14,521
Views
0
CrossRef citations to date
0
Altmetric
Special Report

Drugging All RAS Isoforms With One Pocket

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, , & ORCID Icon show all
Pages 1911-1923 | Received 04 Jul 2020, Accepted 27 Jul 2020, Published online: 11 Aug 2020

References

  • Colicelli J . Human RAS superfamily proteins and related GTPases. Sci. STKE2004(250), Re13 (2004).
  • Prior IA , LewisPD , MattosC. A Comprehensive survey of Ras mutations in cancer. Cancer Res.72(10), 2457–2467 (2012).
  • Biankin AV , WaddellN , KassahnKSet al. Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature491(7424), 399–405 (2012).
  • Neumann J , Zeindl-EberhartE , KirchnerT , JungA. Frequency and type of KRAS mutations in routine diagnostic analysis of metastatic colorectal cancer. Pathol. Res. Pract.205(12), 858–862 (2009).
  • Network CGAR . Comprehensive molecular profiling of lung adenocarcinoma. Nature511(7511), 543–550 (2014).
  • Colombino M , CaponeM , LissiaAet al. BRAF/NRAS mutation frequencies among primary tumors and metastases in patients with melanoma. J. Clin. Oncol.30(20), 2522–2529 (2012).
  • Bacher U , HaferlachT , SchochC , KernW , SchnittgerS. Implications of NRAS mutations in AML: a study of 2502 patients. Blood107(10), 3847–3853 (2006).
  • Yoo J , RobinsonRA. H-RAS gene mutations in salivary gland mucoepidermoid carcinomas. Cancer88(3), 518–523 (2000).
  • Jebar AH , HurstCD , TomlinsonDC , JohnstonC , TaylorCF , KnowlesMA. FGFR3 and RAS gene mutations are mutually exclusive genetic events in urothelial cell carcinoma. Oncogene24(33), 5218–5225 (2005).
  • Cirstea IC , KutscheK , DvorskyRet al. A restricted spectrum of NRAS mutations causes Noonan Syndrome. Nat. Genet.42(1), 27–29 (2010).
  • Schubbert S , ZenkerM , RoweSLet al. Germline KRAS mutations cause Noonan Syndrome. Nat. Genet.38(3), 331–336 (2006).
  • Aoki Y , NiihoriT , KawameHet al. Germline mutations in HRAS proto-oncogene cause Costello syndrome. Nat. Genet.37(10), 1038–1040 (2005).
  • Wittinghofer A , PalEF. The structure of RAS protein: a model for a universal molecular switch. Trends Biochem. Sci.16, 382–387 (1991).
  • Liceras-Boillos P , García-NavasR , Ginel-PicardoAet al. SOS1 disruption impairs cellular proliferation and viability through an increase in mitochondrial oxidative stress in primary MEFs. Oncogene35(50), 6389–6402 (2016).
  • Milburn MV , TongL , deVosAMet al. Molecular switch for signal transduction: structural differences between active and inactive forms of protooncogenic ras proteins. Science247(4945), 939–945 (1990).
  • Vetter IR , WittinghoferA. The guanine nucleotide-binding switch in three dimensions. Science294(5545), 1299–1304 (2001).
  • Ostrem JM , ShokatKM. Direct small-molecule inhibitors of KRAS: from structural insights to mechanism-based design. Nat. Rev. Drug Discov.15(11), 771 (2016).
  • Karnoub AE , WeinbergRA. Ras oncogenes: split personalities. Nat. Rev. Mol. Cell Biol9(7), 517–531 (2008).
  • Ostrem JM , PetersU , SosML , WellsJA , ShokatKM. K-Ras (G12C) inhibitors allosterically control GTP affinity and effector interactions. Nature503(7477), 548–551 (2013).
  • Canon J , RexK , SaikiAYet al. The clinical KRAS (G12C) inhibitor AMG 510 drives anti-tumour immunity. Nature575(7781), 217–223 (2019).
  • McCormick F . Sticking it to KRAS: covalent inhibitors enter the clinic. Cancer Cell37(1), 3–4 (2020).
  • Xue JY , ZhaoY , AronowitzJet al. Rapid non-uniform adaptation to conformation-specific KRAS (G12C) inhibition. Nature577(7790), 421–425 (2020).
  • Hunter JC , ManandharA , CarrascoMA , GurbaniD , GondiS , WestoverKD. Biochemical and structural analysis of common cancer-associated KRAS mutations. Mol. Cancer Res.13(9), 1325–1335 (2015).
  • Sun Q , BurkeJP , PhanJet al. Discovery of small molecules that bind to K-Ras and inhibit SOS-mediated activation. Angew. Chem. Int.51(25), 6140–6143 (2012).
  • Maurer T , GarrentonLS , OhAet al. Small-molecule ligands bind to a distinct pocket in Ras and inhibit SOS-mediated nucleotide exchange activity. Proc. Natl Acad. Sci. USA109(14), 5299–5304 (2012).
  • Kessler D , GmachlM , MantoulidisAet al. Drugging an undruggable pocket on KRAS. Proc. Natl Acad. Sci. USA116(32), 15823–15829 (2019).
  • Cheeseright T , MackeyM , RoseS , VinterA. Molecular field extrema as descriptors of biological activity: definition and validation. J. Chem. Inf. Model46(2), 665–676 (2006).
  • Nakamura K , IchiseH , NakaoKet al. Partial functional overlap of the three RAS genes in mouse embryonic development. Oncogene27(21), 2961 (2008).
  • Bergner A , CockcroftX , FischerGet al. KRAS binders hidden in nature. Chem. Eur. J.25(52), 12037–12041 (2019).
  • Klebe G . Applying thermodynamic profiling in lead finding and optimization. Nat. Rev. Drug Discov.14(2), 95–110 (2015).
  • Schmalhorst PS , BergnerA. A grid map based approach to identify nonobvious ligand design opportunities in 3D protein structure ensembles. J. Chem. Inf. Model60(4), 2178–2188 (2020).
  • Pantsar T . The current understanding of KRAS protein structure and dynamics. Comput. Struct. Biotechnol. J.18, 189–198 (2020).
  • Gorfe AA , GrantBJ , McCammonJA. Mapping the nucleotide and isoform-dependent structural and dynamical features of RAS proteins. Structure16(6), 885–896 (2008).
  • Gollner A , WeinstablH , FuchsJEet al. Targeted synthesis of complex spiro [3H-indole-3,2′-pyrrolidin]-2(1H)-ones by intramolecular cyclization of azomethine ylides: highly potent MDM2–p53 inhibitors. ChemMedChem14(1), 88–93 (2019).
  • Platzer G , MayerM , BeierAet al. PI by NMR: probing CH–π interactions in protein-ligand complexes by NMR. Angew. Chem. Int. Ed.
  • Farnaby W , KoeglM , RoyMJet al. BAF complex vulnerabilities in cancer demonstrated via structure-based PROTAC design. Nat. Chem. Biol.15(7), 672–680 (2019).
  • Zeng M , XiongY , SafaeeNet al. Exploring targeted degradation strategy for oncogenic KRASG12C. Cell Chem. Biol27(1), 19–31e16 (2020).