92
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Green Solvent-Free Synthesis of New N-Heterocycle-L-Ascorbic Acid Hybrids and Their Antiproliferative Evaluation

ORCID Icon, ORCID Icon, ORCID Icon, , , ORCID Icon & ORCID Icon show all
Pages 1187-1202 | Received 03 Mar 2022, Accepted 14 Jun 2022, Published online: 06 Jul 2022

References

  • Sheldon RA . Green solvents for sustainable organic synthesis: state of the art. Green Chem.7(5), 267–278 (2005).
  • Anastas P , EghbaliN. Green chemistry:principles and practice. Chem. Soc. Rev.39(1), 301–312 (2009).
  • Liu X , LiY , ZengLet al. A review on mechanochemistry: approaching advanced energy materials with greener force. Adv. Mater. (2022).
  • O'Neill RT , BoulatovR. The many flavours of mechanochemistry and its plausible conceptual underpinnings. Nat. Rev. Chem.5(3), 148–167 (2021).
  • Han GF , LiF , ChenZWet al. Mechanochemistry for ammonia synthesis under mild conditions. Nat. Nanotechnol.16(3), 325–330 (2020).
  • Lukin S , GermannLS , FriščićT , HalaszI. Toward mechanistic understanding of mechanochemical reactions using real-time in situ monitoring. Acc. Chem. Res. (2022).
  • Varma RS . Greener and sustainable trends in synthesis of organics and nanomaterials. ACS Sustain. Chem. Eng.4(11), 5866–5878 (2016).
  • Stolle A , SzuppaT , LeonhardtSES , OndruschkaB. Ball milling in organic synthesis: solutions and challenges. Chem. Soc. Rev.40(5), 2317–2329 (2011).
  • Mateti S , MatheshM , LiuZet al. Mechanochemistry: a force in disguise and conditional effects towards chemical reactions. Chem. Commun.57(9), 1080–1092 (2021).
  • Howard JL , CaoQ , BrowneDL. Mechanochemistry as an emerging tool for molecular synthesis: what can it offer?Chem. Sci.9(12), 3080–3094 (2018).
  • Andersen JM , StarbuckHF. Rate and yield enhancements in nucleophilic aromatic substitution reactions via mechanochemistry. J. Org. Chem.86(20), 13983–13989 (2021).
  • Hernández JG , BolmC. Altering product selectivity by mechanochemistry. J. Org. Chem.82(8), 4007–4019 (2017).
  • Friščić T , MottilloC , TitiHM. Mechanochemistry for synthesis. Angew. Chemie Int. Ed.59(3), 1018–1029 (2020).
  • Gomollón-Bel F . Ten chemical innovations that will change our world: IUPAC identifies emerging technologies in chemistry with potential to make our planet more sustainable. Chem. Int.41(2), 12–17 (2019).
  • Gomollón-Bel F , García-MartínezJ. Emerging chemistry technologies for a better world. Nat. Chem.14(2), 113–114 (2022).
  • Sović I , LukinS , MeštrovićEet al. Mechanochemical preparation of active pharmaceutical ingredients monitored by in situ Raman spectroscopy. ACS Omega5(44), 28663–28672 (2020).
  • Colacino E , PorchedduA , CharnayC , DeloguF. From enabling technologies to medicinal mechanochemistry: an eco-friendly access to hydantoin-based active pharmaceutical ingredients. React. Chem. Eng.4(7), 1179–1188 (2019).
  • Tan D , ŠtrukilV , MottilloC , FriščićT. Mechanosynthesis of pharmaceutically relevant sulfonyl-(thio)ureas. Chem. Commun.50(40), 5248–5250 (2014).
  • André V , HardemanA , HalaszIet al. Mechanosynthesis of the metallodrug bismuth subsalicylate from Bi2O3 and structure of bismuth salicylate without auxiliary organic ligands. Angew. Chem. Int. Ed. Engl.50(34), 7858–7861 (2011).
  • Tan D , LootsL , FriščićT. Towards medicinal mechanochemistry: evolution of milling from pharmaceutical solid form screening to the synthesis of active pharmaceutical ingredients (APIs). Chem. Commun.52(50), 7760–7781 (2016).
  • Pérez-Venegas M , JuaristiE. Mechanochemical and mechanoenzymatic synthesis of pharmacologically active compounds: A green perspective. ACS Sustain. Chem. Eng.8(24), 8881–8893 (2020).
  • Achar TK , BoseA , MalP. Mechanochemical synthesis of small organic molecules. Beilstein J. Org. Chem.13(1), 1907–1931 (2017).
  • Kubota K , SeoT , KoideK , HasegawaY , ItoH. Olefin-accelerated solid-state C-N cross-coupling reactions using mechanochemistry. Nat. Commun.10(1), 1–11 (2019).
  • Raston CL , ScottJL. Chemoselective, solvent-free aldol condensation reaction. Green Chem.2(2), 49–52 (2000).
  • Tanaka K , KishigamiS , TodaF. Reformatsky and Luche reaction in the absence of solvent. J. Org. Chem.56(13), 4333–4334 (2002).
  • Mack J , ShumbaM. Rate enhancement of the Morita-Baylis-Hillman reaction through mechanochemistry. Green Chem.9(4), 328–330 (2007).
  • Nielsen SF , PetersD , AxelssonO. The Suzuki reaction under solvent-free conditions. Synth. Commun.30(19), 3501–3509 (2000).
  • Achar TK , MalP. Radical-induced metal and solvent-free cross-coupling using TBAI-TBHP: oxidative amidation of aldehydes and alcohols with N-chloramines via C-H activation. J. Org. Chem.80(1), 666–672 (2015).
  • Meghani NM , AminHH , LeeBJ. Mechanistic applications of click chemistry for pharmaceutical drug discovery and drug delivery. Drug Discov. Today22(11), 1604–1619 (2017).
  • Thirumurugan P , MatosiukD , JozwiakK. Click chemistry for drug development and diverse chemical–biology applications. Chem. Rev.113(7), 4905–4979 (2013).
  • Kolb HC , SharplessKB. The growing impact of click chemistry on drug discovery. Drug Discov. Today8(24), 1128–1137 (2003).
  • Neumann S , BiewendM , RanaS , BinderWH. The CuAAC: principles, homogeneous and heterogeneous catalysts, and novel developments and applications. Macromol. Rapid Commun.41(1), e1900359 (2020).
  • Haldón E , NicasioMC , PérezPJ. Copper-catalysed azide-alkyne cycloadditions (CuAAC): an update. Org. Biomol. Chem.13(37), 9528–9550 (2015).
  • Gonnet L , BaronM , BaltasM. Synthesis of biologically relevant 1,2,3- and 1,3,4-triazoles: from classical pathway to green chemistry. Molecules26(18), 5667 (2021).
  • Thorwirth R , StolleA , OndruschkaB , WildA , SchubertUS. Fast, ligand- and solvent-free copper-catalyzed click reactions in a ball mill. Chem. Commun.47(15), 4370–4372 (2011).
  • Cummings AJ , RavalicoF , McColgan-BannonKISet al. Nucleoside azide-alkyne cycloaddition reactions under solvothermal conditions or using copper vials in a ball mill. Nucleosides Nucleotides Nucleic Acids34(5), 361–370 (2015).
  • Rinaldi L , MartinaK , BariccoF , RotoloL , CravottoG. Solvent-free copper-catalyzed azide-alkyne cycloaddition under mechanochemical activation. Molecules20(2), 2837–2849 (2015).
  • Tireli M , MaračićS , LukinSet al. Solvent-free copper-catalyzed click chemistry for the synthesis of N-heterocyclic hybrids based on quinoline and 1,2,3-triazole. Beilstein J. Org. Chem.13(1), 2352–2363 (2017).
  • Sahu A , AgrawalRK , PandeyRK. Synthesis and systemic toxicity assessment of quinine-triazole scaffold with antiprotozoal potency. Bioorg. Chem.88, 102939 (2019).
  • Meščić Macan A , HarejA , CazinIet al. Antitumor and antiviral activities of 4-substituted 1,2,3-triazolyl-2,3-dibenzyl- l-ascorbic acid derivatives. Eur. J. Med. Chem.184, 111739 (2019).
  • Meščić Macan A , GazivodaKraljević T , Raić-MalićS. Therapeutic perspectives of vitamin C and its derivatives. Antioxidants8(8), 247 (2019).
  • Doseděl M , JirkovskýE , MacákováKet al. Vitamin C – sources, physiological role, kinetics, deficiency, use, toxicity, and determination. Nutrients13(2), 1–36 (2021).
  • Mikkelsen SU , GillbergL , LykkesfeldtJ , GrønbækK. The role of vitamin C in epigenetic cancer therapy. Free Radic. Biol. Med.170, 179–193 (2021).
  • Yu X-X , LiuY-H , LiuX-Met al. Ascorbic acid induces global epigenetic reprogramming to promote meiotic maturation and developmental competence of porcine oocytes. Sci. Rep.8(1), 6132 (2018).
  • Yun J , MullarkyE , LuCet al. Vitamin C selectively kills KRAS and BRAF mutant colorectal cancer cells by targeting GAPDH. Science (80-)350(6266), 1391–1396 (2015).
  • Gao X , WeiK , HuB , XuK , TangB. Ascorbic acid induced HepG2 cells' apoptosis via intracellular reductive stress. Theranostics9(14), 4233 (2019).
  • Gazivoda T , PlevnikM , PlavecJet al. The novel pyrimidine and purine derivatives of L-ascorbic acid: synthesis, one- and two-dimensional 1H and 13C NMR study, cytostatic and antiviral evaluation. Bioorganic Med. Chem.13(1), 131–139 (2005).
  • Gazivoda T , ŠokčevićM , KraljMet al. Synthesis and antiviral and cytostatic evaluations of the new C-5 substituted pyrimidine and furo[2,3-d]pyrimidine 4′,5′-didehydro- l-ascorbic acid derivatives. J. Med. Chem.50(17), 4105–4112 (2007).
  • Gazivoda T , WittineK , LovrićIet al. Synthesis, structural studies, and cytostatic evaluation of 5,6-di-O-modified L-ascorbic acid derivatives. Carbohydr. Res.341(4), 433–442 (2006).
  • Gazivoda T , Raić-MalićS , MarjanovićMet al. The novel C-5 aryl, alkenyl, and alkynyl substituted uracil derivatives of L-ascorbic acid: synthesis, cytostatic, and antiviral activity evaluations. Bioorganic Med. Chem.15(2), 749–758 (2007).
  • Harej A , MacanAM , StepanićVet al. The antioxidant and antiproliferative activities of 1,2,3-triazolyl-L-ascorbic acid derivatives. Int. J. Mol. Sci.20(19), 4735 (2019).
  • Von Dallacker F , SandersJ. Derivate derl-ascorbinsäure 1, darstellung und eigenschaften der O2,O3-ethandiyl- und der O2,O3-dibenzyl-l-ascorbinsäuren. Chem. Zeitung.109, 197–202 (1985).
  • Von Dallacker F , SandersJ. Derivate derl-ascorbinsäure 2, darstellung von deoxy-l-ascorbinsäuren. Chem. Zeitung.109, 277–280 (1985).
  • Meščić A , ŠalićA , GregorićT , ZelićB , Raić-MalićS. Continuous flow-ultrasonic synergy in click reactions for the synthesis of novel 1,2,3-triazolyl appended 4,5-unsaturated L-ascorbic acid derivatives. RSC Adv.7(2), 791–800 (2017).
  • Lazrek HB , TaourirteM , OulihTet al. Synthesis and anti-HIV activity of new modified 1,2,3-triazole acyclonucleosides. Nucleosides Nucleotides Nucleic Acids20(12), 1949–1960 (2001).
  • Bistrović A , GrbčićP , HarejAet al. Small molecule purine and pseudopurine derivatives: synthesis, cytostatic evaluations and investigation of growth inhibitory effect in non-small cell lung cancer A549. J. Enzyme Inhib. Med. Chem.33(1), 271–285 (2018).
  • Krim J , SillahiB , TaourirteM , RakibEM , EngelsJW. Microwave-assisted click chemistry: synthesis of mono and bis-1,2,3-triazole acyclonucleoside analogues of ACV via copper(I)-catalyzed cycloaddition. ARKIVOC2009(13), 142–152 (2009).
  • Gazivoda T , Raić-MalićS , KrištaforVet al. Synthesis, cytostatic and anti-HIV evaluations of the new unsaturated acyclic C-5 pyrimidine nucleoside analogues. Bioorg. Med. Chem.16(10), 5624–5634 (2008).
  • Bistrović A , HarejA , GrbčićPet al. Synthesis and anti-proliferative effects of mono- and bis-purinomimetics targeting kinases. Int. J. Mol. Sci.18(11), 2292 (2017).
  • Gregorić T , SedićM , GrbčićPet al. Novel pyrimidine-2,4-dione-1,2,3-triazole and furo[2,3-d]pyrimidine-2-one-1,2,3-triazole hybrids as potential anti-cancer agents: synthesis, computational and x-ray analysis and biological evaluation. Eur. J. Med. Chem.125, 1247–1267 (2017).
  • Shao C , WangX , ZhangQ , LuoS , ZhaoJ , HuY. Acid-base jointly promoted copper(I)-catalyzed azide-alkyne cycloaddition. J. Org. Chem.76(16), 6832–6836 (2011).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.