315
Views
0
CrossRef citations to date
0
Altmetric
Review

Nanomedicine in the Treatment of Diabetic Nephropathy

, , , ORCID Icon, , , , , & show all
Pages 663-686 | Received 29 Oct 2020, Accepted 03 Feb 2021, Published online: 08 Mar 2021

References

  • Alam U , AsgharO , AzmiS , MalikRA. General aspects of diabetes mellitus. Handb. Clin. Neurol.126, 211–222 (2014).
  • Saeedi P , PetersohnI , SalpeaPet al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the International Diabetes Federation Diabetes Atlas. Diabetes Res. Clin. Pract.157, 107843 (2019).
  • American Diabetes Association . Diagnosis and classification of diabetes mellitus. Diabetes Care37(Suppl. 1), S81–S90 (2014).
  • Chan JC , MalikV , JiaWet al. Diabetes in Asia: epidemiology, risk factors, and pathophysiology. JAMA301(20), 2129–2140 (2009).
  • World Health Organization . Definition, diagnosis and classification of diabetes mellitus and its complications: report of a WHO consultation. Part 1, Diagnosis and classification of diabetes mellitus. (1999). https://apps.who.int/iris/handle/10665/66040
  • Ahlqvist E , StormP , KäräjämäkiAet al. Novel subgroups of adult-onset diabetes and their association with outcomes: a data-driven cluster analysis of six variables. Lancet Diabetes Endocrinol.6(5), 361–369 (2018).
  • Pivonello R , DeLeo M , VitalePet al. Pathophysiology of diabetes mellitus in Cushing’s syndrome. Neuroendocrinology92(Suppl. 1), 77–81 (2010).
  • Kota SK , TripathyPR , KotaSK , JammulaS. Type 2 diabetes mellitus: an unusual association with Down’s syndrome. Indian J. Hum. Genet.19(3), 358–359 (2013).
  • Kerner W , BrückelJJE. Diabetes. Definition, classification and diagnosis of diabetes mellitus. Exp. Clin. Endocrinol. Diabetes122(07), 384–386 (2014).
  • Harding JL , PavkovME , MaglianoDJ , ShawJE , GreggEW. Global trends in diabetes complications: a review of current evidence. Diabetologia62(1), 3–16 (2019).
  • Orasanu G , PlutzkyJ. The pathologic continuum of diabetic vascular disease. J. Am. Coll. Cardiol.53(5S), S35–S42 (2009).
  • Yamagishi S-I , FukamiK , UedaS , OkudaS. Molecular mechanisms of diabetic nephropathy and its therapeutic intervention. Curr. Drug Targets8(8), 952–959 (2007).
  • Lim AK . Diabetic nephropathy – complications and treatment. Int. J. Nephrol. Renov. Dis.7, 361 (2014).
  • Raval N , KumawatA , KalyaneD , KaliaK , TekadeRK. Understanding molecular upsets in diabetic nephropathy to identify novel targets and treatment opportunities. Drug Discov. Today25(5), 862–878 (2020).
  • Soldatos G , CooperM. Diabetic nephropathy: important pathophysiologic mechanisms. Diabetes Res. Clin. Pract.82, S75–S79 (2008).
  • Balakumar P , AroraMK , ReddyJ , Anand-SrivastavaMB. Pathophysiology of diabetic nephropathy: involvement of multifaceted signaling mechanism. J. Cardiovasc. Pharmacol.54(2), 129–138 (2009).
  • Chawla A , ChawlaR , JaggiS. Microvasular and macrovascular complications in diabetes mellitus: distinct or continuum?Indian J. Endocrinol. Metab.20(4), 546 (2016).
  • Shumway JT , GambertSR. Diabetic nephropathy-pathophysiology and management. Int. Urol. Nephrol.34(2), 257–264 (2002).
  • Vallon V . The proximal tubule in the pathophysiology of the diabetic kidney. Am. J. Physiol. Regul. Integr. Comp. Physiol.300(5), R1009–R1022 (2011).
  • Jerums G , PanagiotopoulosS , PremaratneE , MacIsaacRJ. Integrating albuminuria and GFR in the assessment of diabetic nephropathy. Nat. Rev. Nephrol.5(7), 397–406 (2009).
  • Dabla PK . Renal function in diabetic nephropathy. World J. Diabetes1(2), 48 (2010).
  • Tervaert TWC , MooyaartAL , AmannKet al. Pathologic classification of diabetic nephropathy. J. Am. Soc. Nephrol.21(4), 556–563 (2010).
  • Stout LC , KumarS , WhortonEB. Focal mesangiolysis and the pathogenesis of the Kimmelstiel–Wilson nodule. Hum. Pathol.24(1), 77–89 (1993).
  • Hørlyck A , GundersenH , ØsterbyR. The cortical distribution pattern of diabetic glomerulopathy. Diabetologia29(3), 146–150 (1986).
  • Qian Y , FeldmanE , PennathurS , KretzlerM , BrosiusFC 3rd. From fibrosis to sclerosis: mechanisms of glomerulosclerosis in diabetic nephropathy. ADA Diabetes57(6), 1439–1445 (2008).
  • Najafian B , KimY , CrossonJT , MauerM. Atubular glomeruli and glomerulotubular junction abnormalities in diabetic nephropathy. J. Am. Soc. Nephrol.14(4), 908–917 (2003).
  • Mauer SM , SteffesMW , EllisEN , SutherlandDE , BrownDM , GoetzFC. Structural–functional relationships in diabetic nephropathy. J. Clin. Investig.74(4), 1143–1155 (1984).
  • Bohle A , WehrmannM , BogenschützO , BatzC , MüllerCA , MüllerGA. The pathogenesis of chronic renal failure in diabetic nephropathy: investigation of 488 cases of diabetic glomerulosclerosis. Pathol. Res. Pract.187(2–3), 251–259 (1991).
  • Stout LC , KumarS , WhortonEB. Insudative lesions – their pathogenesis and association with glomerular obsolescence in diabetes: a dynamic hypothesis based on single views of advancing human diabetic nephropathy. Hum. Pathol.25(11), 1213–1227 (1994).
  • Mogensen C , ChristensenCJ. Predicting diabetic nephropathy in insulin-dependent patients. N. Engl. J. Med.311(2), 89–93 (1984).
  • Perkins BA , FicocielloLH , SilvaKH , FinkelsteinDM , WarramJH , KrolewskiAS. Regression of microalbuminuria in Type 1 diabetes. N. Engl. J. Med.348(23), 2285–2293 (2003).
  • Jim B , SantosJ , SpathF , HeJC. Biomarkers of diabetic nephropathy, the present and the future. Curr. Diabetes Rev.8(5), 317–328 (2012).
  • Kato M , NatarajanRJ. MicroRNAs in diabetic nephropathy: functions, biomarkers, and therapeutic targets. Ann. NY Acad. Sci.1353(1), 72 (2015).
  • Nagaishi K , MizueY , ChikenjiTet al. Mesenchymal stem cell therapy ameliorates diabetic nephropathy via the paracrine effect of renal trophic factors including exosomes. Sci. Rep.6(1), 1–16 (2016).
  • Kado S , AokiA , WadaSet al. Urinary type IV collagen as a marker for early diabetic nephropathy. Diabetes Res. Clin. Pract.31(1–3), 103–108 (1996).
  • Viberti G , HillRD , JarrettRJ , ArgyropoulosA , MahmudU , KeenH. Microalbuminuria as a predictor of clinical nephropathy in insulin-dependent diabetes mellitus. Lancet319(8287), 1430–1432 (1982).
  • Wishart DS , KnoxC , GuoACet al. HMDB: a knowledgebase for the human metabolome. Nucleic Acids Res.37(Suppl. 1), D603–D610 (2009).
  • Barlovic DP , ZaletelJ , PrezeljJJC. Adipocytokines are associated with renal function in patients with normal range glomerular filtration rate and Type 2 diabetes. Cytokine46(1), 142–145 (2009).
  • Gohda T , NiewczasMA , FicocielloLHet al. Circulating TNF receptors 1 and 2 predict stage 3 CKD in Type 1 diabetes. J. Am. Soc. Nephrol.23(3), 516–524 (2012).
  • Wang G , LaiFM-M , LaiK-B , ChowK-M , LiK-TP , SzetoC-C. Messenger RNA expression of podocyte-associated molecules in the urinary sediment of patients with diabetic nephropathy. Nephron. Clin. Pract.106(4), c169–c179 (2007).
  • Zheng M , LvL-L , NiJet al. Urinary podocyte-associated mRNA profile in various stages of diabetic nephropathy. PLoS ONE6(5), e20431 (2011).
  • Nauta FL , BoertienWE , BakkerSJet al. Glomerular and tubular damage markers are elevated in patients with diabetes. Diabetes Care34(4), 975–981 (2011).
  • Arima S , ItoS. The mechanisms underlying altered vascular resistance of glomerular afferent and efferent arterioles in diabetic nephropathy. Nephrol. Dial. Transplant.18(10), 1966–1969 (2003).
  • Vallon V , KomersR. Pathophysiology of the diabetic kidney. Compr. Physiol.1(3), 1175–1232 (2011).
  • Chen H-C , ChenC-A , GuhJ-Y , ChangJM , ShinSJ , LaiYH. Altering expression of α3β1 integrin on podocytes of human and rats with diabetes. Life Sci.67(19), 2345–2353 (2000).
  • Paul M , PoyanMehr A , KreutzR. Physiology of local renin-angiotensin systems. Physiol. Rev.86(3), 747–803 (2006).
  • Wolf G , MuellerE , StahlR , ZiyadehFN. Angiotensin II-induced hypertrophy of cultured murine proximal tubular cells is mediated by endogenous transforming growth factor-beta. J. Clin. Invest.92(3), 1366–1372 (1993).
  • Chawla T , SharmaD , SinghA. Role of the renin angiotensin system in diabetic nephropathy. World J. Diabetes1(5), 141–145 (2010).
  • Allison SJ . Aliskiren as an add-on treatment reduces albuminuria in patients with diabetes. Nat. Rev. Nephrol.7(1), 1–1 (2011).
  • Heldin C-H , LandströmM , MoustakasA. Mechanism of TGF-β signaling to growth arrest, apoptosis, and epithelial–mesenchymal transition. Curr. Opin. Cell Biol.21(2), 166–176 (2009).
  • Wang W , KokaV , LanHY. Transforming growth factor-β and Smad signalling in kidney diseases. Nephrology10(1), 48–56 (2005).
  • Braga Gomes K , FontanaRodrigues K , FernandesAP. The role of transforming growth factor-beta in diabetic nephropathy. Curr. Opin. Cell Biol.2014 doi:10.1155/2014/180270 (2014).
  • Wada T , FuruichiK , SakaiNet al. Up-regulation of monocyte chemoattractant protein-1 in tubulointerstitial lesions of human diabetic nephropathy. Kidney Int.58(4), 1492–1499 (2000).
  • Morii T , FujitaH , NaritaTet al. Association of monocyte chemoattractant protein-1 with renal tubular damage in diabetic nephropathy. J. Diabetes Complications17(1), 11–15 (2003).
  • Mills CD . Anatomy of a discovery: M1 and M2 macrophages. Front Immunol.6, 212 (2015).
  • Landis RC , QuimbyKR , GreenidgeAR. M1/M2 macrophages in diabetic nephropathy: nrf2/HO-1 as therapeutic targets. Curr. Pharm. Des.24(20), 2241–2249 (2018).
  • Chen X-L , TummalaPE , OlbrychMT , AlexanderRW , MedfordRM. Angiotensin II induces monocyte chemoattractant protein-1 gene expression in rat vascular smooth muscle cells. Circ. Res.83(9), 952–959 (1998).
  • Amann B , TinzmannR , AngelkortB. ACE inhibitors improve diabetic nephropathy through suppression of renal MCP-1. Diabetes Care26(8), 2421–2425 (2003).
  • Loutzenhiser R , EpsteinMJ. Effects of calcium antagonists on renal hemodynamics. Am. J. Physiol.249(5), F619–F629 (1985).
  • Frevert CW , FelgenhauerJ , WygreckaM , NastaseMV , SchaeferL. Danger-associated molecular patterns derived from the extracellular matrix provide temporal control of innate immunity. J. Histochem. Cytochem.66(4), 213–227 (2018).
  • Rosin DL , OkusaMD. Dangers within: DAMP responses to damage and cell death in kidney disease. J. Am. Soc. Nephrol.22(3), 416–425 (2011).
  • Hermann A , DonatoR , WeigerTM , ChazinWJ. S100 calcium binding proteins and ion channels. Front. Pharmacol.3, 67(.2012).
  • Roh JS , SohnDH. Damage-associated molecular patterns in inflammatory diseases. Immune Netw.18(4), e27 (2018).
  • Carmines PK , OhishiK , IkenagaHJ. Functional impairment of renal afferent arteriolar voltage-gated calcium channels in rats with diabetes mellitus. J. Clin. Invest.98(11), 2564–2571 (1996).
  • Inoue A , YanagisawaM , KimuraS et al. The human endothelin family: three structurally and pharmacologically distinct isopeptides predicted by three separate genes. Proc. Natl Acad. Sci. USA86(8), 2863–2867 (1989).
  • Chandrashekar K , JuncosLA. Endothelin antagonists in diabetic nephropathy: back to basics. J. Am. Soc. Nephrol.25(5), 869–871 (2014).
  • Kuc R , DavenportAP. Comparison of endothelin-A and endothelin-B receptor distribution visualized by radioligand binding versus immunocytochemical localization using subtype selective antisera. J. Cardiovasc. Pharmacol.44, S224–S226 (2004).
  • Kohan DE , BartonMJ. Endothelin and endothelin antagonists in chronic kidney disease. Kidney Int.86(5), 896–904 (2014).
  • Forbes JM , CooperME. Mechanisms of diabetic complications. Physiol. Rev.93(1), 137–188 (2013).
  • Badal SS , DaneshFR. New insights into molecular mechanisms of diabetic kidney disease. Am. J. Kidney Dis.63(2), S63–S83 (2014).
  • Inoguchi T , BattanR , HandlerE , SportsmanJR , HeathW , KingGL. Preferential elevation of protein kinase C isoform beta II and diacylglycerol levels in the aorta and heart of diabetic rats: differential reversibility to glycemic control by islet cell transplantation. Proc. Natl Acad. Sci. USA89(22), 11059–11063 (1992).
  • Brownlee M . Biochemistry and molecular cell biology of diabetic complications. Nature414(6865), 813–820 (2001).
  • Craven PA , CainesMA , DerubertisFR. Sequential alterations in glomerular prostaglandin and thromboxane synthesis in diabetic rats: relationship to the hyperfiltration of early diabetes. Metabolism36(1), 95–103 (1987).
  • Aiello LP , BursellS-E , ClermontAet al. Vascular endothelial growth factor–induced retinal permeability is mediated by protein kinase C in vivo and suppressed by an orally effective β-isoform–selective inhibitor. Diabetes46(9), 1473–1480 (1997).
  • Noh H , KingG. The role of protein kinase C activation in diabetic nephropathy. Kidney Int.72, S49–S53 (2007).
  • Warren AM , KnudsenST , CooperME. Diabetic nephropathy: an insight into molecular mechanisms and emerging therapies. Expert Opin. Ther. Targets23(7), 579–591 (2019).
  • Wendt TM , TanjiN , GuoJet al. RAGE drives the development of glomerulosclerosis and implicates podocyte activation in the pathogenesis of diabetic nephropathy. Am. J. Pathol.162(4), 1123–1137 (2003).
  • Lehmann R , SchleicherED. Molecular mechanism of diabetic nephropathy. Clin. Chim. Acta297(1–2), 135–144 (2000).
  • Dvornik D , Simard-DuquesneN , KramiMet al. Polyol accumulation in galactosemic and diabetic rats: control by an aldose reductase inhibitor. Science182(4117), 1146–1148 (1973).
  • El Gamal H , MunusamyS. Aldose reductase as a drug target for treatment of diabetic nephropathy: promises and challenges. Protein Pept. Lett.24(1), 71–77 (2017).
  • Iso K , TadaH , KubokiK , InokuchiT. Long-term effect of epalrestat, an aldose reductase inhibitor, on the development of incipient diabetic nephropathy in Type 2 diabetic patients. J. Diabetes Complications15(5), 241–244 (2001).
  • Ramana KV , FriedrichB , SrivastavaSet al. Activation of nuclear factor-κB by hyperglycemia in vascular smooth muscle cells is regulated by aldose reductase. Diabetes53(11), 2910–2920 (2004).
  • Ha H , YuMR , ChoiYJet al. Role of high glucose-induced nuclear factor-κB activation in monocyte chemoattractant protein-1 expression by mesangial cells. J. Am. Soc. Nephrol.13(4), 894–902 (2002).
  • Nagarajan RP , ChenF , LiWet al. Repression of transforming-growth-factor-β-mediated transcription by nuclear factor κB. Biochem. J.348(3), 591–596 (2000).
  • Bierhaus A , SchiekoferS , SchwaningerMet al. Diabetes-associated sustained activation of the transcription factor nuclear factor-κB. Diabetes50(12), 2792–2808 (2001).
  • Chin MP , WrolstadD , BakrisGLet al. Risk factors for heart failure in patients with Type 2 diabetes mellitus and stage 4 chronic kidney disease treated with bardoxolone methyl. J. Card. Fail.20(12), 953–958 (2014).
  • Zhou P , SunX , ZhangZ. Kidney-targeted drug delivery systems. Acta Pharm. Sin. B4(1), 37–42 (2014).
  • Haas M , MoolenaarF , MeijerDK , de ZeeuwD. Specific drug delivery to the kidney. Cardiovasc. Drugs Ther.16(6), 489–496 (2002).
  • Shibata M , KishiT , YasudaB , KunoT. The inhibitory effect of lysozyme on the glomerular basement membrane thickening in spontaneous diabetic mice (NSY Mice). Tohoku J. Exp. Med.149(1), 39–46 (1986).
  • Haas M , KluppelAC , WartnaESet al. Drug-targeting to the kidney: renal delivery and degradation of a naproxen–lysozyme conjugate in vivo. Kidney Int.52(6), 1693–1699 (1997).
  • Zheng X-P , NieQ , FengJet al. Kidney-targeted baicalin-lysozyme conjugate ameliorates renal fibrosis in rats with diabetic nephropathy induced by streptozotocin. BMC Nephrol.21, 1–17 (2020).
  • Kishida A . A site-specific polymeric drug carrier for renal disease treatment. Trends Pharmacol. Sci.24(12), 611–613 (2003).
  • Ellis C , KorbuttG. Chitosan-based biomaterials for treatment of diabetes. In: Chitosan Based Biomaterials Volume 2.Woodhead Publishing, 91–113 (2017).
  • Sarko D , GeorgesR. Kidney-specific drug delivery: review of opportunities, achievements, and challenges. J. Anal. Pharm. Res.2, 33–38 (2016).
  • Yuan Z-X , ZhangZ-R , ZhuDet al. Specific renal uptake of randomly 50% N-acetylated low molecular weight chitosan. Mol Pharm.6(1), 305–314 (2009).
  • Yuan Z-X , SunX , GongT , DingH , FuY , ZhangZ-R. Randomly 50% N-acetylated low molecular weight chitosan as a novel renal targeting carrier. J. Drug Target.15(4), 269–278 (2007).
  • Yuan Z-X , LiJ-J , ZhuD , SunX , GongT , ZhangZ-R. Enhanced accumulation of low-molecular-weight chitosan in kidneys: a study on the influence of N-acetylation of chitosan on the renal targeting. J. Drug Target.19(7), 540–551 (2011).
  • Kamada H , TsutsumiY , Sato-KamadaKet al. Synthesis of a poly (vinylpyrrolidone-co-dimethyl maleic anhydride) co-polymer and its application for renal drug targeting. Nat. Biotechnol.21(4), 399–404 (2003).
  • Kuo C-W , ShenC-J , TungY-Tet al. Extracellular superoxide dismutase ameliorates streptozotocin-induced rat diabetic nephropathy via inhibiting the ROS/ERK1/2 signaling. Life Sci.135, 77–86 (2015).
  • Yamamoto Y , TsutsumiY , YoshiokaYet al. Poly(vinylpyrrolidone-co-dimethyl maleic acid) as a novel renal targeting carrier. J. Control. Release95(2), 229–237 (2004).
  • Kodaira H , TsutsumiY , YoshiokaYet al. The targeting of anionized polyvinylpyrrolidone to the renal system. Biomaterials25(18), 4309–4315 (2004).
  • Mccormick-Thomson LA , DuncanRJ. Poly(amino acid) copolymers as a potential soluble drug delivery system. 1. Pinocytic uptake and lysosomal degradation measured in vitro. J. Bioact. Compat. Polym.4(3), 242–251 (1989).
  • Li C . Poly(L-glutamic acid)–anticancer drug conjugates. Adv. Drug Deliv. Rev.54(5), 695–713 (2002).
  • Chai H-J , KiewL-V , ChinYet al. Renal targeting potential of a polymeric drug carrier, poly-L-glutamic acid, in normal and diabetic rats. Int. J. Nanomedicine12, 577 (2017).
  • Shaw JA , ShettyP , BurnsKD , FergussonD , KnollGA. C-peptide as a therapy for kidney disease: a systematic review and meta-analysis. PLoS ONE10(5), e0127439 (2015).
  • Yaribeygi H , MalekiM , SathyapalanT , SahebkarA. The effect of C-peptide on diabetic nephropathy: a review of molecular mechanisms. Life Sci.237, 116950 (2019).
  • Arote RB , HwangSK , YooMKet al. Biodegradable poly (ester amine) based on glycerol dimethacrylate and polyethylenimine as a gene carrier. J. Gen. Med.10(11), 1223–1235 (2008).
  • Kim Y-K , KwonJ-T , JiangH-L , ChoiY-J , ChoM-H , ChoC-S. Kidney-specific peptide-conjugated poly (ester amine) for the treatment of kidney fibrosis. J. Nanosci. Nanotechnol.12(7), 5149–5154 (2012).
  • Yuan Z-X , WuX-J , MoJ , WangY-L , XuC-Q , LimLY. Renal targeted delivery of triptolide by conjugation to the fragment peptide of human serum albumin. Eur. J. Pharm. Biopharm.94, 363–371 (2015).
  • Vahdatpour T , ValizadehH , MirzakhaniN . VahdatpourT. Renoprotective effects of di-and tri-peptides containing proline, glycine and leucine in diabetes model of adult mice: enzymology and histopathology. Int. J. Pept. Res. Ther.26, 2345–2354 (2020).
  • Tombran-Tink J , BarnstableC. PEDF: a multifaceted neurotrophic factor. Nat. Rev. Neurosci.4(8), 628–636 (2003).
  • Awad AS , GaoT , GvritishviliAet al. Protective role of small pigment epithelium-derived factor (PEDF) peptide in diabetic renal injury. Am. J. Physiol. Renal Physiol.305(6), F891–F900 (2013).
  • Awad AS , YouH , GaoT , GvritishviliA , CooperTK , Tombran-TinkJ. Delayed treatment with a small pigment epithelium derived factor (PEDF) peptide prevents the progression of diabetic renal injury. PLoS ONE10(7), e0133777 (2015).
  • Wischnjow A , SarkoD , JanzerMet al. Renal targeting: peptide-based drug delivery to proximal tubule cells. Bioconjug. Chem.27(4), 1050–1057 (2016).
  • Chen Z , PengH , ZhangC. Advances in kidney-targeted drug delivery systems. Int. J. Pharm.587, 119679 (2020).
  • Hultman KL , RaffoAJ , GrzendaAL , HarrisPE , BrownTR , O’BrienS. Magnetic resonance imaging of major histocompatibility class II expression in the renal medulla using immunotargeted superparamagnetic iron oxide nanoparticles. ACS Nano2(3), 477–484 (2008).
  • Shirai T , KoharaH , TabataY. Inflammation imaging by silica nanoparticles with antibodies orientedly immobilized. J. Drug Target.20(6), 535–543 (2012).
  • Wang S , LuoJ , LantripDAet al. Design and synthesis of [111In] DTPA−folate for use as a tumor-targeted radiopharmaceutical. Bioconjug. Chem.8(5), 673–679 (1997).
  • Lin Y , SunX , GongTet al. Prednisolone succinate–glucosamine conjugate: synthesis, characterization and in vitro cellular uptake by kidney cell lines. Chin. Chem. Let.23(1), 25–28 (2012).
  • Wyss J-C , KumarR , MikulicJet al. Differential effects of the mitochondria-active tetrapeptide SS-31 (D-Arg-dimethylTyr-Lys-Phe-NH2) and its peptidase-targeted prodrugs in experimental acute kidney injury. Front. Pharmacol.10, 1209 (2019).
  • Hu J-B , LiS-J , KangX-Qet al. CD44-targeted hyaluronic acid-curcumin prodrug protects renal tubular epithelial cell survival from oxidative stress damage. Carbohydr. Polym.193, 268–280 (2018).
  • Zuckerman JE , DavisME. Targeting therapeutics to the glomerulus with nanoparticles. Adv. Chronic Kidney20(6), 500–507 (2013).
  • Hauser PV , PippinJW , KaiserCet al. Novel siRNA delivery system to target podocytes in vivo. PLoS ONE5(3), e9463 (2010).
  • Greka A , MundelP. Cell biology and pathology of podocytes. Annu. Rev. Physiol.74, 299–323 (2012).
  • Mathieson PW . The podocyte as a target for therapies – new and old. Nat. Rev. Nephrol.8(1), 52–56 (2012).
  • Lin JS , SusztakK. Podocytes: the weakest link in diabetic kidney disease?Curr. Diab. Rep.16(5), 45 (2016).
  • Guhr SS , SachsM , WegnerAet al. The expression of podocyte-specific proteins in parietal epithelial cells is regulated by protein degradation. Kidney Int.84(3), 532–544 (2013).
  • Wu L , ChenM , MaoHet al. Albumin-based nanoparticles as methylprednisolone carriers for targeted delivery towards the neonatal Fc receptor in glomerular podocytes. Int. J. Mol. Med.39(4), 851–860 (2017).
  • Colombo C , LiM , WatanabeSet al. Polymer nanoparticle engineering for podocyte repair: from in vitro models to new nanotherapeutics in kidney diseases. ACS Omega.2(2), 599–610 (2017).
  • Akilesh S , HuberTB , WuHet al. Podocytes use FcRn to clear IgG from the glomerular basement membrane. Proc. Natl Acad. Sci. USA105(3), 967–972 (2008).
  • Scindia YM , DeshmukhUS , BagavantH. Mesangial pathology in glomerular disease: targets for therapeutic intervention. Adv. Drug Deliv. Rev.62(14), 1337–1343 (2010).
  • Tung CW , HsuYC , ShihYH , ChangP-J , LinC-L. Glomerular mesangial cell and podocyte injuries in diabetic nephropathy. Nephrology (Carlton)23, 32–37 (2018).
  • Alpers CE , HudkinsKL. Pathology identifies glomerular treatment targets in diabetic nephropathy. Kidney Res. Clin. Pract.37(2),106–111 (2018).
  • Zuckerman JE , GaleA , WuP , MaR , DavisME. siRNA delivery to the glomerular mesangium using polycationic cyclodextrin nanoparticles containing siRNA. Nucleic Acid Ther.25(2), 53–64 (2015).
  • Choi CHJ , ZuckermanJE , WebsterP , DavisME. Targeting kidney mesangium by nanoparticles of defined size. Proc. Natl Acad. Sci. USA108(16), 6656–6661 (2011).
  • Li S , ZengY-C , PengK , LiuC , ZhangZ-R , ZhangL. Design and evaluation of glomerulus mesangium-targeted PEG–PLGA nanoparticles loaded with dexamethasone acetate. Acta Pharmacol. Sin.40(1), 143–150 (2019).
  • Miner JHJ . The glomerular basement membrane. Exp. Cell Res.318(9), 973–978 (2012).
  • Miner JH . Glomerular basement membrane composition and the filtration barrier. Pediatr. Nephrol.26(9), 1413–1417 (2011).
  • Scott RP , QuagginSE. Formation and maintenance of a functional glomerulus. In: Kidney Development, Disease, Repair and Regeneration.Academic Press, 103–119 (2016).
  • Zuckerman JE , ChoiCHJ , HanH , DavisME. Polycation-siRNA nanoparticles can disassemble at the kidney glomerular basement membrane. Proc. Natl Acad. Sci. USA109(8), 3137–3142 (2012).
  • Bennett KM , ZhouH , SumnerJPet al. MRI of the basement membrane using charged nanoparticles as contrast agents. Magn. Reson. Med.60(3), 564–574 (2008).
  • Tang SC , LaiKN. The pathogenic role of the renal proximal tubular cell in diabetic nephropathy. Nephrol. Dial. Transplant.27(8), 3049–3056 (2012).
  • Gewin LS . Renal fibrosis: primacy of the proximal tubule. Matrix Biol.68, 248–262 (2018).
  • Zeisberg M , NeilsonEG. Mechanisms of tubulointerstitial fibrosis. J. Am. Soc. Nephrol.21(11), 1819–1834 (2010).
  • Gao S , HeinS , Dagnæs-HansenFet al. Megalin-mediated specific uptake of chitosan/siRNA nanoparticles in mouse kidney proximal tubule epithelial cells enables AQP1 gene silencing. Theranostics.4(10), 1039 (2014).
  • Williams RM , ShahJ , TianHSet al. Selective nanoparticle targeting of the renal tubules. Hypertension71(1), 87–94 (2018).
  • Williams RM , ShahJ , NgBDet al. Mesoscale nanoparticles selectively target the renal proximal tubule epithelium. Nano Lett.15(4), 2358–2364 (2015).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.