3,542
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Bis-(Imidazole/Benzimidazole)-Pyridine Derivatives: Synthesis, Structure and Antimycobacterial Activity

, , , , , , & ORCID Icon show all
Pages 207-222 | Received 05 Mar 2019, Accepted 03 Dec 2019, Published online: 09 Jan 2020

References

  • WHO , Global tuberculosis report (2017). www.who.int/tb/publications/global_report/en/
  • Sacks LV , BehrmanRE. Developing new drugs for the treatment of drug-resistant tuberculosis: a regulatory perspective. Tuberculosis88(Suppl. 1), S93–S100 (2008).
  • Nguyen L , PietersJ. Mycobacterial subversion of chemotherapeutic reagents and host defense tactics: challenges in tuberculosis drug development. Annu. Rev. Pharmacol. Toxicol.49, 427–453 (2009).
  • Burman WJ , JonesBE. Treatment of HIV-related tuberculosis in the era of effective antiretroviral therapy. Am. J. Respir. Crit. Care Med.164(1), 7–12 (2001).
  • Lawn SD , ZumlaAI. Tuberculosis. Lancet378(9785), 57–72 (2011).
  • Kakkar AK , DahiyaN. Bedaquiline for the treatment of resistant tuberculosis: promises and pitfalls. Tuberculosis94(4), 357–362 (2014).
  • Gler MT , SkripconokaV , Sanchez-GaravitoEet al. Delamanid for multidrug-resistant pulmonary tuberculosis. N. Engl. J. Med.366(23), 2151–2160 (2012).
  • Beena RDS . Antituberculosis drug research: a critical overview. Med. Res. Rev.33(4), 693–693 (2013).
  • Dover LG , CoxonGD. Status and research strategies in tuberculosis drug development. J. Med. Chem.54(18), 6157–6165 (2011).
  • Ma Z , LienhardtC , McLleronHet al. Global tuberculosis drug development pipeline: the need and the reality. Lancet375(9731), 2100–2109 (2010).
  • Zhang Y , Post-MartensK , DenkinS. New drug candidates and therapeutic targets for tuberculosis therapy. Drug Discov. Today11(1–2), 21–27 (2006).
  • Keri RS , RajappaCK , PatilSAet al. Benzimidazole-core as an antimycobacterial agent. Pharmacol. Rep.68(6), 1254–1265 (2016).
  • Akhtar W , KhanMF , VermaGet al. Therapeutic evolution of benzimidazole derivatives in the last quinquennial period. Eur. J. Med. Chem.126, 705–753 (2017).
  • Jeon AB , AckartDF , LiWet al. 2-Aminoimidazoles collapse mycobacterial proton motive force and block the electron transport chain. Sci. Rep.9, 1513 (2019).
  • Lu X , WilliamsZ , HardsKet al. Pyrazolo[1,5- a]pyridine inhibitor of the respiratory cytochrome bcc complex for the treatment of drug-resistant tuberculosis. ACS Infect. Dis.5(2), 239–249 (2019).
  • Fan YL , JinXH , HuangZPet al. Recent advances of imidazole-containing derivatives as anti tubercular agents. Eur. J. Med. Chem.150, 347–365 (2018).
  • Campaniço A , MoreiraR , LopesF. Drug discovery in tuberculosis. New drug targets and antimycobacterial agents. Eur. J. Med. Chem.150, 525–545 (2018).
  • Al Matarneh CM , Ciobanu , ApostuM , MangalagiuII , DanacR. Cycloaddition versus amidation in reactions of 2-amino-2-oxoethyl-phenanthrolinium ylides to activated alkynes and alkenes. CR Chim.21(1), 1–8 (2018).
  • Olaru A , VasilacheV , DanacRet al. Antimycobacterial activity of nitrogen heterocycles derivatives: 7-(pyridine-4-yl)-indolizine derivatives. Part VII. J. Enzyme Inhib. Med. Chem.32(1), 1291–1298 (2017).
  • Mantu D , AntociV , NicolescuAet al. Synthesis, stereochemical studies and antimycobacterial activity of new acetylhydrazines pyridazinone. Curr. Org. Synth.14(1), 112–119 (2017).
  • Al Matarneh CM , CiobanuCI , MangalagiuIIet al. Design, synthesis and antimycobacterial evaluation of some new azaheterocycles with 4,7-phenanthroline skeleton. Part VI. J. Serb. Chem. Soc.81(2), 133–140 (2016).
  • Mantu D , AntociV , MoldoveanuCet al. Hybrid imidazole (benzimidazole)/pyridine (quinoline) derivatives and evaluation of their anticancer and antimycobacterial activity. J. Enzyme Inhib. Med. Chem.31(Suppl. 2), 96–103 (2016).
  • Al Matarneh CM , MangalagiuII , ShovaSet al. Synthesis, structure, antimycobacterial and anticancer evaluation of new pyrrolo-phenanthroline derivatives. J. Enzyme Inhib. Med. Chem.31(3), 470–480 (2016).
  • Danac R , AlMatarneh CM , ShovaSet al. New indolizines with phenanthroline skeleton: synthesis, structure, antimycobacterial and anticancer evaluation. Bioorg. Med. Chem.23(10), 2318–2327 (2015).
  • Danac R , DaniloaiaT , AntociVet al. Design, synthesis and antimycobacterial activity of some new azaheterocycles: phenanthroline with p-halo-benzoyl skeleton. Part V. Lett. Drug Des. Discov.12(1), 14–17 (2015).
  • Danac R , MangalagiuII. Antimycobacterial activity of nitrogen heterocycles derivatives: bipyridine derivatives. Part III. Eur. J. Med. Chem.74, 664–670 (2014).
  • Mantu D , AntociV , MangalagiuII. Design, synthesis and antituberculosis activity of some new pyridazine derivatives: bis-pyridazine. Part IV. Infect. Dis. Drug Targets13(5), 344–351 (2013).
  • Mantu D , LucaC , MoldoveanuCet al. Synthesis and antituberculosis activity of some new pyridazine derivatives. Part II. Eur. J. Med. Chem.45(11), 5164–5168 (2010).
  • Moldoveanu C , MangalagiuG , DrochioiuGet al. New antituberculosis compounds derived from diazine. An. Stiint. Univ. “Al.I. Cuza” Iasi11, 367–374 (2003).
  • Lungu CN , BratanoviciBI , GrigoreMMet al. Hybrid imidazole-pyridine derivatives: an approach to novel anticancer DNA intercalators. Curr. Med. Chem. (2018) (Epub ahead of print).
  • Haque RA , AsekunowoPO , RazaliMR. Dinuclear silver(I)-N-heterocyclic carbene complexes of N-allyl substituted (benz)imidazol-2-ylidenes with pyridine spacers: synthesis, crystal structures, nuclease and antibacterial studies. Transition Met. Chem.39(3), 281–290 (2014).
  • Bevan CD , LloydRS. A high-throughput screening method for the determination of aqueous drug solubility using laser nephelometry in microtiter plates. Anal. Chem.72(8), 1781–1787 (2000).
  • Castagnolo D , DeLogu A , RadiMet al. Synthesis, biological evaluation and SAR study of novel pyrazole analogues as inhibitors of Mycobacterium tuberculosis. Bioorg. Med. Chem.16(18), 8587–8591 (2008).
  • Ollinger J , BaileyMA , MoraskiGCet al. A dual read-out assay to evaluate the potency of compounds active against Mycobacterium tuberculosis. PLoS ONE8(4), e60531 (2013).
  • Zelmer A , CarrollP , AndreuNet al. A new in vivo model to test anti-tuberculosis drugs using fluorescent imaging. J. Antimicrob. Chemother.67(8), 1948–1960 (2012).
  • Carroll P , SchreuderLJ , Muwanguzi-KarugabaJet al. Sensitive detection of gene expression in mycobacteria under replicating and non-replicating conditions using optimized far-red reporters. PLoS ONE5(3), e9823 (2010).
  • Lambert RJ , PearsonJ. Susceptibility testing: accurate and reproducible minimum inhibitory concentration (MIC) and non-inhibitory concentration (NIC) values. J. Appl Microbiol.88(5), 784–790 (2000).
  • Kuti JL . Optimizing antimicrobial pharmacodynamics: a guide for stewardship program. Rev. Med. Clin. Condes.27(5), 615–624 (2016).
  • Cho SH , WaritS , WanBet al. Low-oxygen-recovery assay for high-throughput screening of compounds against nonreplicating Mycobacterium tuberculosis. Antimicrob. Ag. Chemother.51(4), 1380–1385 (2007).
  • Andreu N , ZelmerA , FletcherTet al. Optimisation of bioluminescent reporters for use with mycobacteria. PLoS ONE5(5), e10777 (2010).
  • Wayne LG . In vitro model of hypoxically induced nonreplicating persistence of Mycobacterium tuberculosis. In: Mycobacterium Tuberculosis Protocols.ParishT, StokerNG ( Eds). Humana Press, NJ, USA, 247–270 (2001).
  • Franzblau SG , WitzigRS , McLaughlinJCet al. Rapid, low-technology MIC determination with clinical Mycobacterium tuberculosis isolates by using the microplate Alamar Blue Assay. J. Clin. Microbiol.36(2), 362–366 (1998).
  • Banker MJ , ClarkTH , WilliamsJA. Development and validation of a 96-well equilibrium dialysis apparatus for measuring plasma protein binding. J. Pharm. Sci.92(5), 967–974 (2003).
  • Smith DA , DiL , KernsEH. The effect of plasma protein binding on in vivo efficacy: misconceptions in drug discovery. Nat. Rev. Drug. Discov.9(12), 929–939 (2010).
  • Stewart BH , ChanOH , LuRHet al. Comparison of intestinal permeabilities determined in multiple in vitro and in situ models: relationship to absorption in humans. Pharm. Res.12(5), 693–699 (1995).
  • Artursson P , PalmK , LuthmanK. Caco-2 monolayers in experimental and theoretical predictions of drug transport. Adv. Drug Deliv. Rev.46(1–3), 27–43 (2001).
  • Yee S . In vitro permeability across Caco-2 cells (colonic) can predict in vivo (small intestinal) absorption in man – fact or myth. Pharm. Res.14(6), 763–766 (1997).
  • Endres CJ , HsiaoP , ChungFSet al. The role of transporters in drug interactions. Eur. J. Pharm. Sci.27(5), 501–517 (2006).
  • Balimane PV , HanYH , ChongS. Current industrial practices of assessing permeability and P-glycoprotein interaction. AAPS J.8(1), E1–E13 (2006).
  • Walsky RL , ObachRS. Validated assays for human cytochrome P450 activities. Drug Metab. Dispos.32(6), 647–660 (2004).
  • Kim MJ , KimH , ChaIJet al. High-throughput screening of inhibitory potential of nine cytochrome P450 enzymes in vitro using liquid chromatography/tandem mass spectrometry. Rapid Commun. Mass Spectrom.19(18), 2651–2658 (2005).
  • Fowler S , ZhangH. In vitro evaluation of reversible and irreversible cytochrome P450 inhibition: current status on methodologies and their utility for predicting drug–drug interactions. AAPS J.10(2), 410–424 (2008).
  • Houston JB . Utility of in vitro drug metabolism data in predicting in vivo metabolic clearance. Biochem. Pharmacol.47(9), 1469–1479 (1994).
  • Obach RS . Prediction of human clearance of twenty-nine drugs from hepatic microsomal intrinsic clearance data: an examination of in vitro half-life approach and non-specific binding to microsomes. Drug Metab. Dispos.27(11), 1350–1359 (1999).
  • Di L , KernsEH , MaXJet al. Applications of high throughput microsomal stability assay in drug discovery. Comb. Chem. High Throughput Screen.11(6), 469–476 (2008).
  • Crouch SP , KozlowskiR , SlaterKJet al. The use of ATP bioluminescence as a measure of cell proliferation and cytotoxicity. J. Immunol. Methods160(1), 81–88 (1993).
  • Lundin A , HasensonM , PerssonJet al. Estimation of biomass in growing cell lines by ATP assay. Methods Enzymol.133, 27–42 (1986).
  • Maehara Y , AnaiH , TamadaRet al. The ATP assay is more sensitive than the succinate dehydrogenase inhibition test for predicting cell viability. Eur. J. Cancer Clin. Oncol.23(3), 273–276 (1987).
  • Slater K . Cytotoxicity tests for high-throughput drug discovery. Curr. Opin. Biotechnol.12(1), 70–74 (2001).