3,556
Views
0
CrossRef citations to date
0
Altmetric
Editorial

Fluorescent RNA Tags: Current and Future Applications

ORCID Icon &
Pages 2483-2485 | Received 12 Jul 2019, Accepted 02 Aug 2019, Published online: 21 Oct 2019

References

  • Birney E , StamatoyannopoulosJA, DuttaAet al. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature447(7146), 799–816 (2007).
  • Anastasiadou E , JacobLS, SlackFJ. Non-coding RNA networks in cancer. Nat. Rev. Cancer18(1), 5–18 (2017).
  • Neubacher S , HennigS. RNA structure and cellular applications of fluorescent light-up aptamers. Angew. Chem. Int. Ed. Engl.57, 2–17 (2018).
  • Babendure JR , AdamsSR, TsienRY. Aptamers switch on fluorescence of triphenylmethane dyes. J. Am. Chem. Soc.125(48), 14716–14717 (2003).
  • Paige JS , WuKY, JaffreySR. RNA mimics of green fluorescent protein. Science333, 642–646 (2011).
  • Truong L , Ferré-D’AmaréAR. From fluorescent proteins to fluorogenic RNAs: tools for imaging cellular macromolecules. Protein Sci.28(8), 1374–1386 (2019).
  • Strack RL , DisneyMD, JaffreySR. A superfolding Spinach2 reveals the dynamic nature of trinucleotide repeat-containing RNA. Nat. Methods10(12), 1219–1224 (2013).
  • Huang K , DoyleF, WurzZEet al. FASTmiR: an RNA-based sensor for in vitro quantification and live-cell localization of small RNAs. Nucleic Acids Res.45(14), 1–13 (2017).
  • Shin I , RayJ, GuptaVet al. Live-cell imaging of Pol II promoter activity to monitor gene expression with RNA IMAGEtag reporters. Nucleic Acids Res.42(11), 1–9 (2014).
  • Pothoulakis G , CeroniF, ReeveB, EllisT. The Spinach RNA aptamer as a characterization tool for synthetic biology. ACS Synth. Biol.3(3), 182–187 (2014).
  • Tan X , ConstantinTP, SloaneKL, WaggonerAS, BruchezMP, ArmitageBA. Fluoromodules consisting of a promiscuous RNA aptamer and red or blue fluorogenic cyanine dyes: selection, characterization and bioimaging. J. Am. Chem. Soc.139, 9001–9009 (2017).
  • Sun Z , NguyenT, McAuliffeK, YouM. Intracellular imaging with genetically encoded RNA-based molecular sensors. Nanomaterials9(2), 233 (2019).
  • Song W , StrackRL, JaffreySR. Imaging bacterial protein expression using genetically encoded RNA sensors. Nat. Methods10(9), 873–875 (2013).
  • Svensen N , JaffreySR. Fluorescent RNA aptamers as a tool to study RNA-modifying enzymes. Cell Chem. Biol.23(3), 415–425 (2016).
  • Khalil AM , RinnJL. RNA-protein interactions in human health and disease. Semin. Cell Dev. Biol.22(4), 359–365 (2011).
  • Guan L , DisneyMD. Recent advances in developing small molecules targeting RNA. ACS Chem. Biol.7(1), 73–86 (2012).
  • Alam KK , TawiahKD, LichteMF, PorcianiD, BurkeDH. A fluorescent split aptamer for visualizing RNA − RNA assembly in vivo. ACS Synth. Biol.6, 1710–1721 (2017).
  • Jepsen MDE , SparvathSM, NielsenTBet al. Development of a genetically encodable FRET system using fluorescent RNA aptamers. Nat. Commun.9(1), 1–10 (2018).
  • Warner KD , SjekloaL, SongW, FilonovGS, JaffreySR, Ferré-D’AmaréAR. A homodimer interface without base pairs in an RNA mimic of red fluorescent protein. Nat. Chem. Biol.13(11), 1195–1201 (2017).
  • Roszyk L , KollendaS, HennigS. Using a specific RNA-protein interaction to quench the fluorescent RNA spinach. ACS Chem. Biol.12(12), 2958–2964 (2017).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.