MRI Probes

ORCID Icon, , , &
Pages 1461-1483 | Received 31 Dec 2018, Accepted 06 Mar 2019, Published online: 12 Jul 2019

References

  • Edelman GM , HesselinkJR, ZlatkinMB, CruesJV, III. Clinical Magnetic Resonance Imaging. Elsevier Health, MO, USA, 3 (2006).
  • Lohrke J , FrenzelT, EndrikatJet al. 25 Years of contrast-enhanced MRI: developments, current challenges and future perspectives. Adv. Ther.33(1), 1–28 (2016).
  • Rabah Kamal and Cynthia Cox Kaiser Family Foundation (2018). www.healthsystemtracker.org/chart-collection/how-do-healthcare-prices-and-use-in-the-u-s-compare-to-other-countries/#item-start
  • Cheng S , AbramovaL, SaabGet al. Nephrogenic fibrosing dermopathy associated with exposure to gadolinium-containing contrast agents – St. Louis, Missouri, 2002–2006. J. Am. Med. Assoc.297(14), 1542–1544 (2007).
  • Di Gregorio E , FerrautoG, FurlanCet al. The issue of gadolinium retained in tissues: insights on the role of metal complex stability by comparing metal uptake in murine tissues upon the concomitant administration of lanthanum- and gadolinium-diethylentriamminopentaacetate. Invest. Radiol.53(3), 167–172 (2018).
  • Pan D , SchmiederAH, WicklineSA, LanzaGM. Manganese-based MRI contrast agents: past, present and future. Tetrahedron67(44), 8431–8444 (2011).
  • Rocklage SM , CacherisWP, QuaySC, HahnFE, RaymondKN. Syntheses of multidentate ligands containing hydroxypryidyl donor groups. Inorg. Chem.28, 477 (1989).
  • Crossgrove J , ZhengW. Manganese toxicity upon overexposure. NMR Biomed.17(8), 544–553 (2004).
  • Caravan P , FarraraCT, FrullanoL, UppalR. Influence of molecular parameters and increasing magnetic field strength on relaxivity of gadolinium- and manganese-based T1 contrast agents. Contrast Media Mol. Imaging4(1), 89–100 (2009).
  • Drahos B , LukesI, TothE. Manganese(II) complexes as potential contrast agents for MRI. Eur. J. Inorg. Chem.2012 (12), 1975–1986 (2012).
  • Kueny-Stotz M , GarofaloA, Felder-FleschD. Manganese‐enhanced MRI contrast agents: from small chelates to nanosized hybrids. Eur. J. Inorg. Chem.(12), 1987–2005 (2012).
  • Kim WD , KieferGE, MatonF, McMillanK, MullerRN, SherryAD. Relaxometry, luminescence measurements, electrophoresis, and animal biodistribution of lanthanide(III) complexes of some polyaza macrocyclic acetates containing pyridine. Inorg. Chem.34(8), 2233–2243 (1995).
  • Delli Castelli D , GianolioE, AimeS. MRI Contrast Agents: State of the Art and New Trends, Ch 8 of Bioinorganic Medicinal Chemistry. AlessioE (Ed.). WILEY-VCH, Weinheim, Germany (2011).
  • Freed JH . Dynamic effects of pair correlation functions on spin relaxation by translational diffusion in liquids. II. Finite jumps and independent T1 processes. J. Chem. Phys.68(9), 4034–4037 (1978).
  • McLachlan AD . Line widths of electron resonance spectra in solution. Proc. R. Soc. London.1391(1384), 271–288 (1964).
  • Solomon I , BloembergenM. Nuclear magnetic interactions in the HF molecule. J. Chem. Phys.25(2), 261–266 (1956).
  • Bloembergen N , MorganLO. Proton relaxation times in paramagnetic solutions. effects of electron spin relaxation. J. Chem. Phys.34(3), 842–850 (1961).
  • Rolla GA , PlatasIglesias C, BottaM, TeiL, HelmL. 1H and 17O NMR relaxometric and computational study on macrocyclic Mn(II) complexes. Inorg. Chem.52(6), 3268–3279 (2013).
  • Rodríguez-Rodríguez A , Esteban-GomezD, de BlasAet al. Lanthanide(III) complexes with ligands derived from a cyclen framework containing pyridinecarboxylate pendants. The effect of steric hindrance on the hydration number. Inorg. Chem.51(4), 2509–2521 (2012).
  • Esteban-Gómez D , CassinoC, BottaM, Platas-IglesiasC. 17O and 1H relaxometric and DFT study of hyperfine coupling constants in [Mn(H2O)6]2+. RSC Adv.4(14), 7094–7103 (2014).
  • Powell DH , NiDhubhghaill OM, PubanzDet al. Structural and dynamic parameters obtained from 17O NMR, EPR, and NMRD studies of monomeric and dimeric Gd(III) complexes of interest in magnetic resonance imaging: an integrated and theoretically self-consistent approach. J. Am. Chem. Soc.118(39), 9333–9346 (1996).
  • Astashkin AV , RaitsimringAM, CaravanP. Pulsed ENDOR study of water coordination to GdIII complexes in orientationally disordered systems. J. Phys Chem. A.108(11), 1990–2001 (2004).
  • Aime S , CalabiL, CavallottiCet al. [GdAAZTA]: a new structural entry for an improved generation of MRI contrast agents. Inorg. Chem.43(24), 7588–7590 (2004).
  • Botta M , AimeS, BargeAet al. Ternary complexes between cationic GdIII chelates and anionic metabolites in aqueous solution: an NMR relaxometric study. Chem. Eur. J.9(9), 2102–2109 (2004).
  • Regueiro-Figueroa M , RollaGA, Esteban-GómezDet al. High relaxivity Mn(2+)-based MRI contrast agents. Chem. Eur. J.20(52), 17300–17305 (2014).
  • Gale EM , ZhuJ, CaravanP. Direct measurement of the Mn(II) hydration state in metal complexes and metalloproteins through 17O linewidths. J. Am. Chem. Soc.135(49), 18600–18608 (2013).
  • Peters J , GeraldesC. A semi-empirical method for the estimation of the hydration number of Mn(II)-complexes. Inorganics6(4), 116 (2018).
  • Molnár E , CamusN, PatinecVet al. Picolinate-containing macrocyclic MnII complexes as potential MRI contrast agents. Inorg. Chem.53(10), 5136–5149 (2014).
  • Forgacs A , Regueiro-FigueroaM, BarriadaJLet al. Mono, Bi, and trinuclear bis-hydrated MnII complexes as potential MRI contrast agents. Inorg. Chem.54(19), 9576–9587 (2015).
  • Zhu J , GaleEM, AtanasovaIP, RietzTA, CaravanP. Hexameric MnII dendrimer as MRI contrast agent. Chem. Eur. J.20(44), 14507–14513 (2014).
  • Rolla GA , DeBiasio V, GiovenzanaGB, BottaM, TeiL. Supramolecular assemblies based on amphiphilic MnII-complexes as high relaxivity MRI probes. Dalton Trans.47(31), 10660–10670 (2018).
  • Forgács A , TeiL, BaranyaiZ, Esteban-GómezD, Platas-IglesiasC, BottaM. Optimising the relaxivities of MnII complexes by targeting human serum albumin (HSA). Dalton Trans.46(26), 8494–8504 (2017).
  • Forgács A , Pujales-ParadelaR, Regueiro-FigueroaMet al. Developing the family of picolinate ligands for MnII complexation. Dalton Trans.46(5), 1546–1558 (2017).
  • Lipari G , SzaboA. Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 1. Theory and range of validity. J. Am. Chem. Soc.104(17), 4546–4559 (1982).
  • Lipari G , SzaboA. Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 2. Analysis of experimental results. J. Am. Chem. Soc.104(17), 4560–4570 (1982).
  • Pujales-Paradela R , Regueiro-FigueroaM, Esteban-GomezD, Platas-IglesiasC. Transition metal-based T1 contrast agents, Ch 5 of contrast agents for MRI. In: Experimental Methods.PierreVC, AllenMJ (Eds). The Royal Society of Chemistry, Croydon, England (2018).
  • Forgács A , TeiL, BaranyaiZ, TóthI, ZékányL, BottaM. Bisamide derivative of [Mn(1,4-DO2A)]: solution thermodynamic, kinetic and NMR relaxometric studies. Eur. J. Inorg. Chem. (8), 1165–1174 (2016).
  • Gale EM , AtanasovaIP, BlasiF, AyI, CaravanP. Manganese alternative to gadolinium for MRI contrast. J. Am. Chem. Soc.137(49), 15548–15557 (2015).
  • Drahos B , KotekJ, CisarovaIet al. MnII complexes with 12-membered pyridine based macrocycles bearing carboxylate or phosphonate pendant arm: crystallographic, thermodynamic, kinetic, redox, and 1H/17O relaxation studies. Inorg. Chem.50(24), 12785–12801 (2011).
  • Manganese and Its Role in Biological Processes, Volume 37 of the Series ‘Metal Ions in Biological Systems’. Marcel Dekker Inc., Sigel A , SigelH (Eds). NY, USA (2000).
  • Crossgrove J , ZhengW. Manganese toxicity upon overexposure. NMR Biomed.17(8), 544–553 (2004).
  • O’Neal SL , ZhengW. Manganese toxicity upon overexposure: a decade in review. Curr. Environ. Health Rep.2(3), 315–328 (2015).
  • Brücher E , TircsóG, BaranyaiZ, KovácsZ, SherryAD. Stability and Toxicity of Contrast Agents, Ch 4 of The Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging (2nd Edition). MerbachAE, HelmL, TóthÉ (Eds). John Wiley & Sons, New York, NY, USA (2013).
  • Kaálmaán FK , TircsoáG. Kinetic inertness of the Mn(II) complexes formed with AAZTA and some open-chain EDTA derivatives. Inorg. Chem.51(19), 10065–10067 (2012).
  • Aime S , AnelliPL, BottaMet al. Relaxometric evaluation of novel manganese(II) complexes for application as contrast agents in magnetic resonance imaging. J. Biol. Inorg. Chem.7(1–2), 58–67 (2002).
  • Troughton JS , GreenfieldMT, GreenwoodJMet al. Synthesis and evaluation of a high relaxivity Manganese(II)-based MRI contrast agent. Inorg. Chem.43(20), 6313–6323 (2004).
  • Baroni S , ColomboSerra S, FringuelloMingo A, LuxG, GiovenzanaGB, LattuadaL. Synthesis and relaxometric characterization of a new Mn(II)‐EDTA‐deoxycholic acid conjugate complex as a potential MRI blood pool agent. Chem. Select.1(8), 1607–1612 (2016).
  • Molnár E , VáradiB, GardaZet al. Remarkable differences and similarities between the isomeric Mn(II)-cis and trans-1,2-diaminocyclohexane-N,N,N’,N’-tetraacetate complexes. Inorg. Chim. Acta.472, 254–263 (2018).
  • Gale EM , WeyHY, RamsayI, YenYF, SosnovikDE, CaravanP. A manganese-based alternative to gadolinium: contrast-enhanced MR angiography, excretion, pharmacokinetics, and metabolism. Radiology286(3), 865–872 (2018).
  • Loving GS , MukherjeeS, CaravanP. Redox-activated manganese-based MR contrast agent. J. Am. Chem. Soc.135(12), 4620–4623 (2013).
  • Gale EM , MukherjeeS, LiuC, GalenS, LovingGS, CaravanP. Structure–redox–relaxivity relationships for redox responsive manganese-based magnetic resonance imaging probes. Inorg. Chem.53(19), 10748–10761 (2014).
  • Tei L , GugliottaG, FeketeM, KalmanFK, BottaM. Mn(II) complexes of novel hexadentate AAZTA-like chelators: a solution thermodynamics and relaxometric study. Dalton Trans.40(9), 2025–2032 (2011).
  • Garda Z , MolnárE, KálmánFKet al. Effect of the nature of donor atoms on the thermodynamic, kinetic and relaxation properties of Mn(II) complexes formed with some trisubstituted 12-membered macrocyclic ligands. Front. Chem.6, 232 (2018).
  • Garda Z , ForgacsA, DoQNet al. Physico-chemical properties of MnII complexes formed with cis- and trans-DO2A: thermodynamic, electrochemical and kinetic studies. J. Inorg. Biochem.163, 206–213 (2016).
  • Botta M , TeiL. Relaxivity enhancement in macromolecular and nanosized GdIII-based MRI contrast agents. Eur. J. Inorg. Chem.2012(12), 1945–1960 (2012).
  • Carniato F , TeiL, BottaM. Gd-based mesoporous silica nanoparticles as MRI probes. Eur. J. Inorg. Chem.2018(46), 4936–4954 (2018).
  • Pálmai M , PethőA, NaszályiNagy Let al. Direct immobilization of manganese chelates on silica nanospheres for MRI applications. J. Colloid Interface Sci.498, 298–305 (2017).
  • Jin M , LiW, SpillaneDEM, GeraldesCFGC, WilliamsGR, AnnieBligh SW. Hydroxy double salts intercalated with Mn(II) complexes as potential contrast agents. Solid State Sci.53, 9–16 (2016).
  • Chen Y , ChenH, ZhangSet al. Structure-property relationships in manganese oxide – mesoporous silica nanoparticles used for T1-weighted MRI and simultaneous anti-cancer drug delivery. Biomaterials33(7), 2388–2398 (2012).
  • Guillet-Nicolas R , Laprise-PelletierM, NairMMet al. Manganese-impregnated mesoporous silica nanoparticles for signal enhancement in MRI cell labelling studies. Nanoscale5(23), 11499–11511 (2013).
  • Niu D , LuoX, LiY, LiuX, WangX, ShiJ. Manganese-loaded dual-mesoporous silica spheres for efficient T1- and T2-weighted dual mode magnetic resonance imaging. ACS Appl. Mater. Interfaces5(20), 9942–9948 (2013).
  • Hsu BYW , KirbyG, TanA, SeifalianAM, LiX, WangJ. Relaxivity and toxicological properties of manganese oxide nanoparticles for MRI applications. RSC Adv.6(51), 45462–45474 (2016).
  • Hsu BYW , WangM, ZhangYet al. Silica–F127 nanohybrid-encapsulated manganese oxide nanoparticles for optimized T1 magnetic resonance relaxivity. Nanoscale6(1), 293–299 (2014).
  • Bañobre-López M , García-HeviaL, CerqueiraMF, RivadullaF, GalloJ. Tunable performance of manganese oxide nanostructures as MRI contrast agents. Chem. Eur. J.24(6), 1295–1303 (2018).
  • Gao H , LiuX, TangWet al. 99mTc-conjugated manganese-based mesoporous silica nanoparticles for SPECT, pH-responsive MRI and anti-cancer drug delivery. Nanoscale8(46), 19573–19580 (2016).
  • Hao Y , ZhengC, WangLet al. Tumor acidity-activatable manganese phosphate nanoplatform for amplification of photodynamic cancer therapy and magnetic resonance imaging. Acta Biomaterialia62, 293–305 (2017).
  • Hamm B , VoglTJ, BrandingGet al. Focal liver lesions: MR imaging with Mn-DPDP – initial clinical results in 40 patients. Radiology182(1), 167–174 (1992).
  • Ni Y , PetreáC, BosmansHet al. Comparison of manganese biodistribution and MR contrast enhancement in rats after intravenous injection of MnDPDP and MnCl2. Acta Radiol.38(5), 700–707 (1997).
  • Gale EM , CaravanP. Gadolinium-free contrast agents for magnetic resonance imaging of the central nervous system. ACS Chem. Neurosci.9, 395–397 (2018).
  • Wang J , WangH, RamsayIAet al. Manganese-based contrast agents for magnetic resonance imaging of liver tumors: structure–activity relationships and lead candidate evaluation. J. Med. Chem.61(19), 8811–8824 (2018).
  • Islam K , KimS, KimHKet al. Manganese complex of ethylenediaminetetraacetic acid (EDTA)–benzothiazole aniline (BTA) conjugate as a potential liver-targeting MRI contrast agent. J. Med. Chem.60(7), 2993–3001 (2017).
  • Pan D , CaruthersSD, SenpanA, SchmiederAH, WicklineSA, LanzaGM. Revisiting an old friend: manganese-based MRI contrast agents. WIREs Nanomed. Nanobiotech.3(2), 162–173 (2011).
  • Fischer HC , ChanWCW. Nanotoxicity: the growing need for in vivo study. Curr. Opin. Biotech.18(6), 565–571 (2007).
  • Dobrovolskaia MA , GermolecDR, WeaverJL. Evaluation of nanoparticle immunotoxicity. Nat. Nanotechnol.4(7), 411–414 (2009).
  • Xiao J , TianXM, YangCet al. Ultrahigh relaxivity and safe probes of manganese oxide nanoparticles for in vivo imaging. Sci. Rep.3, 3424 (2013).
  • Li JJ , WuC, HouPF, ZhangM, XuK. One-pot preparation of hydrophilic manganese oxide nanoparticles as T-1 nano-contrast agent for molecular magnetic resonance imaging of renal carcinoma in vitro and in vivo. Biosens. Bioelectron.102, 1–8 (2018).
  • The Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging (2nd Edition). MerbachAE, HelmL, TóthÉ (Eds). John Wiley & Sons, NY, USA (2013).
  • Contrast Agents for MRI. Experimental Methods. PierreVC, AllenMJ (Eds). The Royal Society of Chemistry, London, UK (2018).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.