638
Views
0
CrossRef citations to date
0
Altmetric
Review

SGLT2 inhibitors, an Accomplished Development in Field of Medicinal Chemistry: an Extensive Review

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1961-1990 | Received 13 May 2020, Accepted 19 Aug 2020, Published online: 30 Oct 2020

References

  • NIDDK . What is diabetes? (2020). https://www.niddk.nih.gov/health-information/diabetes/overview/what-is-diabetes
  • WHO . Diabetes. (2020). https://www.who.int/health-topics/diabetes#tab=tab_1
  • Bhattacharya S , RathoreA , ParwaniDet al. An exhaustive perspective on structural insights of SGLT2 inhibitors: a novel class of antidiabetic agent. Eur. J. Med. Chem.204, 112523 (2020).
  • Risérus U , WillettWC , HuFB. Dietary fats and prevention of Type 2 diabetes. Prog. Lipid Res.48(1), 44–51 (2009).
  • Malik VS , PopkinBM , BrayGA , DesprésJP , HuFB. Sugar-sweetened beverages, obesity, Type 2 diabetes mellitus, and cardiovascular disease risk. Circulation121(11), 1356–1364 (2010).
  • Haider K , PathakA , RohillaA , HaiderMR , AhmadK , YarMS. Synthetic strategy and SAR studies of C-glucoside heteroaryls as SGLT2 inhibitor: a review. Eur. J. Med. Chem.184, 111773 (2019).
  • Amori RE , LauJ , PittasAG. Efficacy and safety of incretin therapy in Type 2 diabetes: systematic review and meta-analysis. J. Am. Med. Assoc.298(2), 194–206 (2007).
  • Abdul-Ghani MA , NortonL , DeFronzoRA. Role of sodium-glucose cotransporter 2 (SGLT 2) inhibitors in the treatment of Type 2 diabetes. Endocr. Rev.32(4), 515–531 (2011).
  • Kanai Y , LeeWS , YouG , BrownD , HedigerMA. The human kidney low affinity Na+/glucose cotransporter SGLT2. Delineation of the major renal reabsorptive mechanism for D-glucose. J. Clin. Invest.93(1), 397–404 (1994).
  • Wright EM . Renal Na+-glucose cotransporters. Am. J. Physiol. Ren. Physiol.280(1), F10–F18 (2001).
  • Wright EM , TurkE. The sodium/glucose cotransport family SLC5. Pflugers Arch. Eur. J. Physiol.447(5), 510–518 (2004).
  • Vallon V . Molecular determinants of renal glucose reabsorption. Focus on “Glucose transport by human renal Na+/D-glucose cotransporters SGLT1 and SGLT2”. Am. J. Physiol. – Cell Physiol.300(1), 2010–2012 (2011).
  • Nauck MA . Update on developments with SGLT2 inhibitors in the management of Type 2 diabetes. Drug Des. Devel. Ther.8, 1335–1351 (2014).
  • Aguillón AR , MascarelloA , SegrettiNDet al. Synthetic strategies toward SGLT2 inhibitors. Org. Process Res. Dev.22(4), 467–488 (2018).
  • Nauck M . Update on developments with SGLT2 inhibitors in the management of Type 2 diabetes. Drug Des. Devel. Ther.21(4), 1335 (2014). http://www.dovepress.com/update-on-developments-with-sglt2-inhibitors-in-the-management-of-type-peer-reviewed-article-DDDT
  • Ehrenkranz JRL , LewisNG , KahnCR , RothJ. Phlorizin: a review. Diabetes. Metab. Res. Rev.21(1), 31–38 (2005).
  • Zhang Y , LiuZ-P. Recent developments of C-aryl glucoside SGLT2 inhibitors. Curr. Med. Chem.23(8), 832–849 (2016).
  • Pathania S , KashyapN , SinghV , ShankarR , KumarK , RawalRK. Development and recent advancement of SGLT2 inhibitors for the treatment regime of T2DM. J. Biomed.1(4), 1–14 (2016).
  • Tahrani AA , BarnettAH , BaileyCJ. SGLT inhibitors in management of diabetes. Lancet Diabetes Endocrinol.1(2), 140–151 (2013).
  • Madaan T , AkhtarM , NajmiAK. Sodium glucose cotransporter 2 (SGLT2) inhibitors: current status and future perspective. Eur. J. Pharm. Sci.93, 244–252 (2016).
  • Kshirsagar RP , KulkarniAA , ChoutheRSet al. SGLT inhibitors as antidiabetic agents: a comprehensive review. RSC Adv.10(3), 1733–1756 (2020).
  • Meng W , EllsworthBA , NirschlAAet al. Discovery of dapagliflozin: a potent, selective renal sodium-dependent glucose cotransporter 2 (SGLT2) inhibitor for the treatment of Type 2 diabetes. J. Med. Chem.51(5), 1145–1149 (2008).
  • Kasahara M , MaedaM , HayashiS , MoriY , AbeT. A missense mutation in the Na+/glucose cotransporter gene SGLT1 in a patient with congenital glucose-galactose malabsorption: normal trafficking but inactivation of the mutant protein. Biochim. Biophys. Acta – Mol. Basis Dis.1536(2–3), 141–147 (2001).
  • Turk E , ZabelB , MundlosS , DyerJ, Wright EM. Glucose/galactose malabsorption caused by a defect in the Na+/glucose cotransporter. Nature350(6316), 354–356 (1991).
  • Katsuno K , FujimoriY , TakemuraYet al. Sergliflozin, a novel selective inhibitor of low-affinity sodium glucose cotransporter (SGLT2. J. Pharmacol. Exp. Ther.320(1), 323–330 (2007).
  • Pu Duann P-HL . Mitochondria damage and kidney disease. Adv. Exp. Med. Biol.982, 529–551 (2017). https://doi.org/10.1007/978-3-319-55330-6
  • Andrianesis V , GlykofridiS , DoupisJ. The renal effects of SGLT2 inhibitors and a mini-review of the literature. Ther. Adv. Endocrinol. Metab.7(5–6), 212–228 (2016).
  • Röder PV , GeillingerKE , ZietekTS , ThorensB , KoepsellH , DanielH. The role of SGLT1 and GLUT2 in intestinal glucose transport and sensing. PLoS One9(2), 20–22 (2014).
  • Augustin R . The protein family of glucose transport facilitators: it’s not only about glucose after all. IUBMB Life.62(5), 315–333 (2010).
  • Bakris GL , FonsecaVA , SharmaK , WrightEM. Renal sodium-glucose transport: role in diabetes mellitus and potential clinical implications. Kidney Int.75(12), 1272–1277 (2009).
  • Vallon V , PlattKA , CunardRet al. SGLT2 mediates glucose reabsorption in the early proximal tubule. J. Am. Soc. Nephrol.22(1), 104–112 (2011).
  • Wright EM , LooDDFL , HirayamaBA. Biology of human sodium glucose transporters. Physiol. Rev.91(2), 733–794 (2011).
  • Wright EM , HirayamaBA , LooDF. Active sugar transport in health and disease. J. Intern. Med.261(1), 32–43 (2007).
  • Coady MJ , WallendorffB , GagnonDG , LapointeJY. Identification of a novel Na+/myo-inositol cotransporter. J. Biol. Chem.277(38), 35219–35224 (2002).
  • Abdul-Ghani MA , DefronzoRA. Inhibition of renal glucose reabsorption: a novel strategy for achieving glucose control in Type 2 diabetes mellitus. Endocr. Pract.14(6), 782–790 (2008).
  • Vallon V , RichterK , BlantzRC , ThomsonS , OsswaldH. Glomerular hyperfiltration in experimental diabetes mellitus: potential role of tubular reabsorption. J. Am. Soc. Nephrol.10(12), 2569–2576 (1999).
  • Guyton AC , HallJE. Filtrate, urine formation by the kidneys II: tubular processing of the glomerular filtrate. In: Textbook of Medical Physiology. William Schmitt, Elsevier Inc., PA, USA, 361–382 (2006).
  • Ghezzi C , LooDDF , WrightEM. Physiology of renal glucose handling via SGLT1, SGLT2 and GLUT2. Diabetologia61(10), 2087–2097 (2018).
  • Hediger MA , RhoadsDB. Molecular physiology of sodium-glucose cotransporters. Physiol. Rev.74(4), 993–1026 (1994).
  • Rahmoune H , ThompsonPW , WardJM , SmithCD , HongG , BrownJ. Glucose transporters in human renal proximal tubular cells isolated from the urine of patients with non-insulin-dependent diabetes. Diabetes54(12), 3427–3434 (2005).
  • Abdul-Ghani MA , DefronzoRA. Lowering plasma glucose concentration by inhibiting renal sodium-glucose cotransport. J. Intern. Med.276(4), 352–363 (2014).
  • Scholl-Bürgi S , SanterR , EhrichJHH. Long-term outcome of renal glucosuria Type 0: the original patient and his natural history. Nephrol. Dial. Transplant.19(9), 2394–2396 (2004).
  • Ng WL , LiHC , LauKM , ChanAKN , LauCBS , ShingTKM. Concise and stereodivergent synthesis of carbasugars reveals unexpected structure-activity relationship (SAR) of SGLT2 inhibition. Sci. Rep.7(1), 1–8 (2017).
  • Park EJ , KongY , LeeJS , LeeSH , LeeJ. Exploration of SAR regarding glucose moiety in novel C-aryl glucoside inhibitors of SGLT2. Bioorganic Med. Chem. Lett.21(2), 742–746 (2011).
  • Ohtake Y , SatoT , KobayashiTet al. Discovery of tofogliflozin, a novel C-arylglucoside with an O-spiroketal ring system, as a highly selective sodium glucose cotransporter 2 (SGLT2) inhibitor for the treatment of Type 2 diabetes. J. Med. Chem.55(17), 7828–7840 (2012).
  • Nomura S , SakamakiS , HonguMet al. Discovery of canagliflozin, a novel C-glucoside with thiophene ring, as sodium-dependent glucose cotransporter 2 inhibitor for the treatment of Type 2 diabetes mellitus (1). J. Med. Chem.53(17), 6355–6360 (2010).
  • Koga Y , SakamakiS , HonguMet al. C-Glucosides with heteroaryl thiophene as novel sodium-dependent glucose cotransporter 2 inhibitors. Bioorganic Med. Chem.21(17), 5561–5572 (2013).
  • Kakinuma H , OiT , Hashimoto-TsuchiyaYet al. (1 S)-1,5-anhydro-1-[5-(4-ethoxybenzyl)-2-methoxy-4-methylphenyl]-1-thio-d-glucitol (TS-071) is a potent, selective sodium-dependent glucose cotransporter 2 (SGLT2) inhibitor for Type 2 diabetes treatment. J. Med. Chem.53(8), 3247–3261 (2010).
  • Imamura M , NakanishiK , SuzukiTet al. Discovery of Ipragliflozin (ASP1941): a novel C-glucoside with benzothiophene structure as a potent and selective sodium glucose co-transporter 2 (SGLT2) inhibitor for the treatment of Type 2 diabetes mellitus. Bioorganic Med. Chem.20(10), 3263–3279 (2012).
  • Ikegai K , ImamuraM , SuzukiTet al. Synthesis and biological evaluation of C-glucosides with azulene rings as selective SGLT2 inhibitors for the treatment of Type 2 diabetes mellitus: Discovery of YM543. Bioorganic Med. Chem.21(13), 3934–3948 (2013).
  • Zhao X , SunB , ZhengHet al. Synthesis and biological evaluation of 6-hydroxyl C-aryl glucoside derivatives as novel sodium glucose co-transporter 2 (SGLT2) inhibitors. Bioorganic Med. Chem. Lett.28(12), 2201–2205 (2018).
  • Ding Y , MaoL , XuDet al. C-Aryl glucoside SGLT2 inhibitors containing a biphenyl motif as potential anti-diabetic agents. Bioorganic Med. Chem. Lett.25(14), 2744–2748 (2015).
  • Song KS , LeeSH , KimMJet al. Synthesis and SAR of thiazolylmethylphenyl glucoside as novel C-aryl glucoside SGLT2 inhibitors. ACS Med. Chem. Lett.2(2), 182–187 (2011).
  • Braem A , DeshpandePP , EllsworthBA , WashburnWN. Discovery and development of selective renal sodium-dependent glucose cotransporter 2 (SGLT2) dapagliflozin for the treatment of Type 2 diabetes. Top Med. Chem.12(October), 73–94 (2014).
  • Metil DS , SonawaneSP , PachoreSSet al. Synthesis and optimization of canagliflozin by employing quality by design (QbD) principles. Org. Process Res. Dev.22(1), 27–39 (2018).
  • Kaushik VK , TummanepallyJMC , PothaniJ , DoddaR. Process for the preparation of empagliflozin. (2016). https://patents.google.com/patent/US9902751B2/en
  • Ali I , KumarR , BarmanDC , NathA , PrasadM. Processes for the preparation of ertugliflozin. (2016). https://patents.google.com/patent/US20170342100A1/en
  • Ma S , LiuZ , PanJ , ZhangS , ZhouW. A concise and practical stereoselective synthesis of ipragliflozin L-proline. Beilstein J. Org. Chem.13, 1064–1070 (2017).
  • Ohtake Y , EmuraT , NishimotoMet al. Development of a scalable synthesis of tofogliflozin. J. Org. Chem.81(5), 2148–2153 (2016).
  • Jain R , TrehanS , DasJ . Novel SGLT inhibitors. (2014). https://patents.google.com/patent/US9018249B2/en
  • Wells KM , LiX , BranumS , NomuraS , MatsumuraY. Process for the preparation of compounds useful as inhibitors of SGLT2. (2014). https://patents.google.com/patent/US9174971B2/en
  • Naik RG , OmmenES , RusnakJM , TerraSG. SGLT-2 inhibitors for treating metabolic disorders in patients with renal impairment or chronic kidney disease. (2017). https://patentscope.wipo.int/search/en/detail.jsf?docId=US205400341&docAn=15523512
  • Nair R , VayalileveetilRP , DeshmukhSK , PanandikarAM. Process for the preparation of SGLT inhibitor compounds. (2018). https://patents.google.com/patent/US10508128B2/en
  • Mundla MV , MalyalaS , NaraniCP . Process for the preparation of SGLT-2 inhibitors, intermediates thereof. (2018). https://patents.google.com/patent/US20180346502A1
  • Broedl UC , MachaS , von EynattenM , WoerleH-J. Pharamaceutical compounds, methods for treating and uses thereof. (2018). https://patents.google.com/patent/US20140256624A1/en
  • Yu J , BabanB , HaleV. Compositions and methods for treating diabetes. (2019). https://patents.google.com/patent/US7442720B2/en
  • Liu Z . Combination therapy with glucagon receptor agonists. (2020). https://patents.google.com/patent/US20200048356A1/en
  • Prybolsky RP , FirorJ. Methods for lowering blood sugar with a gliflozin sodium-glucose co-transporter 2 inhibitor pharmaceutical composition. (2020). https://patentscope.wipo.int/search/en/detail.jsf?docId=US279624843&docAn=16440737
  • Liu YH , LiDL , DeLu L , MiaoZY. Convenient synthesis of (2S,3R,4R,5S,6R)-2-(3-(4-ethylbenzyl)-4-chlorophenyl)-6-(hydroxymethyl)-tetrahydro-2H-pyran-3,4,5-triol. Chinese Chem. Lett.19(7), 814–816 (2008).
  • Lee J , KimJY , ChoiJ , LeeSH , KimJ , LeeJ. Pyrimidinylmethylphenyl glucoside as novel C-aryl glucoside SGLT2 inhibitors. Bioorganic Med. Chem. Lett.20(23), 7046–7049 (2010).
  • Xu B , FengY , LvBet al. Ortho-substituted C-aryl glucosides as highly potent and selective renal sodium-dependent glucose co-transporter 2 (SGLT2) inhibitors. Bioorganic Med. Chem.18(12), 4422–4432 (2010).
  • Lee SH , KimMJ , LeeSH , KimJ , ParkHJ , LeeJ. Thiazolylmethyl ortho-substituted phenyl glucoside library as novel C-aryl glucoside SGLT2 inhibitors. Eur. J. Med. Chem.46(7), 2662–2675 (2011).
  • Guo C , HuM , DeorazioRJet al. The design and synthesis of novel SGLT2 inhibitors: c-glycosides with benzyltriazolopyridinone and phenylhydantoin as the aglycone moieties. Bioorganic Med. Chem.22(13), 3414–3422 (2014).
  • Chu KF , YaoCH , SongJSet al. N-Indolylglycosides bearing modifications at the glucose C6-position as sodium-dependent glucose co-transporter 2 inhibitors. Bioorganic Med. Chem.24(10), 2242–2250 (2016).
  • Pan X , HuanY , ShenZ , LiuZ. Synthesis and biological evaluation of novel tetrahydroisoquinoline-C-aryl glucosides as SGLT2 inhibitors for the treatment of Type 2 diabetes. Eur. J. Med. Chem.114, 89–100 (2016).
  • Cao X , ZhangW , YanXet al. Modification on the O-glucoside of Sergliflozin-A: a new strategy for SGLT2 inhibitor design. Bioorganic Med. Chem. Lett.26(9), 2170–2173 (2016).
  • Nakka S , GuruprasadL. Structural insights into the active site of human sodium dependent glucose co-transporter 2: homology modelling, molecular docking, and 3D-QSAR studies. Aust. J. Chem.65(9), 1314–1324 (2012).
  • Girija R , ArunaS , SangeethaR. Insilico molecular modelling and docking studies of sophora flavescens derived flavonoids against SGLT2 for Type 2 diabetes mellitus. Intl. J. Bioinforma. Biol. Sci.6(2), 71–76 (2018).
  • Kumari B , ChetiaD. In-silico docking studies of selected n-glycoside bearing tetrazole ring in the treatment of hyperglycemia showing inhibitory activity on SGLT. Int. J. Pharm. Pharm. Sci.5(Suppl. 2), 633–638 (2013).
  • Xu J , YuanH , RanTet al. A selectivity study of sodium-dependent glucose cotransporter 2/sodium-dependent glucose cotransporter 1 inhibitors by molecular modeling. J. Mol. Recognit.28(8), 467–479 (2015).
  • Feng R , DongL , WangL , XuY , LuH , ZhangJ. Development of sodium glucose co-transporter 2 (SGLT2) inhibitors with novel structure by molecular docking and dynamics simulation. J. Mol. Model.25(6), 175 (2019).
  • Kumar S , KhatikGL , MittalA. In silico molecular docking study to search new SGLT2 inhibitor based on dioxabicyclo[3.2.1] octane scaffold. Curr. Comput. Aided. Drug Des.16(2), 145–154 (2020). http://www.eurekaselect.com/166478/article
  • Henry RR , RosenstockJ , EdelmanSet al. Exploring the potential of the SGLT2 inhibitor dapaglif lozin in Type 1 diabetes: a randomized, double-blind, placebo-controlled pilot study. Diabetes Care38(3), 412–419 (2015).
  • Kasichayanula S , LiuX , PeBenito Met al. The influence of kidney function on dapagliflozin exposure, metabolism and pharmacodynamics in healthy subjects and in patients with Type 2 diabetes mellitus. Br. J. Clin. Pharmacol.76(3), 432–444 (2013).
  • Kohan DE , FiorettoP , JohnssonK , ParikhS , PtaszynskaA , YingL. The effect of dapagliflozin on renal function in patients with Type 2 diabetes. J. Nephrol.29(3), 391–400 (2016).
  • Plosker GL . Dapagliflozin: a review of its use in patients with Type 2 diabetes. Drugs74(18), 2191–2209 (2014).
  • DeFronzo RA . Combination therapy with GLP-1 receptor agonist and SGLT2 inhibitor. Diabetes, Obes. Metab.19(10), 1353–1362 (2017).
  • Abdul-Ghani M . Where does combination therapy with an SGLT2 inhibitor plus a DPP-4 Inhibitor fit in the management of Type 2 diabetes?Diabetes Care38(3), 373–375 (2015).
  • Triplitt C , CornellS. Canagliflozin treatment in patients with Type 2 diabetes mellitus. Clin. Med. Insights Endocrinol. Diabetes.8, 73–81 (2015).
  • Leiter LA , YoonKH , AriasPet al. Canaglif lozin provides durable glycemic improvements and body weight reduction over 104 weeks versus glimepiride in patients with Type 2 diabetes on metformin: a randomized, double-blind, Phase 3 study. Diabetes Care38(3), 355–364 (2015).
  • Rosenstock J , ChuckL , González-OrtizMet al. Initial combination therapy with canagliflozin plus metformin versus each component as monotherapy for drug-naïve Type 2 diabetes. Diabetes Care39(3), 353–362 (2016).
  • Lajara R . The potential role of sodium glucose co-transporter 2 inhibitors in the early treatment of Type 2 diabetes mellitus. Expert Opin. Pharmacother.15(17), 2565–2585 (2014).
  • Seman L , MachaS , NehmizGet al. Empagliflozin (BI 10773), a potent and selective SGLT2 inhibitor, induces dose-dependent glucosuria in healthy subjects. Clin. Pharmacol. Drug Dev.2(2), 152–161 (2013).
  • Kohler S , ZellerC , IlievH , KaspersS. Safety and tolerability of empagliflozin in patients with Type 2 diabetes: pooled analysis of Phase I–III clinical trials. Adv. Ther.34(7), 1707–1726 (2017).
  • Poudel R . Renal glucose handling in diabetes and sodium glucose cotransporter 2 inhibition. Indian J. Endocrinol. Metab.17(4), 588 (2013).
  • Hershon KS . Options for empagliflozin in combination therapy in Type 2 diabetes mellitus. Int. J. Gen. Med.9, 155–172 (2016).
  • Zhang W , KrauwinkelWJJ , KeirnsJet al. The effect of moderate hepatic impairment on the pharmacokinetics of ipragliflozin, a novel sodium glucose co-transporter 2 (SGLT2) inhibitor. Clin. Drug Investig.33(7), 489–496 (2013).
  • Kadokura T , SaitoM , UtsunoAet al. Ipragliflozin (ASP1941), a selective sodium-dependent glucose cotransporter 2 inhibitor, safely stimulates urinary glucose excretion without inducing hypoglycemia in healthy Japanese subjects. Diabetol. Int.2(4), 172–182 (2011).
  • Hojlund K , BostromP , VindBFet al. Abstracts of the 47th Annual Meeting of the EASD, Lisbon 2011. Diabetologia54(S1), 1–542 (2011).
  • Nakamura I , MaegawaH , TobeK , TabuchiH , UnoS. Safety and efficacy of ipragliflozin in Japanese patients with Type 2 diabetes in real-world clinical practice: interim results of the STELLA-LONG TERM post-marketing surveillance study. Expert Opin. Pharmacother.19(3), 189–201 (2018).
  • Kashiwagi A , TakahashiH , IshikawaHet al. A randomized, double-blind, placebo-controlled study on long-term efficacy and safety of ipragliflozin treatment in patients with Type 2 diabetes mellitus and renal impairment: results of the long-term ASP1941 safety evaluation in patients with Type 2 diabetes with renal impairment (LANTERN) study. Diabetes, Obes. Metab.17(2), 152–160 (2015).
  • Wilding JPH , FerranniniE , FonsecaVA , WilpshaarW , DhanjalP , HouzerA. Efficacy and safety of ipragliflozin in patients with Type 2 diabetes inadequately controlled on metformin: a dose-finding study. Diabetes, Obes. Metab.15(5), 403–409 (2013).
  • Kashiwagi A , YoshidaS , NakamuraIet al. Efficacy and safety of ipragliflozin in Japanese patients with Type 2 diabetes stratified by body mass index: a subgroup analysis of five randomized clinical trials. J. Diabetes Investig.7(4), 544–554 (2016).
  • Poole RM , DungoRT. Ipragliflozin: first global approval. Drugs74(5), 611–617 (2014).
  • Schwab D , PortronA , FukushimaYet al. Tofogliflozin a selective SGLT2 inhibitor exhibits highly favourable drug properties for use in patients with renal impairment and for combination with other medicines. Diabetologia55, S316 (2012).
  • Scheen AJ . Pharmacokinetic characteristics and clinical efficacy of an SGLT2 inhibitor plus DPP-4 inhibitor combination therapy in Type 2 diabetes. Clin. Pharmacokinet.56(7), 703–718 (2017).
  • Tanizawa Y , KakuK , ArakiEet al. Long-term safety and efficacy of tofogliflozin, a selective inhibitor of sodium-glucose cotransporter 2, as monotherapy or in combination with other oral antidiabetic agents in Japanese patients with Type 2 diabetes mellitus: multicenter, open-label, randomized controlled trials. Expert Opin. Pharmacother.15(6), 749–766 (2014).
  • Yamamoto K , UchidaS , KitanoKet al. TS-071 is a novel, potent and selective renal sodium-glucose cotransporter 2 (SGLT2) inhibitor with anti-hyperglycaemic activity. Br. J. Pharmacol.164(1), 181–191 (2011).
  • Markham A , ElkinsonS. Luseogliflozin: first global approval. Drugs74(8), 945–950 (2014).
  • Hasegawa M , ChinoY , HoriuchiNet al. Preclinical metabolism and disposition of luseogliflozin, a novel antihyperglycemic agent. Xenobiotica45(12), 1105–1115 (2015).
  • Seino Y , InagakiN , HanedaMet al. Efficacy and safety of luseogliflozin added to various oral antidiabetic drugs in Japanese patients with Type 2 diabetes mellitus. J. Diabetes Investig.6(4), 443–453 (2015).
  • Nuffer W , WilliamsB , TrujilloJM. A review of sotagliflozin for use in Type 1 diabetes. Ther. Adv. Endocrinol. Metab.10, 1–12 (2019).
  • Lapuerta P , ZambrowiczB , StrumphP , SandsA. Development of sotagliflozin, a dual sodium-dependent glucose transporter 1/2 inhibitor. Diabetes Vasc. Dis. Res.12(2), 101–110 (2015).
  • Zambrowicz B , OgbaaI , FrazierKet al. Effects of lx4211, a dual sodium-dependent glucose cotransporters 1 and 2 inhibitor, on postprandial glucose, insulin, glucagon-like peptide 1, and peptide tyrosine tyrosine in a dose-timing study in healthy subjects. Clin. Ther.35(8), 1162–1173.e8 (2013).
  • Zambrowicz B , FreimanJ , BrownPMet al. LX4211, a dual SGLT1/SGLT2 inhibitor, improved glycemic control in patients with Type 2 diabetes in a randomized, placebo-controlled trial. Clin. Pharmacol. Ther.92(2), 158–169 (2012).
  • Zaccardi F , WebbDR , HtikeZZ , YoussefDK , KhuntiMJD. Efficacy and safety of sodium-glucose co-transporter-2 inhibitors in Type 2 diabetes mellitus: systematic review and network meta-analysis. Diabetes, Obes. Andm.18(8), 783–794 (2016).
  • Scott LJ . Ertugliflozin in Type 2 diabetes: a profile of its use. Drugs Ther. Perspect.35(8), 351–362 (2019).
  • Miao Z , NucciG , AminNet al. Pharmacokinetics, metabolism, and excretion of the antidiabetic agent ertugliflozin (PF-04971729) in healthy male subjectss. Drug Metab. Dispos.41(2), 445–456 (2013).
  • Terra SG , FochtK , DaviesMet al. Phase III, efficacy and safety study of ertugliflozin monotherapy in people with Type 2 diabetes mellitus inadequately controlled with diet and exercise alone. Diabetes, Obes. Metab.19(5), 721–728 (2017).
  • Aronson R , FriasJ , GoldmanA , DarekarA , LauringB , TerraSG. Long-term efficacy and safety of ertugliflozin monotherapy in patients with inadequately controlled T2DM despite diet and exercise: VERTIS MONO extension study. Diabetes, Obes. Metab.20(6), 1453–1460 (2018).
  • Hollander P , LiuJ , HillJet al. Ertugliflozin compared with glimepiride in patients with Type 2 diabetes mellitus inadequately controlled on metformin: the VERTIS SU randomized study. Diabetes Ther.9(1), 193–207 (2018).
  • Bolinder J , LjunggrenO , JohanssonLet al. Dapagliflozin maintains glycaemic control while reducing weight and body fat mass over 2 years in patients with Type 2 diabetes mellitus inadequately controlled on metformin. Diabetes, Obes. Metab.16(2), 159–169 (2014).
  • Markham A . Ertugliflozin: first global approval. Drugs78(4), 513–519 (2018).
  • Liu XY , ZhangN , ChenR , ZhaoJG , YuP. Efficacy and safety of sodium-glucose cotransporter 2 inhibitors in Type 2 diabetes: a meta-analysis of randomized controlled trials for 1 to 2 years. J. Diabetes Complications29(8), 1295–1303 (2015).
  • Maruthur NM , TsengE , HutflessSet al. Diabetes medications as monotherapy or metformin-based combination therapy for Type 2 diabetes: a systematic review and meta-analysis. Ann. Intern. Med.164(11), 740–751 (2016).
  • Mearns ES , SobierajDM , WhiteCMet al. Comparative efficacy and safety of antidiabetic drug regimens added to metformin monotherapy in patients with Type 2 diabetes: a network meta-analysis. PLoS ONE10(4), 1–28 (2015).
  • Cai X , YangW , GaoXet al. The association between the dosage of SGLT2 inhibitor and weight reduction in Type 2 diabetes patients: a meta-analysis. Obesity26(1), 70–80 (2018).
  • Wilson PWF , D’AgostinoRB , SullivanL , PariseH , KannelWB. Overweight and obesity as determinants of cardiovascular risk: the framingham experience. Arch. Intern. Med.162(16), 1867–1872 (2002).
  • Busch RS , KaneMP. Combination SGLT2 inhibitor and GLP-1 receptor agonist therapy: a complementary approach to the treatment of Type 2 diabetes. Postgrad. Med.129(7), 686–697 (2017).
  • Oliva RV , BakrisGL. Blood pressure effects of sodium-glucose co-transport 2 (SGLT2) inhibitors. J. Am. Soc. Hypertens.8(5), 330–339 (2014).
  • Hall JE , DoCarmo JM , DaSilva AA , WangZ , HallME. Obesity-induced hypertension: interaction of neurohumoral and renal mechanisms. Circ. Res.116(6), 991–1006 (2015).
  • Kojima N , WilliamsJM , TakahashiT , MiyataN , RomanRJ. Effects of a new SGLT2 inhibitor, luseogliflozin, on diabetic nephropathy in T2DN rats. J. Pharmacol. Exp. Ther.345(3), 464–472 (2013).
  • Terami N , OgawaD , TachibanaHet al. Long-term treatment with the sodium glucose cotransporter 2 inhibitor, dapagliflozin, ameliorates glucose homeostasis and diabetic nephropathy in db/db mice. PLoS ONE9(6), 1–13 (2014).
  • Mogensen CE . Maximum tubular reabsorption capacity for glucose and renal hemodynamics during rapid hypertonic glucose infusion in normal and diabetic subjects. Scand. J. Clin. Lab. Invest.28(1), 101–109 (1971).
  • Vallon V , RoseM , GerasimovaMet al. Knockout of Na-glucose transporter SGLT2 attenuates hyperglycemia and glomerular hyperfiltration but not kidney growth or injury in diabetes mellitus. Am. J. Physiol. – Ren. Physiol.304(2), 156–167 (2013).
  • Thomson SC , RiegT , MiracleCet al. Acute and chronic effects of SGLT2 blockade on glomerular and tubular function in the early diabetic rat. Am. J. Physiol. – Regul. Integr. Comp. Physiol.302(1), 75–83 (2012).
  • Hardy E , PtaszynskaA , DeBruin TWA , JohnssonE , ParikhSJ , ListJF. Changes in lipid profiles of patients with Type 2 diabetes mellitus on dapagliflozin therapy. Diabetologia56, S379 (2013).
  • Nishimura N , KitadeM , NoguchiRet al. Ipragliflozin, a sodium–glucose cotransporter 2 inhibitor, ameliorates the development of liver fibrosis in diabetic Otsuka Long–Evans Tokushima fatty rats. J. Gastroenterol.51(12), 1141–1149 (2016).
  • Honda Y , ImajoK , KatoTet al. The selective SGLT2 inhibitor ipragliflozin has a therapeutic effect on nonalcoholic steatohepatitis in mice. PLoS ONE11(1), 1–13 (2016).
  • Rosenstock J , PerkovicV , AlexanderJHet al. Rationale, design, and baseline characteristics of the cardiovascular safety and renal microvascular outcome study with linagliptin (CARMELINA®): a randomized, double-blind, placebo-controlled clinical trial in patients with Type 2 diabetes and high cardi. Cardiovasc. Diabetol.17(1), 1–15 (2018).
  • Fitchett D , ZinmanB , WannerCet al. Heart failure outcomes with empagliflozin in patients with Type 2 diabetes at high cardiovascular risk: results of the EMPA-REG OUTCOME® trial. Eur. Heart J.37(19), 1526–1534 (2016).
  • Kaplan A , AbidiE , El-YazbiA , EidA , BoozGW , ZoueinFA. Direct cardiovascular impact of SGLT2 inhibitors: mechanisms and effects. Heart Fail. Rev.23(3), 419–437 (2018).
  • Mathieu C , DandonaP , PhillipMet al. Glucose variables in Type 1 diabetes studies with dapagliflozin: pooled analysis of continuous glucose monitoring data from DEPICT-1 and -2. Diabetes Care42(6), 1081–1087 (2019).
  • Cherney DZI , PerkinsBA , SoleymanlouNet al. Renal hemodynamic effect of sodium-glucose cotransporter 2 inhibition in patients with Type 1 diabetes mellitus. Circulation129(5), 587–597 (2014).
  • Scheen AJ . Pharmacodynamics, efficacy and safety of sodium-glucose co-transporter Type 2 (SGLT2) inhibitors for the treatment of Type 2 diabetes mellitus. Drugs75(1), 33–59 (2015).
  • Musso G , GambinoR , CassaderM , PaschettaE. Efficacy and safety of dual SGLT 1/2 inhibitor sotagliflozin in Type 1 diabetes: meta-analysis of randomised controlled trials. BMJ365, 8195 (2019).
  • Danne T , CariouB , BuseJBet al. Improved time in range and glycemic variability with sotagliflozin in combination with insulin in adults with Type 1 diabetes: a pooled analysis of 24-week continuous glucose monitoring data from the IntanDEM program. Diabetes Care42(5), 919–930 (2019).
  • Mccrimmon RJ , HenryRR. SGLT inhibitor adjunct therapy in Type 1 diabetes dapagliflozin evaluation in patients with inadequately controlled Type 1 diabetes DKA diabetic ketoacidosis MDI Multi-dose insulin REMOVAL reducing with metformin vascular adverse lesions sbp systolic blood. Diabetologia61(10), 2126–2133 (2018).
  • Das S , AnuKR , BirangalSRet al. Role of comorbidities like diabetes on severe acute respiratory syndrome coronavirus-2: a review. Life Sci.118202 (2020).
  • Anu KR , DasS , JosephA , ShenoyGG , AlexAT , MudgalJ. Neurodegenerative pathways in Alzheimer’s disease: a review. Curr. Neuropharmacol.18, (2020).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.