347
Views
3
CrossRef citations to date
0
Altmetric
Review

Recent Advances in Transmission-Blocking Drugs for Malaria Elimination

ORCID Icon, , , &
Pages 3047-3089 | Received 31 Jul 2019, Accepted 16 Oct 2019, Published online: 29 Nov 2019

References

  • WHO . World Malaria Report: 2018, WHO. Geneva, Switzerland (2018).
  • Leoni S , BuonfrateD, AnghebenA, GobbiF, BisoffiZ. The hyper-reactive malarial splenomegaly: a systematic review of the literature. Malaria J.14(1), 185 (2015).
  • Viriyavejakul P , KhachonsaksumetV, PunsawadC. Liver changes in severe Plasmodium falciparum malaria: histopathology, apoptosis and nuclear factor kappa B expression. Malaria J.13(1), 106 (2014).
  • Thanachartwet V , DesakornV, SahassanandaD, KyawWin KKY, SupapornT. Acute renal failure in patients with severe falciparum malaria: using the WHO 2006 and RIFLE criteria. Int. J. Nephrol.2013, 841518 (2013).
  • Idro R , MarshK, JohnCC, NewtonCRJ. Cerebral malaria: mechanisms of brain injury and strategies for improved neuro-cognitive outcome. Pediatr Res.68(4), 267–274 (2010).
  • Phillips MA , BurrowsJN, ManyandoC, van HuijsduijnenRH, Van VoorhisWC, WellsTNC. Malaria. Nat. Rev. Dis. Primers3, 17050 (2017).
  • Doerig C , RaynerJC, ScherfA, TobinAB. Post-translational protein modifications in malaria parasites. Nat. Rev. Microbiol.13(3), 160–172 (2015).
  • Sinden RE , CanningEU, BrayRS, SmalleyME. Gametocyte and gamete development in Plasmodium falciparum. Proc. R. Soc. Lond. B. Biol. Sci.201(1145), 375–399 (1978).
  • Smith RC , Vega-RodríguezJ, Jacobs-LorenaM. The Plasmodium bottleneck: malaria parasite losses in the mosquito vector. Mem. Inst. Oswaldo Cruz.109(5), 644–661 (2014).
  • WHO . Policy brief on single-dose primaquine as a gametocytocide in Plasmodium falciparum malaria (2015). www.who.int/malaria/publications/atoz/policy-brief-single-dose-primaquine-pf/en/.
  • Lucantoni L , LoganathanS, AveryVM. The need to compare: assessing the level of agreement of three high-throughput assays against Plasmodium falciparum mature gametocytes. Sci. Rep.7, 45992 (2017).
  • Lucantoni L , FidockDA, AveryVM. Luciferase-based, high-throughput assay for screening and profiling transmission-blocking compounds against Plasmodium falciparum gametocytes. Antimicrob. Agents Chemother.60(4), 2097–2107 (2016).
  • Bolscher JM , KoolenKMJ, van GemertGJet al. A combination of new screening assays for prioritization of transmission-blocking antimalarials reveals distinct dynamics of marketed and experimental drugs. J. Antimicrob. Chemother.70(5), 1357–1366 (2015).
  • Miguel-Blanco C , LelièvreJ, DelvesMJet al. Imaging-based high throughput screening assay to identify new molecules with transmission-blocking potential against P. falciparum female gamete formation. Antimicrob. Agents Chemother.59(6), 3298–3305 (2015).
  • Vos MW , StoneWJR, KoolenKMet al. A semi-automated luminescence based standard membrane feeding assay identifies novel small molecules that inhibit transmission of malaria parasites by mosquitoes. Sci. Rep.5, 18704 (2015).
  • Sun W , TanakaTQ, MagleCTet al. Chemical signatures and new drug targets for gametocytocidal drug development. Sci. Rep.4, 3743 (2014).
  • Lucantoni L , DuffyS, AdjalleySH, FidockDA, AveryVM. Identification of MMV malaria box inhibitors of Plasmodium falciparum early-stage gametocytes, using a luciferase-based high-throughput assay. Antimicrob. Agents Chemother.57(12), 6050–6062 (2013).
  • Wadi I , AnvikarAR, NathM, PillaiCR, SinhaA, ValechaN. Critical examination of approaches exploited to assess the effectiveness of transmission-blocking drugs for malaria. Future Med. Chem.10(22), 2619–2639 (2018).
  • D'Alessandro S , SilvestriniF, DecheringKet al. A Plasmodium falciparum screening assay for anti-gametocyte drugs based on parasite lactate dehydrogenase detection. J. Antimicrob. Chemother.68(9), 2048–2058 (2013).
  • Reader J , BothaM, TheronAet al. Nowhere to hide: interrogating different metabolic parameters of Plasmodium falciparum gametocytes in a transmission blocking drug discovery pipeline towards malaria elimination. Malaria J.14(1), 213 (2015).
  • Lelièvre J , AlmelaMJ, LozanoSet al. Activity of clinically relevant antimalarial drugs on Plasmodium falciparum mature gametocytes in an ATP bioluminescence “Transmission Blocking” assay. PLoS ONE7(4), e35019 (2012).
  • Peatey CL , SpicerTP, HodderPS, TrenholmeKR, GardinerDL. A high-throughput assay for the identification of drugs against late-stage Plasmodium falciparum gametocytes. Mol. Biochem. Parasitol.180(2), 127–131 (2011).
  • Buchholz K , BurkeTA, WilliamsonKC, WiegandRC, WirthDF, MartiM. A high-throughput screen targeting malaria transmission stages opens new avenues for drug development. J. Infect. Dis.203(10), 1445–1453 (2011).
  • Adjalley SH , JohnstonGL, LiTet al. Quantitative assessment of Plasmodium falciparum sexual development reveals potent transmission-blocking activity by methylene blue. PNAS.108(47), E1214 (2011).
  • Tanaka TQ , DeuE, Molina-CruzAet al. Plasmodium dipeptidyl aminopeptidases as malaria transmission-blocking drug targets. Antimicrob. Agents Chemother.57(10), 4645–4652 (2013).
  • Tanaka TQ , WilliamsonKC. A malaria gametocytocidal assay using oxidoreduction indicator, alamarBlue. Mol. Biochem. Parasitol.177(2), 160–163 (2011).
  • Leba L-J , MussetL, PelleauSet al. Use of Plasmodium falciparum culture-adapted field isolates for in vitro exflagellation-blocking assay. Malaria J.14(1), 234 (2015).
  • Ruecker A , MathiasDK, StraschilUet al. A male and female gametocyte functional viability assay to identify biologically relevant malaria transmission-blocking drugs. Antimicrob. Agents Chemother.58(12), 7292–7302 (2014).
  • Delves MJ , RueckerA, StraschilUet al. Male and female Plasmodium falciparum mature gametocytes show different responses to antimalarial drugs. Antimicrob. Agents Chemother.57(7), 3268–3274 (2013).
  • Azevedo R , MarkovicM, MachadoM, Franke-FayardB, MendesAM, PrudêncioM. A bioluminescence method for in vitro screening of Plasmodium transmission-blocking compounds. Antimicrob. Agents Chemother.61(6), e02699–e02716 (2017).
  • Plouffe DM , WreeM, DuAlan Yet al. High-throughput assay and discovery of small molecules that interrupt malaria transmission. Cell Host Microbe.19(1), 114–126 (2016).
  • Duffy S , AveryVM. Identification of inhibitors of Plasmodium falciparum gametocyte development. Malaria J.12(1), 408 (2013).
  • Delves M , PlouffeD, ScheurerCet al. The activities of current antimalarial drugs on the life cycle stages of Plasmodium: a comparative study with human and rodent parasites. PLOS Med.9(2), e1001169 (2012).
  • Delves MJ , SindenRE. A semi-automated method for counting fluorescent malaria oocysts increases the throughput of transmission blocking studies. Malaria J.9, 35 (2010).
  • Chevalley S , CosteA, LopezA, PipyB, ValentinA. Flow cytometry for the evaluation of anti-plasmodial activity of drugs on Plasmodium falciparum gametocytes. Malaria J.9, 49 (2010).
  • Peatey CL , Skinner-AdamsTS, DixonMWA, McCarthyJS, GardinerDL, TrenholmeKR. Effect of antimalarial drugs on Plasmodium falciparum gametocytes. J. Infect. Dis.200(10), 1518–1521 (2009).
  • Benoit-Vical F , LelièvreJ, BerryAet al. Trioxaquines are new antimalarial agents active on all erythrocytic forms, including gametocytes. Antimicrob. Agents Chemother.51(4), 1463–1472 (2007).
  • Chavalitshewinkoon-Petmitr P , PongvilairatG, AuparakkitanonS, WilairatP. Gametocytocidal activity of pyronaridine and DNA topoisomerase II inhibitors against multidrug-resistant Plasmodium falciparum in vitro. Parasitol. Intl.48(4), 275–280 (2000).
  • Birkett AJ . Status of vaccine research and development of vaccines for malaria. Vaccine.34(26), 2915–2920 (2016).
  • Sauerwein RW , BousemaT. Transmission blocking malaria vaccines: assays and candidates in clinical development. Vaccine33(52), 7476–7482 (2015).
  • Slater AF . Chloroquine: mechanism of drug action and resistance in Plasmodium falciparum. Pharmacol. Ther.57(2–3), 203–235 (1993).
  • Yeo SJ , LiuDX, KimHS, ParkH. Anti-malarial effect of novel chloroquine derivatives as agents for the treatment of malaria. Malaria J.16(1), 80 (2017).
  • Kreidenweiss A , KremsnerPG, MordmullerB. Comprehensive study of proteasome inhibitors against Plasmodium falciparum laboratory strains and field isolates from Gabon. Malar J.7(1), 187 (2008).
  • Combrinck JM , MabothaTE, NcokaziKKet al. Insights into the role of heme in the mechanism of action of antimalarials. ACS Chem. Bio.8(1), 133–137 (2013).
  • Wong W , BaiXC, SleebsBEet al. Mefloquine targets the Plasmodium falciparum 80S ribosome to inhibit protein synthesis. Nature Microbio.2(6), 17031 (2017).
  • Rohrbach P , SanchezCP, HaytonKet al. Genetic linkage of Pfmdr1 with food vacuolar solute import in Plasmodium falciparum. EMBO J.25(13), 3000–3011 (2006).
  • de Villiers KA , MarquesHM, EganTJ. The crystal structure of halofantrine-ferriprotoporphyrin IX and the mechanism of action of arylmethanol antimalarials. J. Inorgan. Biochem.102(8), 1660–1667 (2008).
  • Mwai L , KiaraSM, AbdirahmanAet al. In vitro activities of piperaquine, lumefantrine, and dihydroartemisinin in Kenyan Plasmodium falciparum isolates and polymorphisms in PFCRT and PFMDR1. Antimicrob. Agents Chemother.53(12), 5069–5073 (2009).
  • Auparakkitanon S , ChapoomramS, KuahaK, ChirachariyavejT, WilairatP. Targeting of hematin by the antimalarial pyronaridine. Antimicrob. Agents Chemother.50(6), 2197–2200 (2006).
  • García-Estrada C , PradaCF, Fernández-RubioC, Rojo-VázquezF, Balaña-FouceR. DNA topoisomerases in apicomplexan parasites: promising targets for drug discovery. Proc. Biol. Sci.277(1689), 1777–1787 (2010).
  • Nixon GL , MossDM, ShoneAEet al. Antimalarial pharmacology and therapeutics of atovaquone. J. Antimicrob. Chemother.68(5), 977–985 (2013).
  • Fidock DA , WellemsTE. Transformation with human dihydrofolate reductase renders malaria parasites insensitive to WR99210 but does not affect the intrinsic activity of proguanil. PNAS.94(20), 10931–10936 (1997).
  • Khositnithikul R , Tan-AriyaP, MungthinM. In vitro atovaquone/proguanil susceptibility and characterization of the cytochrome b gene of Plasmodium falciparum from different endemic regions of Thailand. Malaria J.7(1), 23 (2008).
  • Curtis J , MaxwellCA, MsuyaFH, MkongewaS, AllouecheA, WarhurstDC. Mutations in DHFR in Plasmodium falciparum infections selected by chlorproguanil-dapsone treatment. J. Infect Dis.186(12), 1861–1864 (2002).
  • Rathod PK , McErleanT, LeePC. Variations in frequencies of drug resistance in Plasmodium falciparum. PNAS.94(17), 9389–9393 (1997).
  • Bridgford JL , XieSC, CobboldSAet al. Artemisinin kills malaria parasites by damaging proteins and inhibiting the proteasome. Nat. Comm.9(1), 3801 (2018).
  • Gebru T , MordmüllerB, HeldJ. Effect of fluorescent dyes on in vitro-differentiated, late-stage Plasmodium falciparum gametocytes. Antimicrob. Agents Chemother.58(12), 7398–7404 (2014).
  • Pybus BS , MarcsisinSR, JinXet al. The metabolism of primaquine to its active metabolite is dependent on CYP 2D6. Malaria J.12(1), 212 (2013).
  • Kemirembe K , CabreraM, CuiL. Interactions between tafenoquine and artemisinin-combination therapy partner drug in asexual and sexual stage Plasmodium falciparum. Intl. J. Parasitol. Drugs Drug Res.7(2), 131–137 (2017).
  • Ramsay RR , DunfordC, GillmanPK. Methylene blue and serotonin toxicity: inhibition of monoamine oxidase A (MAO A) confirms a theoretical prediction. British J. Pharmacol.152(6), 946–951 (2007).
  • Prieto JH . The Binding of methylene blue to Plasmodium falciparum glutathione reductase. Biophys. J.112(3), 351a (2017).
  • Uhlemann AC , WittlinS, MatileH, BustamanteLY, KrishnaS. Mechanism of antimalarial action of the synthetic trioxolane RBX11160 (OZ277). Antimicrob. Agents Chemother.51(2), 667–672 (2007).
  • Lanteri CA , ChaorattanakaweeS, LonCet al. Ex vivo activity of endoperoxide antimalarials, including artemisone and arterolane, against multidrug-resistant Plasmodium falciparum isolates from Cambodia. Antimicrob. Agents Chemother.58(10), 5831–5840 (2014).
  • Chopra I , RobertsM. Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol. Mol. Bio. Rev.65(2), 232–260 (2001).
  • Achieng AO , IngasiaLA, JumaDWet al. Reduced in vitro doxycycline susceptibility in Plasmodium falciparum field isolates from Kenya is associated with PfTetQ KYNNNN sequence polymorphism. Antimicrob. Agents Chemother.58(10), 5894–5899 (2014).
  • White NJ . Antimalarial drug resistance. J. Clin. Invest.113(8), 1084–92 (2004).
  • Coronado LM , NadovichCT, SpadaforaC. Malarial hemozoin: from target to tool. BBA - General Subjects1840(6), 2032–2041 (2014).
  • Ginsburg H , GolenserJ. Glutathione is involved in the antimalarial action of chloroquine and its modulation affects drug sensitivity of human and murine species of Plasmodium. Redox Report.8(5), 276–279 (2003).
  • Smalley ME , SindenRE. Plasmodium falciparum gametocytes: their longevity and infectivity. Parasitology74(1), 1–8 (1977).
  • Buckling A , Ranford-CartwrightLC, MilesA, ReadAF. Chloroquine increases Plasmodium falciparum gametocytogenesis in vitro. Parasitology.118(4), 339–346 (1999).
  • Butcher GA . Antimalarial drugs and the mosquito transmission of Plasmodium. Intl. J. Parasitol.27(9), 975–987 (1997).
  • Hogh B , ThompsonR, HetzelCet al. Specific and nonspecific responses to Plasmodium falciparum blood-sage parasites and observations on the gametocytemia in school children living in a malaria-endemic area of Mozambique. Am J. Trop. Med. Hyg.52(1), 50–59 (1995).
  • Drakeley CJ , JawaraM, TargettGATet al. Addition of artesunate to chloroquine for treatment of Plasmodium falciparum malaria in Gambian children causes a significant but short-lived reduction in infectiousness for mosquitoes. Trop. Med. Intl. Health.9(1), 53–61 (2004).
  • Targett G , DrakeleyC, JawaraMet al. Artesunate reduces but does not prevent posttreatment transmission of Plasmodium falciparum to Anopheles gambiae. J. Infect. Dis.183(8), 1254–1259 (2001).
  • von Seidlein L , JawaraM, ColemanR, DohertyT, WalravenG, TargettG. Parasitaemia and gametocytaemia after treatment with chloroquine, pyrimethamine/sulfadoxine, and pyrimethamine/sulfadoxine combined with artesunate in young Gambians with uncomplicated malaria. Trop. Med. Intl. Health.6(2), 92–98 (2001).
  • Ringwald P , MecheFS, BascoLK. Short report: effects of pyronaridine on gametocytes in patients with acute uncomplicated falciparum malaria. Am. J. Trop. Med. Hyg.61(3), 446–448 (1999).
  • Lines JD , WilkesTJ, LyimoEO. Human malaria infectiousness measured by age-specific sporozoite rates in Anopheles gambiae in Tanzania. Parasitology102(Pt 2), 167–177 (1991).
  • Sowunmi A , FateyeBA. Plasmodium falciparum gametocytaemia in Nigerian children: before, during and after treatment with antimalarial drugs. Trop. Med. Intl. Health.8(9), 783–792 (2003).
  • Robert V , Awono-AmbeneHP, LeHesran JY, TrapeJF. Gametocytemia and infectivity to mosquitoes of patients with uncomplicated Plasmodium falciparum malaria attacks treated with chloroquine or sulfadoxine plus pyrimethamine. Am. J. Trop. Med. Hyg.62(2), 210–216 (2000).
  • Hallett RL , SutherlandCJ, AlexanderNet al. Combination therapy counteracts the enhanced transmission of drug-resistant malaria parasites to mosquitoes. Antimicrob. Agents Chemother.48(10), 3940–3943 (2004).
  • Ecker A , LakshmananV, SinnisP, CoppensI, FidockDA. Evidence that mutant PfCRT facilitates the transmission to mosquitoes of chloroquine-treated Plasmodium gametocytes. J. Infect. Dis.203(2), 228–236 (2011).
  • Sowunmi A , NkoghoOO, OkuboyejoTM, GbotoshoGO, HappiCT, AdewoyeEO. Effects of mefloquine and artesunate mefloquine on the emergence, clearance and sex ratio of Plasmodium falciparum gametocytes in malarious children. Malaria J.8(1), 297 (2009).
  • Harinasuta T , LasserreR, BunnagD, LeimerR, VinijanontS. Trials of mefloquine in vivax and of mefloquine plus ‘Fansidar’ in falciparum malaria. Lancet.325(8434), 885–888 (1985).
  • Price RN , NostenF, LuxemburgerCet al. Effects of artemisinin derivatives on malaria transmissibility. Lancet.347(9016), 1654–1658 (1996).
  • Stepniewska K , PriceRN, SutherlandCJet al. Plasmodium falciparum gametocyte dynamics in areas of different malaria endemicity. Malaria J.7(1), 249 (2008).
  • Penna-Coutinho J , AlmelaMJ, Miguel-BlancoCet al. Transmission-blocking potential of MEFAS, a hybrid compound derived from artesunate and mefloquine. Antimicrob. Agents Chemother.60(5), 3145–3147 (2016).
  • Vugt MV , WilairatanaP, GemperliBet al. Efficacy of six doses of artemether-lumefantrine (benflumetol) in multidrug-resistant Plasmodium falciparum malaria. Am. J. Trop. Med. Hyg.60(6), 936–942 (1999).
  • Price RN , MarfurtJ, ChalfeinFet al. In vitro activity of pyronaridine against multidrug-resistant Plasmodium falciparum and Plasmodium vivax. Antimicrob. Agents Chemother.54(12), 5146 (2010).
  • Duffy S , LoganathanS, HolleranJP, AveryVM. Large-scale production of Plasmodium falciparum gametocytes for malaria drug discovery. Nat. Protoc.11(5), 976–992 (2016).
  • Peatey CL , LeroyD, GardinerDL, TrenholmeKR. Anti-malarial drugs: how effective are they against Plasmodium falciparum gametocytes?Malaria J.11(1), 34 (2012).
  • Duparc S , Borghini-FuhrerI, CraftCJet al. Safety and efficacy of pyronaridine-artesunate in uncomplicated acute malaria: an integrated analysis of individual patient data from six randomized clinical trials. Malaria J.12(1), 70 (2013).
  • Srivastava IK , VaidyaAB. A mechanism for the synergistic antimalarial action of atovaquone and proguanil. Antimicrob. Agents Chemother.43(6), 1334–1339 (1999).
  • Butcher GA , SindenRE. Persistence of atovaquone in human sera following treatment: inhibition of Plasmodium falciparum development in vivo and in vitro. Am. J. Trop. Med. Hyg.68(1), 111–114 (2003).
  • Butcher GA , MendozaJ, SindenRE. Inhibition of the mosquito transmission of Plasmodium berghei by Malarone™ (atovaquone-proguanil). Ann. Trop. Med. Parasitol.94(5), 429–436 (2000).
  • Enosse S , ButcherGA, MargosG, MendozaJ, SindenRE, HoghB. The mosquito transmission of malaria: the effects of atovaquone-proguanil (Malarone™) and chloroquine. Trans. R. Soc. Trop. Med. Hyg.94(1), 77–82 (2000).
  • Blagborough AM , ChurcherTS, UptonLM, GhaniAC, GethingPW, SindenRE. Transmission-blocking interventions eliminate malaria from laboratory populations. Nat. Comm.4, 1812 (2013).
  • van Vugt M , LeonardiE, PhaipunLet al. Treatment of uncomplicated multidrug-resistant falciparum malaria with artesunate-atovaquone-proguanil. Clin. Infect. Dis.35(12), 1498–1504 (2002).
  • Premji Z , UmehRE, Owusu-AgyeiSet al. Chlorproguanil–dapsone–artesunate versus artemether–lumefantrine: a randomized, double-blind Phase III trial in African children and adolescents with uncomplicated Plasmodium falciparum malaria. PLoS ONE.4(8), e6682 (2009).
  • Tiono AB , DickoA, NdububaDAet al. Chlorproguanil-dapsone-artesunate versus chlorproguanil-dapsone: a randomized, double-blind, Phase III Trial in African children, adolescents and adults with uncomplicated Plasmodium falciparum malaria. Am. J. Trop. Med. Hyg.81(6), 969–978 (2009).
  • Beavogui AH , DjimdeAA, GregsonAet al. Low infectivity of Plasmodium falciparum gametocytes to Anopheles gambiae following treatment with sulfadoxine-pyrimethamine in Mali. Intl. J. Parasitol.40(10), 1213–1220 (2010).
  • Barnes KI , LittleF, MabuzaAet al. Increased gametocytemia after treatment: an early parasitological indicator of emerging sulfadoxine-pyrimethamine resistance in falciparum malaria. J. Infect. Dis.197(11), 1605–1613 (2008).
  • Ndounga M , MayenguePI, TaharRet al. Efficacy of sulfadoxine-pyrimethamine, amodiaquine, and sulfadoxine-pyrimethamine-amodiaquine combination for the treatment of uncomplicated falciparum malaria in the urban and suburban areas of Brazzaville (Congo). Acta Trop.103(3), 163–171 (2007).
  • Sowunmi A , AdedejiAA, GbotoshoGO, FateyeBA, HappiTC. Effects of pyrimethamine-sulphadoxine, chloroquine plus chlorpheniramine, and amodiaquine plus pyrimethamine-sulphadoxine on gametocytes during and after treatment of acute, uncomplicated malaria in children. Mem. Inst. Oswaldo Cruz101(8), 887–893 (2006).
  • Schneider, P, BousemaT, OmarSet al. (Sub)microscopic Plasmodium falciparum gametocytaemia in Kenyan children after treatment with sulphadoxine-pyrimethamine monotherapy or in combination with artesunate. Intl. J. Parasitol.36(4), 403–408 (2006).
  • Bousema JT , GouagnaLC, MeutstegeAMet al. Treatment failure of pyrimethamine-sulphadoxine and induction of Plasmodium falciparum gametocytaemia in children in western Kenya. Trop. Med. Intl. Health.8(5), 427–430 (2003).
  • Méndez F , MuñozÁ, CarrasquillaGet al. Determinants of treatment response to sulfadoxine-pyrimethamine and subsequent transmission potential in falciparum malaria. Am. J. Epidemiol.156(3), 230–238 (2002).
  • von Seidlein L , MilliganP, PinderMet al. Efficacy of artesunate plus pyrimethamine-sulphadoxine for uncomplicated malaria in Gambian children: a double-blind, randomised, controlled trial. Lancet355(9201), 352–357 (2000).
  • Kone A , vande Vegte-Bolmer M, Siebelink-StoterRet al. Sulfadoxine-pyrimethamine impairs Plasmodium falciparum gametocyte infectivity and Anopheles mosquito survival. Intl. J. Parasitol.40(10), 1221–1228 (2010).
  • Hallett RL , DunyoS, OrdRet al. Chloroquine/sulphadoxine-pyrimethamine for Gambian children with malaria: transmission to mosquitoes of multidrug-resistant Plasmodium falciparum. PLoS Clin Trials.1(3), e15 (2006).
  • Chutmongkonkul M , MaierWA, SeitzHM. Plasmodium falciparum: effect of chloroquine, halofantrine and pyrimethamine on the infectivity of gametocytes for Anopheles stephensi mosquitoes. Ann. Trop. Med. Parasitol.86(2), 103–110 (1992).
  • Hogh B , Gamage-MendisA, ButcherGAet al. The differing impact of chloroquine and pyrimethamine/sulfadoxine upon the infectivity of malaria species to the mosquito vector. Am. J. Trop. Med. Hyg.58(2), 176–182 (1998).
  • WHO . Guidelines for the Treatment of Malaria. World Health Organization, Geneva, Third edition. www.who.int/malaria/publications/atoz/9789241549127/en/ (2015).
  • Abay SM . Blocking malaria transmission to Anopheles mosquitoes using artemisinin derivatives and primaquine: a systematic review and meta-analysis. Parasites Vectors.6(1), 278 (2013).
  • Carmona-Fonseca J , ArangoE, BlairS. Gametocytemia in falciparum malaria treated with amodiaquine or artesunate. Biomedica28(2), 195–212 (2008).
  • WWARN Gametocyte Study Group . Gametocyte carriage in uncomplicated Plasmodium falciparum malaria following treatment with artemisinin combination therapy: a systematic review and meta-analysis of individual patient data. BMC Med.14(1), 79 (2016).
  • Bousema T , OkellL, ShekalagheSet al. Revisiting the circulation time of Plasmodium falciparum gametocytes: molecular detection methods to estimate the duration of gametocyte carriage and the effect of gametocytocidal drugs. Malaria J.9(1), 136 (2010).
  • Okell LC , DrakeleyCJ, GhaniAC, BousemaT, SutherlandCJ. Reduction of transmission from malaria patients by artemisinin combination therapies: a pooled analysis of six randomized trials. Malaria J.7(1), 125 (2008).
  • Barnes KI , DurrheimDN, LittleFet al. Effect of artemether-lumefantrine policy and improved vector control on malaria burden in KwaZulu–Natal, South Africa. PLoS Med.2(11), e330 (2005).
  • Chen PQ , LiGQ, GuoXBet al. The infectivity of gametocytes of Plasmodium falciparum from patients treated with artemisinin. Chin. Med. J.107(9), 709–711 (1994).
  • Makanga M . A review of the effects of artemether-lumefantrine on gametocyte carriage and disease transmission. Malaria J.13(1), 291 (2014).
  • Price RN . Potential of artemisinin-based combination therapies to block malaria transmission. J. Infect. Dis.207(11), 1627–1629 (2013).
  • Bousema JT , SchneiderP, GouagnaLCet al. Moderate effect of artemisinin-based combination therapy on transmission of Plasmodium falciparum . J. Infect. Dis. 193(8), 1151–1159 (2006).
  • Sutherland CJ , OrdR, DunyoSet al. Reduction of malaria transmission to Anopheles mosquitoes with a six-dose regimen of co-artemether. PLoS Med.2(4), e92 (2005).
  • van den Broek I , KitzC, AlAttas S, LibamaF, BalasegaramM, GuthmannJP. Efficacy of three artemisinin combination therapies for the treatment of uncomplicated Plasmodium falciparum malaria in the Republic of Congo. Malaria J.5, 113 (2006).
  • Kern SE , TionoAB, MakangaMet al. Community screening and treatment of asymptomatic carriers of Plasmodium falciparum with artemether-lumefantrine to reduce malaria disease burden: a modelling and simulation analysis. Malaria J.10, 210 (2011).
  • Kumar N , ZhengH. Stage-specific gametocytocidal effect in vitro of the antimalaria drug qinghaosu on Plasmodium falciparum. Parasitol. Res.76(3), 214–218 (1990).
  • Smithuis F , KyawMK, PheOet al. Effectiveness of five artemisinin combination regimens with or without primaquine in uncomplicated falciparum malaria: an open-label randomised trial. Lancet Infect. Dis.10(10), 673–681 (2010).
  • Coulibaly B , PritschM, BountogoMet al. Efficacy and safety of triple combination therapy with artesunate-amodiaquine-methylene blue for falciparum malaria in children: a randomised controlled trial in Burkina Faso. J. Infect. Dis.211(5), 689–697 (2015).
  • Okebe J , BousemaT, AffaraMet al. The gametocytocidal efficacy of different single doses of primaquine with dihydroartemisinin-piperaquine in asymptomatic parasite carriers in the Gambia: a randomized controlled trial. EBioMedicine13, 348–355 (2016).
  • WHO . Overview of malaria treatment (2019). www.who.int/malaria/areas/treatment/overview/en/
  • Shah NK , TyagiP, SharmaSK. The impact of artemisinin combination therapy and long-lasting insecticidal nets on forest malaria incidence in tribal villages of India, 2006–2011. PLoS ONE8(2), e56740 (2013).
  • Esu E , EffaEE, OpieON, UwaomaA, MeremikwuMM. Artemether for severe malaria. Cochrane database Syst. Rev.6, CD010678 (2014).
  • Makanga M , KrudsoodS. The clinical efficacy of artemether/lumefantrine (Coartem®). Malaria J.8(Suppl. 1), S5 (2009).
  • Navaratnam V , MansorSM, SitNW, GraceJ, LiQ, OlliaroP. Pharmacokinetics of artemisinin-type compounds. Clin. Pharmacokinet.39(4), 255–270 (2000).
  • Chotivanich K , SattabongkotJ, UdomsangpetchRet al. Transmission-blocking activities of quinine, primaquine, and artesunate. Antimicrob. Agents Chemother.50(6), 1927–1930 (2006).
  • Djimde AA , MaigaAW, OuologuemDet al. Gametocyte clearance dynamics following oral artesunate treatment of uncomplicated falciparum malaria in Malian children. Parasite23, 3 (2016).
  • Sowunmi A , BalogunT, GbotoshoGO, HappiCT, AdedejiAA, FehintolaFA. Activities of amodiaquine, artesunate, and artesunate-amodiaquine against asexual- and sexual-stage parasites in falciparum malaria in children. Antimicrob. Agents Chemother.51(5), 1694 (2007).
  • Price RN , NostenF, SimpsonJAet al. Risk factors for gametocyte carriage in uncomplicated falciparum malaria. Am. J. Trop. Med. Hyg.60(6), 1019–1023 (1999).
  • Bousema JT , GouagnaLC, MeutstegeAMet al. Treatment failure of pyrimethamine-sulphadoxine and induction of Plasmodium falciparum gametocytaemia in children in Western Kenya. Trop. Med. Intl. Health.8(5), 427–430 (2003).
  • Sirima SB , OgutuB, LusinguJPAet al. Comparison of artesunate-mefloquine and artemether-lumefantrine fixed-dose combinations for treatment of uncomplicated Plasmodium falciparum malaria in children younger than 5 years in sub-Saharan Africa: a randomised, multicentre, Phase 4 trial. Lancet Infect. Dis.16(10), 1123–1133 (2016).
  • Yavo W , KonateA, KassiFKet al. Efficacy and safety of artesunate-amodiaquine versus artemether-lumefantrine in the treatment of uncomplicated Plasmodium falciparum malaria in sentinel sites across Cote d'Ivoire. Malaria Res. Treat.2015, 878132 (2015).
  • Yeka A , DorseyG, KamyaMRet al. Artemether-lumefantrine versus dihydroartemisinin-piperaquine for treating uncomplicated malaria: a randomized trial to guide policy in Uganda. PLoS ONE3(6), e2390 (2008).
  • Kamya MR , YekaA, BukirwaHet al. Artemether-lumefantrine versus dihydroartemisinin-piperaquine for treatment of malaria: a randomized trial. PLoS Clin. Trials.2(5), e20 (2007).
  • Mweresa CK , SawaP, YussufRUet al. Malaria transmission after artemether-lumefantrine and dihydroartemisinin-piperaquine: a randomized trial. J. Infect. Dis.207(11), 1637–1645 (2013).
  • Sawa P , ShekalagheSA, DrakeleyCJet al. Malaria transmission after artemether-lumefantrine and dihydroartemisinin-piperaquine: a randomized trial. J. Infect. Dis.207(11), 1637–1645 (2013).
  • Mens PF , SawaP, van AmsterdamSMet al. A randomized trial to monitor the efficacy and effectiveness by QT-NASBA of artemether-lumefantrine versus dihydroartemisinin-piperaquine for treatment and transmission control of uncomplicated Plasmodium falciparum malaria in western Kenya. Malaria J.7, 237 (2008).
  • 4ABC- The Four Artemisinin-Based Combinations (4ABC) Study Group . A head-tohead comparison of four artemisinin-based combinations for treating uncomplicated malaria in African children: a randomized trial. PLoS Med.8, e1001119 (2011).
  • Lefèvre G , LooareesuwanS, TreeprasertsukSet al. A clinical and pharmacokinetic trial of six doses of artemether-lumefantrine for multidrug-resistant Plasmodium falciparum malaria in Thailand. Am. J. Trop. Med. Hyg.64(5–6), 247–256 (2001).
  • Zwang J , AshleyEA, KaremaCet al. Safety and efficacy of dihydroartemisinin-piperaquine in falciparum malaria: a prospective multi-centre individual patient data analysis. PLoS ONE4(7), e6358 (2009).
  • Sowunmi A , BalogunST, GbotoshoGO, HappiCT. Plasmodium falciparum gametocyte sex ratios in children with acute, symptomatic, uncomplicated infections treated with amodiaquine. Malaria J.7(1), 169 (2008).
  • Gonçalves D , HunzikerP. Transmission-blocking strategies: the roadmap from laboratory bench to the community. Malaria J.15(1), 95 (2016).
  • Ouedraogo AL , GonçalvesBP, GnemeAet al. Dynamics of the human infectious reservoir for malaria determined by mosquito feeding assays and ultrasensitive malaria diagnosis in Burkina Faso. J. Infect. Dis.213(1), 90–99 (2015).
  • Sowunmi A , FehintolaFA, AdedejiAAet al. Open randomized study of artesunate-amodiaquine vs. chloroquine-pyrimethamine-sulfadoxine for the treatment of uncomplicated Plasmodium falciparum malaria in Nigerian children. Trop. Med. Int. Health.10(11), 1161–1670 (2005).
  • Adjuik M , AgnameyP, BabikerAet al. Amodiaquine-artesunate versus amodiaquine for uncomplicated Plasmodium falciparum malaria in African children: a randomised, multicentre trial. Lancet359(9315), 1365–1672 (2002).
  • Agomo PU , MeremikwuMM, WatilaIMet al. Efficacy, safety and tolerability of artesunate-mefloquine in the treatment of uncomplicated Plasmodium falciparum malaria in four geographic zones of Nigeria. Malaria J.7(1), 172 (2008).
  • Sagara I , DialloA, KoneMet al. A randomized trial of artesunate-mefloquine versus artemether-lumefantrine for treatment of uncomplicated Plasmodium falciparum malaria in Mali. Am. J. Trop. Med. Hyg.79(5), 655–661 (2008).
  • Tangpukdee N , KrudsoodS, SrivilairitSet al. Gametocyte clearance in uncomplicated and severe Plasmodium falciparum malaria after artesunate-mefloquine treatment in Thailand. Korean J. Parasitol.46(2), 65–70 (2008).
  • Shekalaghe S , DrakeleyC, GoslingRet al. Primaquine clears submicroscopic Plasmodium falciparum gametocytes that persist after treatment with sulphadoxine-pyrimethamine and artesunate. PLoS ONE2(10), e1023 (2007).
  • Schneider P , BousemaT, OmarSet al. (Sub)microscopic Plasmodium falciparum gametocytaemia in Kenyan children after treatment with sulphadoxine-pyrimethamine monotherapy or in combination with artesunate. Int. J. Parasitol.36(4), 403–408 (2006).
  • Priotto G , KabakyengaJK, PinogesLet al. Artesunate and sulfadoxine-pyrimethamine combinations for the treatment of uncomplicated Plasmodium falciparum malaria in Uganda: a randomized, double-blind, placebo controlled trial. Trans. R. Soc. Trop. Med. Hyg.97(3), 325–330 (2003).
  • Oesterholt MJAM , AlifrangisM, SutherlandCJet al. Submicroscopic gametocytes and the transmission of antifolate-resistant Plasmodium falciparum in Western Kenya. PLoS ONE4(2), e4364 (2009).
  • Mohamed AO , AbdelHamid MM, MohamedOSet al. Efficacies of DHA–PPQ and AS/SP in patients with uncomplicated Plasmodium falciparum malaria in an area of an unstable seasonal transmission in Sudan. Malaria J.16(1), 163 (2017).
  • The Worldwide Antimalarial Resistance Network DPSG . The effect of dosing regimens on the antimalarial efficacy of dihydroartemisinin-piperaquine: a pooled analysis of individual patient data. PLoS Medicine10(12), e1001564 (2013).
  • Sutanto I , SuprijantoS, KosasihAet al. The effect of primaquine on gametocyte development and clearance in the treatment of uncomplicated falciparum malaria with dihydroartemisinin-piperaquine in south Sumatra, western Indonesia: an open-label, randomized, controlled trial. Clin. Infect. Dis.56(5), 685–693 (2013).
  • Denis MB , DavisTM, HewittSet al. Efficacy and safety of dihydroartemisinin-piperaquine (Artekin) in Cambodian children and adults with uncomplicated falciparum malaria. Clin. Infect Dis.35(12), 1469–1476 (2002).
  • Dabira E . Gametocyte carriage after a treatment with primaquine combined with dihydroartemisinin-piperaquine in malaria infected asymptomatic individuals. BMJ Global Health2(Suppl. 2), A20 (2017).
  • Grande T , BernasconiA, ErhartAet al. A randomised controlled trial to assess the efficacy of dihydroartemisinin-piperaquine for the treatment of uncomplicated falciparum malaria in Peru. PLoS ONE2(10), e1101 (2007).
  • Lanners HN . Effect of the 8-aminoquinoline primaquine on culture derived. Parasitol. Res.77(6), 478–481 (1991).
  • Schlesinger PH , KrogstadDJ, HerwaldtBL. Antimalarial agents: mechanisms of action. Antimicrob. Agents Chemother.32(6), 793–798 (1988).
  • Aikawa M , BeaudoinRL. Morphological effects of 8-aminoquinolines on the exoerythrocytic stages of Plasmodium fallax. Mil. Med.134(10), 986–999 (1969).
  • Marcsisin SR , ReichardG, PybusBS. Primaquine pharmacology in the context of CYP 2D6 pharmacogenomics: current state of the art. Pharm. Ther.161, 1–10 (2016).
  • Wadi I , PillaiCR, AnvikarAR, SinhaA, NathM, ValechaN. Methylene blue induced morphological deformations in Plasmodium falciparum gametocytes: implications for transmission-blocking. Malaria J.17(1), 11 (2018).
  • Lin JT , LonC, SpringMDet al. Single dose primaquine to reduce gametocyte carriage and Plasmodium falciparum transmission in Cambodia: an open-label randomized trial. PLoS ONE12(6), e0168702 (2017).
  • White NJ . Primaquine to prevent transmission of falciparum malaria. Lancet Infect. Dis.13(2), 175–181 (2013).
  • Shekalaghe SA , ter BraakR, DaouMet al. In Tanzania, hemolysis after a single dose of primaquine coadministered with an artemisinin is not restricted to glucose-6-phosphate dehydrogenase-deficient (G6PD A–) individuals. Antimicrob. Agents Chemother.54(5), 1762 (2010).
  • Karwacki JJ , ShanksGD, KummalueT, WatanasookC. Primaquine induced hemolysis in a Thai soldier. Southeast Asian. J. Trop. Med. Public Health.20(4), 555–556 (1989).
  • Eziefula AC , BousemaT, YeungSet al. Single dose primaquine for clearance of Plasmodium falciparum gametocytes in children with uncomplicated malaria in Uganda: a randomised, controlled, double-blind, dose-ranging trial. Lancet Infect. Dis.14(2), 130–139 (2014).
  • Tine RC , SyllaK, FayeBTet al. Safety and efficacy of adding a single low dose of primaquine to the treatment of adult patients with Plasmodium falciparum malaria in Senegal, to reduce gametocyte carriage: a randomized controlled trial. Clin. Infect. Dis.65(4), 535–543 (2017).
  • Dicko A , BrownJM, DiawaraHet al. Primaquine to reduce transmission of Plasmodium falciparum malaria in Mali: a single-blind, dose-ranging, adaptive randomised Phase 2 trial. Lancet Infect. Dis.16(6), 674–684 (2016).
  • Mwaiswelo R , NgasalaBE, JovelIet al. Safety of a single low-dose of primaquine in addition to standard artemether-lumefantrine regimen for treatment of acute uncomplicated Plasmodium falciparum malaria in Tanzania. Malaria J.15(1), 316 (2016).
  • Bancone G , ChowwiwatN, SomsakchaicharoenRet al. Single low dose primaquine (0.25 mg/kg) does not cause clinically significant haemolysis in G6PD deficient subjects. PLoS ONE11(3), e0151898 (2016).
  • White NJ , AshleyEA, RechtJet al. Assessment of therapeutic responses to gametocytocidal drugs in Plasmodium falciparum malaria. Malaria J.13(1), 483 (2014).
  • Batu AT . Primaquine induced haemolysis in G6PD deficient Burmese. Trans. R. Soc. Trop. Med. Hyg.64, 785–786 (1970).
  • Khandelia V , PyarsabadiP, NamaU, ChittoraS, SwamiY, RichariyaH. The potential nephrotoxic effect of single tablet of 15mg primaquine in G6PD deficient Hadoti region population of India. Intl. J. Adv. Med.4(2), 605 (2017).
  • Salvidio E , PannacciulliI, TizianelloA, AjmarF. Nature of hemolytic crisis and the fate of G6PD deficient, drug-damaged erythrocytes in Sardinians. N. Engl. J. Med.276(24), 1339–1344 (1967).
  • John CC . Primaquine plus artemisinin combination therapy for reduction of malaria transmission: promise and risk. BMC Med.14(1), 65 (2016).
  • Gonçalves BP , PettH, TionoABet al. Age, weight, and CYP2D6 genotype are major determinants of primaquine pharmacokinetics in African children. Antimicrob. Agents Chemother.61(5), e02590–e02616 (2017).
  • Bennett JW , PybusBS, YadavaAet al. Primaquine failure and cytochrome P-450 2D6 in Plasmodium vivax malaria. N. Engl. J. Med.369(14), 1381–1382 (2013).
  • Wright GE , NiehausDJ, DrogemollerBI, KoenL, GaedigkA, WarnichL. Elucidation of CYP2D6 genetic diversity in a unique African population: implications for the future application of pharmacogenetics in the Xhosa population. Ann. Hum. Genet.74(4), 340–350 (2010).
  • Meltzer E , SchwartzE. Low-dose primaquine for falciparum malaria. Lancet Infect. Dis.14, 449 (2014).
  • Bright AT , AlenaziT, ShokoplesSet al. Genetic analysis of primaquine tolerance in a patient with relapsing vivax malaria. Emerg. Infect. Dis.19(5), 802–805 (2013).
  • Langholz Kristensen K , DragstedUB. Recurrent Plasmodium vivax malaria due to dose-dependent primaquine resistance: a case report. Scand. J. Infect. Dis.46(1), 63–65 (2013).
  • Stone W , GonçalvesBP, BousemaT, DrakeleyC. Assessing the infectious reservoir of falciparum malaria: past and future. Trends Parasitol.31(7), 287–296 (2015).
  • Lin JT , SaundersDL, MeshnickSR. The role of submicroscopic parasitemia in malaria transmission: what is the evidence?Trends Parasitol.30(4), 183–190 (2014).
  • Chen IT , GoslingRD. Targeting Plasmodium falciparum transmission with primaquine: same efficacy, improved safety with a lower dose?Expert Rev. Clin. Pharmacol.7(6), 681–686 (2014).
  • Lacerda MVG , Llanos-CuentasA, KrudsoodSet al. Single-dose tafenoquine to prevent relapse of Plasmodium vivax malaria. New Eng. J. Med.380(3), 215–228 (2019).
  • Ramharter M , NoedlH, ThimasarnK, WiedermannG, WernsdorferG, WernsdorferWH. In vitro activity of tafenoquine alone and in combination with artemisinin against Plasmodium falciparum. Am. J. Trop. Med. Hyg.67(1), 39–43 (2002).
  • Edstein MD , KociskoDA, BrewerTG, WalshDS, EamsilaC, CharlesBG. Population pharmacokinetics of the new antimalarial agent tafenoquine in Thai soldiers. British J. Clin. Pharmacol.52(6), 663–670 (2001).
  • Lell B , FaucherJF, MissinouMAet al. Malaria chemoprophylaxis with tafenoquine: a randomised study. Lancet355(9220), 2041–2045 (2000).
  • Brueckner RP , CosterT, WescheDL, ShmuklarskyM, SchusterBG. Prophylaxis of Plasmodium falciparum infection in a human challenge model with WR 238605, a new 8-aminoquinoline antimalarial. Antimicrob. Agents Chemother.42(5), 1293–1294 (1998).
  • Crockett M , KainKC. Tafenoquine: a promising new antimalarial agent. Expert. Opin. Investig. Drugs16(5), 705–715 (2007).
  • Obaldia N , RossanRN, CooperRDet al. WR 238605, chloroquine, and their combinations as blood schizonticides against a chloroquine-resistant strain of Plasmodium vivax in Aotus monkeys. Am. J. Trop. Med. Hyg.56(5), 508–510 (1997).
  • Cooper RD , MilhousWK, RieckmannKH. The efficacy of WR 238605 against the blood stages of a chloroquine resistant strain of Plasmodium vivax. Trans. R. Soc. Trop. Med. Hyg.88(6), 691–692 (1994).
  • Peters W , RobinsonBL, MilhousWK. The chemotherapy of rodent malaria. LI. Studies on a new 8-aminoquinoline, WR 238,605. Annals Tropical Med. Parasitol.87(6), 547–552 (1993).
  • Coleman RE , ClavinAM, MilhousWK. Gametocytocidal and sporontocidal activity of antimalarials against Plasmodium berghei ANKA in ICR mice and Anopheles stephensi mosquitoes. Am. J. Trop. Med. Hyg.46(2), 169–182 (1992).
  • Ponsa N , SattabongkotJ, KittayapongP, EikaratN, ColemanRE. Transmission-blocking activity of tafenoquine (WR-238605) and artelinic acid against naturally circulating strains of Plasmodium vivax in Thailand. Am. J. Trop. Med. Hyg.69(5), 542–547 (2003).
  • Green, JA, MohamedK, GoyalNet al. Pharmacokinetic interactions between tafenoquine and dihydroartemisinin-piperaquine or artemether-lumefantrine in healthy adult subjects. Antimicrob. Agents Chemother.60(12), 7321–7332 (2016).
  • St Jean PL , XueZ, CarterNet al. Tafenoquine treatment of Plasmodium vivax malaria: suggestive evidence that CYP2D6 reduced metabolism is not associated with relapse in the Phase 2b DETECTIVE trial. Malaria J.15, 97 (2016).
  • Marcsisin SR , SousaJC, ReichardGAet al. Tafenoquine and NPC-1161B require CYP 2D metabolism for anti-malarial activity: implications for the 8-aminoquinoline class of anti-malarial compounds. Malaria J.13(1), 2 (2014).
  • GlaxoSmithKline . G6PD (Glucose-6-Phosphate Dehydrogenase) Study to Evaluate Hemolysis Potential of TFQ (Tafenoquine). ClinicalTrials.gov.Bethesda, MDhttps://clinicaltrials.gov/ct2/show/NCT01205178.(2018).
  • Coulibaly B , ZoungranaA, MockenhauptFPet al. Strong gametocytocidal effect of methylene blue-based combination therapy against falciparum malaria: a randomised controlled trial. PLoS ONE4(5), e5318 (2009).
  • Lu G , NagbanshiM, GoldauNet al. Efficacy and safety of methylene blue in the treatment of malaria: a systematic review. BMC Med.16(1), 59 (2018).
  • Wadi I , PrasadD, BatraNet al. Targeting asexual and sexual blood stages of human malaria parasite P. falciparum with 7-chloroquinoline based [1,2,3]-triazoles. ChemMedChem14(4), 484–493 (2019).
  • Kumar H , WadiI, DevarajiV, PillaiCR, GhoshSK. A novel quinoline-appended chalcone derivative as potential Plasmodium falciparum gametocytocide. J. Vector Borne Dis. [ IN PRESS]
  • Bountogo M , ZoungranaA, CoulibalyBet al. Efficacy of methylene blue monotherapy in semi-immune adults with uncomplicated falciparum malaria: a controlled trial in Burkina Faso. Trop. Med. Intl. Health.15(6), 713–717 (2010).
  • Zoungrana A , CoulibalyB, SiéAet al. Safety and efficacy of methylene blue combined with artesunate or amodiaquine for uncomplicated falciparum malaria: a randomized controlled trial from Burkina Faso. PLoS ONE3(2), e1630 (2008).
  • Meissner PE , MandiG, WitteSet al. Safety of the methylene blue plus chloroquine combination in the treatment of uncomplicated falciparum malaria in young children of Burkina Faso [ISRCTN27290841]. Malaria J.4(1), 45 (2005).
  • Kiszewski AE . Blocking Plasmodium falciparum malaria transmission with drugs: the gametocytocidal and sporontocidal properties of current and prospective antimalarials. Pharmaceuticals4(1), 44–68 (2010).
  • Walter-Sack I , RengelshausenJ, OberwittlerHet al. High absolute bioavailability of methylene blue given as an aqueous oral formulation. Eur. J. Clin. Pharm.65(2), 179–189 (2009).
  • McDonagh EM , BautistaJM, YoungsterI, AltmanRB, KleinTE. PharmGKB summary: methylene blue pathway. Pharmacogenet. Genomics23(9), 498–508 (2013).
  • Sikka P , BindraVK, KapoorS, JainV, SaxenaKK. Blue cures blue but be cautious. J. Pharm. Bioallied Sci.3(4), 543–545 (2011).
  • Foltz LM , DalalBI, WadsworthLDet al. Recognition and management of methemoglobinemia and hemolysis in a G6PD-deficient patient on experimental anticancer drug Triapine. Amer. J. Hemat.81(3), 210–211 (2006).
  • Liao YP , HungDZ, YangDY. Hemolytic anemia after methylene blue therapy for aniline-induced methemoglobinemia. Vet. Hum. Toxicol.44(1), 19–21 (2002).
  • Karadsheh NS . Metoclopramide-induced methemoglobinemia in a patient with co-existing deficiency of glucose-6-phosphate dehydrogenase and NADH-cytochrome b5 reductase: failure of methylene blue treatment. Haematologica86(6), 659–660 (2001).
  • Rosen PJ , JohnsonC, McGeheeWG, BeutlerE. Failure of methylene blue treatment in toxic methemoglobinemia. Association with glucose-6-phosphate dehydrogenase deficiency. Ann. Intern Med.75(1), 83–86 (1971).
  • Dart CR . Medical Toxicology. 3rd Edition. Lippincott Williams and Wilkins, PA, USA (2004).
  • Mandi G , WitteS, MeissnerPet al. Safety of the combination of chloroquine and methylene blue in healthy adult men with G6PD deficiency from rural Burkina Faso. Trop. Med. Intl Health.10(1), 32–38 (2005).
  • Middali MM . Postoperative methemoglobinemia with associated G-6-P-D deficiency in infant cardiac surgery – enigmas in diagnosis and management. Paediatr. Anaesth.15(4), 334–337 (2005).
  • Golden PJ , WeinsteinR. Treatment of high-risk, refractory acquired methemoglobinemia with automated red blood cell exchange. J. Clin. Apher.13(1), 28–31 (1998).
  • Müller O , MockenhauptFP, MarksBet al. Haemolysis risk in methylene blue treatment of G6PD-sufficient and G6PD-deficient West-African children with uncomplicated falciparum malaria: a synopsis of four RCTs. Pharmacoepidemiol. Drug Saf.22(4), 3768385 (2013).
  • University of Oxford . Pharmacokinetic and in vitro transmission blocking activities study of primaquine compare to methylene blue in healthy volunteer both G6PD normal and G6PD deficiency. In: ClinicalTrials.gov. Bethesda,MD, USA (2016). https://clinicaltrials.gov/ct2/show/NCT01668433
  • Heidelberg University . Methylene blue against falciparum malaria in Burkina Faso (BlueACTn). In: ClinicalTrials.gov. Bethesda, MD, USA (2016). https://clinicaltrials.gov/ct2/show/NCT02851108
  • Toure OA , ValechaN, TshefuAKet al. A Phase 3, double-blind, randomized study of arterolane maleate-piperaquine phosphate vs artemether-lumefantrine for falciparum malaria in adolescent and adult patients in Asia and Africa. Clin. Infect. Dis.62(8), 964–971 (2016).
  • Krudsood S , WilairatanaP, TangpukdeeNet al. Safety and tolerability of elubaquine (bulaquine, CDRI 80/53) for treatment of Plasmodium vivax malaria in Thailand. Korean J. Parasitol.44(3), 221–228 (2006).
  • Noel S , SharmaS, ShankarR, RathSK. Identification of differentially expressed genes after acute exposure to bulaquine (CDRI 80/53) in mice liver. Basic Clin. Pharmacol. Toxicol.103(6), 522–529 (2008).
  • Dutta GP . New antimalarial drug discovery in India and future strategy for malaria control. Proc. Ind. Natl Sci. Acad.82(1), 31–52 (2016).
  • Puri SK , DuttaGP. Plasmodium cynomolgi: gametocytocidal activity of the anti-malarial compound CDRI 80/53 (elubaquine) in rhesus monkeys. Exp. Parasitol.111(1), 8–13 (2005).
  • von Seidlein L , AuburnS, EspinoFet al. Review of key knowledge gaps in glucose-6-phosphate dehydrogenase deficiency detection with regard to the safe clinical deployment of 8-aminoquinoline treatment regimens: a workshop report. Malaria J.12(1), 112 (2013).
  • Gogtay NJ , KamtekarKD, DalviSSet al. A randomized, parallel study of the safety and efficacy of 45mg primaquine versus 75mg bulaquine as gametocytocidal agents in adults with blood schizonticide-responsive uncomplicated falciparum malaria. BMC Infect. Dis.6(1), 16 (2006).
  • Tan KR , MagillAJ, PariseME, ArguinPM. Doxycycline for malaria chemoprophylaxis and treatment: report from the CDC expert meeting on malaria chemoprophylaxis. Am. J. Trop. Med. Hyg.84(4), 517–531 (2011).
  • Batra N , RajendranV, AgarwalDet al. Synthesis and antimalarial evaluation of [1, 2,3]-triazole-tethered sulfonamide-berberine hybrids. ChemistrySelect.3(34), 9790–9793 (2018).
  • Baragaña B , HallyburtonI, LeeMCSet al. A novel multiple-stage antimalarial agent that inhibits protein synthesis. Nature522(7556), 315 (2015).
  • Wells TN , Hooftvan Huijsduijnen R, Van VoorhisWC. Malaria medicines: a glass half full?Nat. Rev. Drug Disc.14(6), 424–442 (2015).
  • Ashley EA , PhyoAP. Drugs in development for malaria. Drugs78(9), 861–879 (2018).
  • Goldgof GM , DurrantJD, OttilieSet al. Comparative chemical genomics reveal that the spiroindolone antimalarial KAE609 (Cipargamin) is a P-type ATPase inhibitor. Sci. Rep.6, 27806 (2016).
  • van Pelt-Koops JC , PettHEet al. The spiroindolone drug candidate NITD609 potently inhibits gametocytogenesis and blocks Plasmodium falciparum transmission to Anopheles mosquito vector. Antimicrob. Agents Chemother.56(7), 3544–3548 (2012).
  • Medicines for Malaria Venture . Cipargamin (2018). www.mmv.org/node/11219/overlay
  • Nagle A , WuT, KuhenKet al. Imidazolopiperazines: lead optimization of the second-generation antimalarial agents. J. Med. Chem.55(9), 4244–4273 (2012).
  • Medicines for Malaria Venture . Developing antimalarials to save lives(2018). www.mmv.org/related-story-type/kaf156
  • Charman SA , Arbe-BarnesS, BathurstICet al. Synthetic ozonide drug candidate OZ439 offers new hope for a single-dose cure of uncomplicated malaria. PNAS108(11), 4400–4405 (2011).
  • Medicines for Malaria Venture . Artefenomel (2018). www.mmv.org/related-story-type/artefenomel
  • Phillips MA , LothariusJ, MarshKet al. A long-duration dihydroorotate dehydrogenase inhibitor (DSM265) for prevention and treatment of malaria. Sci. Transl. Med.7(296), 296ra111 (2015).
  • Medicines for Malaria Venture . DSM265 Phase IIa Investigation treating Plasmodium falciparum or vivax. https://clinicaltrials.gov/ct2/show/NCT02123290. (2018).
  • Ghidelli-Disse S , Lafuente-MonasterioMJet al. Identification of Plasmodium PI4 kinase as target of MMV390048 by chemoproteomics. Malaria J.13(1), 38 (2014).
  • Paquet T , LeManach C, CabreraDGet al. Antimalarial efficacy of MMV390048, an inhibitor of Plasmodium phosphatidylinositol 4-kinase. Sci. Transl. Med.9(387), eaad9735 (2017).
  • Medicines for Malria Venture . MMV390048(2015). www.mmv.org/newsroom/film/mmv390048
  • Held J , JeyarajS, KreidenweissA. Antimalarial compounds in Phase II clinical development. Exp. Opin. Invest. Drugs.24(3), 363–382 (2015).
  • Umeda T , TanakaN, KusakabeY, NakanishiM, KitadeY, NakamuraKT. Molecular basis of fosmidomycin's action on the human malaria parasite Plasmodium falciparum. Sci. Rep.1, 9 (2011).
  • Zhang B , WattsKM, HodgeDet al. A second target of the antimalarial and antibacterial agent fosmidomycin revealed by cellular metabolic profiling. Biochem.50(17), 3570–3577 (2011).
  • Sparr C , PurkayasthaN, KolesinskaBet al. Improved efficacy of fosmidomycin against Plasmodium and Mycobacterium species by combination with the cell-penetrating peptide octaarginine. Antimicrob. Agents Chemother.57(10), 4689–4698 (2013).
  • Mombo-Ngoma G , RemppisJ, SieversMet al. Efficacy and safety of fosmidomycin-piperaquine as nonartemisinin-based combination therapy for uncomplicated falciparum malaria: a single-arm, age de-escalation proof-of-concept study in Gabon. Clin. Infect. Dis.66(12), 1823–1830 (2018).
  • Dubar F , EganTJ, PradinesBet al. The antimalarial ferroquine: role of the metal and intramolecular hydrogen bond in activity and resistance. ACS Chem. Biol.6(3), 275–287 (2011).
  • Biot C , TaramelliD, Forfar-BaresIet al. Insights into the mechanism of action of ferroquine. Relationship between physicochemical properties and antiplasmodial activity. Mol. Pharm.2(3), 185–193 (2005).
  • Henry M , BriolantS, FontaineAet al. In vitro activity of ferroquine is independent of polymorphisms in transport protein genes implicated in quinoline resistance in Plasmodium falciparum. Antimicrob. Agents Chemother.52(8), 2755–2759 (2008).
  • Sanofi . To evaluate the efficacy of a single dose regimen of ferroquine and artefenomel in adults and children with uncomplicated Plasmodium falciparum malaria (FALCI). https://clinicaltrials.gov/ct2/show/NCT02497612
  • Koita OA , SangareL, MillerHDet al. AQ-13, an investigational antimalarial, versus artemether plus lumefantrine for the treatment of uncomplicated Plasmodium falciparum malaria: a randomised, Phase 2, non-inferiority clinical trial. Lancet Infect. Dis.17(12), 1266–1275 (2017).
  • Yuthavong Y , TarnchompooB, VilaivanTet al. Malarial dihydrofolate reductase as a paradigm for drug development against a resistance-compromised target. PNAS109(42), 16823–16828 (2012).
  • Medicines for Malaria Venture . Safety, tolerability and chemoprotective activity of P218 in PfSPZ challenge model. https://clinicaltrials.gov/ct2/show/NCT03707041
  • Le Bihan A , de KanterR, Angulo-BarturenIet al. Characterization of novel antimalarial compound ACT-451840: Preclinical assessment of activity and dose–efficacy modeling. PLoS Med.13(10), e1002138 (2016).
  • Idorsia Pharmaceuticals Ltd . Effect of ACT-451840 against early Plasmodium falciparum blood stage infection in healthy subjects. https://clinicaltrials.gov/ct2/show/NCT02223871
  • Idorsia Pharmaceuticals Ltd . Safety, tolerability, pharmacokinetics, and pharmacodynamics of ACT-451840 in healthy subjects (Part A). https://clinicaltrials.gov/ct2/show/NCT02186002
  • Moore BR , LamanM, SalmanSet al. Naphthoquine: an emerging candidate for artemisinin combination therapy. Drugs76(7), 789–804 (2016).
  • Ifakara Health Institute . Safety, tolerability, pharmacokinetics and efficacy of ARCO. https://clinicaltrials.gov/ct2/show/NCT01930331
  • Spillman NJ , KirkK. The malaria parasite cation ATPase PfATP4 and its role in the mechanism of action of a new arsenal of antimalarial drugs. Intl. J. Parasitol. Drugs Drug Res.5(3), 149–162 (2015).
  • St. Jude Children's Research Hospital . First-in-human study of an oral Plasmodium falciparum plasma membrane protein inhibitor. https://clinicaltrials.gov/ct2/show/NCT02661373
  • White NJ , PukrittayakameeS, PhyoAPet al. Spiroindolone KAE609 for falciparum and vivax malaria. New Eng. J. Med.371(5), 403–410 (2014).
  • Phyo AP , SeidleinLv. Challenges to replace ACT as first-line drug. Malaria J.16, 296 (2017).
  • Upton LM , BrockPM, ChurcherTSet al. Lead clinical and preclinical antimalarial drugs can significantly reduce sporozoite transmission to vertebrate populations. Antimicrob. Agents Chemother.59(1), 490–497 (2015).
  • Diagana TT . Supporting malaria elimination with 21st century antimalarial agent drug discovery. Drug Disc. Today.20(10), 1265–1270 (2015).
  • White NJ , DuongTT, UthaisinCet al. Antimalarial activity of KAF156 in falciparum and vivax malaria. New Eng. J. Med.375(12), 115261160 (2016).
  • Kuhen KL , ChatterjeeAK, RottmannMet al. KAF156 is an antimalarial clinical candidate with potential for use in prophylaxis, treatment, and prevention of disease transmission. Antimicrob. Agents Chemother.58(9), 5060–5067 (2014).
  • McNamara CW , LeeMC, LimCSet al. Targeting Plasmodium PI(4)K to eliminate malaria. Nature504(7479), 248–253 (2013).
  • Rottmann M , McNamaraC, YeungBKSet al. Spiroindolones, a potent compound class for the treatment of malaria. Science329(5996), 1175–1180 (2010).
  • Magistrado PA , CoreyVC, LukensAKet al. Plasmodium falciparum cyclic amine resistance locus (PfCARL), a resistance mechanism for two distinct compound classes. ACS Infect. Dis.2(11), 816–826 (2016).
  • Sanofi . To evaluate the efficacy of a single dose regimen of ferroquine and artefenomel in adults and children with uncomplicated Plasmodium falciparum Malaria (FALCI). In: ClinicalTrials.gov. Bethesda, MD. https://clinicaltrials.gov/ct2/show/NCT02Sanofi497612
  • Phyo AP , JittamalaP, NostenFHet al. Antimalarial activity of artefenomel (OZ439), a novel synthetic antimalarial endoperoxide, in patients with Plasmodium falciparum and Plasmodium vivax malaria: an open-label Phase 2 trial. Lancet Infect. Dis.16(1), 61–69 (2016).
  • Collins KA , WangCYT, AdamsMet al. A controlled human malaria infection model enabling evaluation of transmission-blocking interventions. J. Clin. Invest.128(4), 1551–1562 (2018).
  • Medicines for Malaria Venture . MMV390048 and its antimalarial activity against Plasmodium falciparum in healthy adult subjects, part B. In: ClinicalTrials.gov. Bethesda, MD. https://clinicaltrials.gov/ct2/show/NCT02783833
  • Medicines for Malaria Venture . MMV390048 against early Plasmodium falciparum blood stage infection in healthy participants. In: ClinicalTrials.gov. Bethesda, MD. https://clinicaltrials.gov/ct2/show/NCT02281344
  • Vivas L , RattrayL, StewartLBet al. Antimalarial efficacy and drug interactions of the novel semi-synthetic endoperoxide artemisone in vitro and in vivo. J. Antimicrob. Chemother.59(4), 658–65 (2007).
  • Ramharter M , BurkhardtD, NemethJ, AdegnikaAA, KremsnerPG. In vitro activity of artemisone compared with artesunate against Plasmodium falciparum.Am. J. Trop. Med. Hyg.75(4), 637–9 (2006).
  • Coertzen D , ReaderJ, vander Watt Met al. Artemisone and artemiside are potent panreactive antimalarial agents that also synergize redox imbalance in Plasmodium falciparum transmissible gametocyte stages. Antimicrob. Agents Chemother.62(8), e02214–e02217 (2018).
  • University of Oxford . Artemisone for the treatment of uncomplicated falciparum malaria in western Cambodia (AMOS). In: ClinicalTrials.gov. Bethesda (MD). https://clinicaltrials.gov/ct2/show/NCT00936767
  • Fernandes JF , LellB, AgnandjiSTet al. Fosmidomycin as an antimalarial drug: a meta-analysis of clinical trials. Future Microbiol.10(8), 1375–1390 (2015).
  • Lell B , RuangweerayutR, WiesnerJet al. Fosmidomycin, a novel chemotherapeutic agent for malaria. Antimicrob. Agents Chemother.47(2), 735–738 (2003).
  • Missinou MA , BorrmannS, SchindlerAet al. Fosmidomycin for malaria. Lancet360(9349), 1941–1942 (2002).
  • Borrmann S , AdegnikaAA, MoussavouFet al. Short-course regimens of artesunate fosmidomycin in treatment of uncomplicated Plasmodium falciparum malaria. Antimicrob. Agents Chemother.49(9), 3749–3754 (2005).
  • Albert Schweitzer Hospital . Efficacy of fosmidomycin-clindamycin for treating malaria in Gabonese children. In: ClinicalTrials.gov. Bethesda, MD. https://clinicaltrials.gov/ct2/show/NCT00214643
  • Borrmann S , AdegnikaAA, MatsieguiPBet al. Fosmidomycin-clindamycin for Plasmodium falciparum infections in African children. J. Infect. Dis.189(5), 901–908 (2004).
  • Borrmann S , IssifouS, EsserGet al. Fosmidomycin-clindamycin for the treatment of Plasmodium falciparum malaria. J. Infect. Dis.190(9), 1534–1540 (2004).
  • Lanaspa M , MoraledaC, MachevoSet al. Inadequate efficacy of a new formulation of fosmidomycin-clindamycin combination in Mozambican children less than three years old with uncomplicated Plasmodium falciparum malaria. Antimicrob. Agents Chemother.56(6), 2923–2928 (2012).
  • Borrmann S , LundgrenI, OyakhiromeSet al. Fosmidomycin plus clindamycin for treatment of pediatric patients aged 1 to 14 years with Plasmodium falciparum malaria. Antimicrob. Agents Chemother.50(8), 2713 (2006).
  • Puta C , ManyandoC. Enhanced gametocyte production in fansidar-treated Plasmodium falciparum malaria patients: implications for malaria transmission control programmes. Trop. Med. Intl. Health.2(3), 227–227 (1997).
  • Sanofi . Dose ranging study of ferroquine with artesunate in African adults and children with uncomplicated Plasmodium falciparum malaria (FARM). In: ClinicalTrials.gov. Bethesda, MD. https://clinicaltrials.gov/ct2/show/NCT00988507
  • Mustfa K , LandauI, ChabaudAGet al. Effects of the antimalarial drugs ferroquine and artesunate on Plasmodium yoelii gametocytegenesis and vectorial transmission. Sante21(3), 133–142 (2011).
  • McCarthy JS , RückleT, DjeriouEet al. A Phase II pilot trial to evaluate safety and efficacy of ferroquine against early Plasmodium falciparum in an induced blood-stage malaria infection study. Malaria J.15(1), 469 (2016).
  • Held J , SupanC, SalazarCLet al. Ferroquine and artesunate in African adults and children with Plasmodium falciparum malaria: a Phase 2, multicentre, randomised, double-blind, dose-ranging, non-inferiority study. Lancet Infect. Dis.15(12), 1409–1419 (2015).
  • Krogstad D . Studies of a candidate aminoquinoline antimalarial (AQ-13). In: ClinicalTrials.gov. Bethesda, MD. https://clinicaltrials.gov/ct2/show/NCT01614964
  • Boss C , AissaouiH, AmaralNet al. Discovery and characterization of ACT-451840: an antimalarial drug with a novel mechanism of action. Chem. Med. Chem.11(18), 1995–2014 (2016).
  • Bruderer S , HurstN, de KanterRet al. First-in-humans study of the safety, tolerability, and pharmacokinetics of ACT-451840, a new chemical entity with antimalarial activity. Antimicrob. Agents Chemother.59(2), 935–942 (2015).
  • Batty KT , SalmanS, MooreBRet al. Artemisinin-naphthoquine combination therapy for uncomplicated pediatric malaria: a pharmacokinetic study. Antimicrob. Agents Chemother.56(5), 2472–2784 (2012).
  • Laman M , MooreBR, BenjaminJMet al. Artemisinin-naphthoquine versus artemether-lumefantrine for uncomplicated malaria in Papua New Guinean children: an open-label randomized trial. PLoS Med.11(12), e1001773 (2014).
  • Karl S , LamanM, MooreBRet al. Gametocyte clearance kinetics determined by quantitative magnetic fractionation in Melanesian children with uncomplicated malaria treated with artemisinin combination therapy. Antimicrob. Agents Chemother.59(8), 4489 (2015).
  • Benjamin J , MooreB, LeeSTet al. Artemisinin-naphthoquine combination therapy for uncomplicated pediatric malaria: a tolerability, safety, and preliminary efficacy study. Antimicrob. Agents Chemother.56(5), 2465 (2012).
  • Tjitra E , HasugianAR, SiswantoroHet al. Efficacy and safety of artemisinin-naphthoquine versus dihydroartemisinin-piperaquine in adult patients with uncomplicated malaria: a multi-centre study in Indonesia. Malaria J.11, 153 (2012).
  • Jimenez-Diaz MB , EbertD, SalinasYet al. (+)-SJ733, a clinical candidate for malaria that acts through ATP4 to induce rapid host-mediated clearance of Plasmodium. PNAS111(50), E5455–E5462 (2014).
  • Medicines for Malaria Venture . SJ733 induced blood stage malaria challenge study (SJ733IBSMCS). In: ClinicalTrials.gov. Bethesda, MD. https://clinicaltrials.gov/ct2/show/NCT02867059

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.