804
Views
0
CrossRef citations to date
0
Altmetric
Review

Novel Sulfonamide Derivatives as a Tool to Combat Methicillin-Resistant Staphylococcus Aureus

ORCID Icon
Pages 545-562 | Received 25 Apr 2023, Accepted 24 Jan 2024, Published online: 13 Feb 2024

References

  • WHO . Prioritization of pathogens to guide discovery, research and development of new antibiotics for drug-resistant bacterial infections, including tuberculosis. www.who.int/publications/i/item/WHO-EMP-IAU-2017.12
  • Proctor RA . Role of folate antagonists in the treatment of methicillin-resistant Staphylococcus aureus infection. Clin. Infect. Dis.46, 584–593 (2008).
  • Hong J , EnsomMHH, LauTTY. What is the evidence for co-trimoxazole, clindamycin, doxycycline, and minocycline in the treatment of methicillin-resistant Staphylococcus aureus (MRSA) pneumonia?Ann. Pharmacoth.53, 1–9 (2019).
  • McCarthy MW . Challenges of developing new drugs to treat MRSA. Drugs Fut.44, 21 (2019).
  • Ye J , ChenX. Current promising strategies against antibiotic-resistant bacterial infections. Antibiotics12, 67 (2023).
  • Topala T , BodokiAE, HanganA, Gheorghe-CeteanS, OpreanL. Revisiting therapeutic sulfonamides in the attempt to improve the antimicrobial properties through metal-ion coordination. Farmacia67(5), 74–79 (2019).
  • Kaye KS , GalesAC, DubourgG. Old antibiotics for multidrug-resistant pathogens: from in vitro activity to clinical outcomes. Int. J. Antimicrob. Agents49, 542–548 (2017).
  • Munita JM , AriasCA. Mechanisms of antibiotic resistance. Microbiol. Spectr.4(2), VMBF-0016–2015 (2016).
  • Griffith EC , WallaceMJ, WuYet al. The structural and functional basis for recurring sulfa drug resistance mutations in Staphylococcus aureus dihydropteroate synthase. Front. Microbiol.9, 1369 (2018).
  • Zhou J , CaiY, LiuYet al. Breaking down the cell wall: still an attractive antibacterial strategy. Front. Microbiol.13, 952633 (2022).
  • Vornhagen J , BurnsideK, WhidbeyC, BerryJ, QinX, RajagopalL. Kinase inhibitors that increase the sensitivity of methicillin-resistant Staphylococcus aureus to β-lactam antibiotics. Pathogens4, 708–721 (2015).
  • Krátký M , KonečnáK, ŠimkováAet al. Improving the antimicrobial activity of old antibacterial drug mafenide: Schiff bases and their bioactivity targeting resistant pathogens. Future Med. Chem.15(3), 255–274 (2023).
  • Zhang XJ , HeggersJP, ChinkesDL, WolfSE, HawkinsHK, WolfeRR. Topical sulfamylon cream inhibits DNA and protein synthesis in the skin donor site wound. Surgery139(5), 633–639 (2006).
  • Capasso C , SupuranCT. Inhibition of bacterial carbonic anhydrases as a novel approach to escape drug resistance. Curr. Top. Med. Chem.17(11), 1237–1248 (2017).
  • Urbanski LJ , BuaS, AngeliAet al. Sulphonamide inhibition profile of Staphylococcus aureus β-carbonic anhydrase. J. Enzyme Inhib. Med. Chem.35, 1834–1839 (2020).
  • Fan S-H , LiberiniE, GötzF. Staphylococcus aureus genomes harbor only MpsAB-like bicarbonate transporter but not carbonic anhydrase as dissolved inorganic carbon supply system. Microbiol. Spectr.9, 3 (2021).
  • De Luca V , GiovannuzziS, SupuranCT, CapassoC. May sulfonamide inhibitors of carbonic anhydrases from Mammaliicoccus sciuri prevent antimicrobial resistance due to gene transfer to other harmful staphylococci?Int. J. Mol. Sci.23, 13827 (2022).
  • Haruki H , PedersenMG, GorskaKI, PojerF, JohnssonK. Tetrahydrobiopterin biosynthesis as an off-target of sulfa drugs. Science340(6135), 987–991 (2013).
  • Mavani A , OvungA, LuikhamSet al. Biophysical and molecular modeling evidences for the binding of sulfa molecules with hemoglobin. J. Biomol. Struct. Dynam.41(9), 3779–3790 (2022).
  • Ovung A , BhattacharyyaJ. Sulfonamide drugs: structure, antibacterial property, toxicity, and biophysical interactions. Biophys. Rev.13(2), 259–272 (2021).
  • Eldesouky HE , LiX, AbutalebNS, MohammadH, SeleemMN. Synergistic interactions of sulfamethoxazole and azole antifungal drugs against emerging multidrug-resistant Candida auris. Int. J. Antimicrob. Agents52(6), 754–761 (2018).
  • Khan FA , MushtaqS, NazSet al. Sulfonamides as potential bioactive scaffolds. Curr. Org. Chem.22(8), 818–830 (2018).
  • Krátký M , KonečnáK, JanoušekJet al. Sulfonamide-salicylaldehyde imines active against methicillin- and trimethoprim/sulfonamide-resistant Staphylococci. Future Med. Chem.13(22), 1945–1962 (2021).
  • Mizdal CR , StefanelloST, daCosta Flores Vet al. The antibacterial and anti-biofilm activity of gold-complexed sulfonamides against methicillin-resistant Staphylococcus aureus. Microb. Pathog.123, 440–448 (2018).
  • da Silva CM , da SilvaDL, ModoloLVet al. Schiff bases: A short review of their antimicrobial activities. J. Adv. Res.2(1), 1–8 (2011).
  • Kratky M , VinsovaJ, VolkovaM, BuchtaV, TrejtnarF, StolarikovaJ. Antimicrobial activity of sulfonamides containing 5-chloro-2-hydroxybenzaldehyde and 5-chloro-2-hydroxybenzoic acid scaffold. Eur. J. Med. Chem.50, 433–440 (2012).
  • Kratky M , DzurkovaM, JanousekJet al. Sulfadiazine salicylaldehyde-based schiff bases: synthesis, antimicrobial activity and cytotoxicity. Molecules22(9), 1573 (2017).
  • Mary YS , MaryYS, KrátkýM, VinsovaJ, BaraldiC, GamberiniMC. DFT, molecular docking and SERS (concentration and solvent dependant) investigations of a methylisoxazole derivative with potential antimicrobial activity. J. Mol. Struct.1232, 130034 (2021).
  • Mary YS , MaryYS, KrátkýM, VinsovaJ, BaraldiC, GamberiniMC. DFT, SERS-concentration and solvent dependent and docking studies of a bioactive benzenesulfonamide derivative. J. Mol. Struct.1228, 129680 (2021).
  • Bishoyi AK , MahapatraM, SahooCR, PaidesettySK, PadhyRN. Design, molecular docking and antimicrobial assessment of newly synthesized p-cuminal-sulfonamide Schiff base derivatives. J. Mol. Struct.1250, 131824 (2022).
  • Aziz DM , AzeezHJ. Synthesis of new β-lactam-N-(thiazol-2-yl)benzene sulfonamide hybrids: their in vitro antimicrobial and in silico molecular docking studies. J. Mol. Struct.1222, 128904 (2020).
  • Beheshti-Maal K , KhazaeiliT, AsakereN, MousaviF, MassahAR. Synthesis of some novel sulfonamide-imines as potential antimicrobial agents. Lett. Org. Chem.15, 111–117 (2018).
  • Swain SS , PaidesettySK, PadhyRN. Development of antibacterial conjugates using sulfamethoxazole with monocyclic terpenes: a systematic medicinal chemistry based computational approach. Comput. Methods Programs Biomed.140, 185–194 (2017).
  • Swain SS , PaidesettySK, PadhyRN. Antibacterial activity, computational analysis and host toxicity study of thymol-sulfonamide conjugates. Biomed. Pharmacother.88, 181–193 (2017).
  • Swain SS , PaidesettySK, PadhyRN. Phytochemical conjugation as a potential semisynthetic approach toward reactive and reuse of obsolete sulfonamides against pathogenic bacteria. Drug Dev. Res.82, 149–166 (2021).
  • Kartsev V , GeronikakiA, ZubenkoAet al. Synthesis and antimicrobial activity of new heteroaryl(aryl) thiazole derivatives molecular docking studies. Antibiotics11, 1337 (2022).
  • Wang J , AnsariMF, LinJM, ZhouCH. Design and synthesis of sulfanilamide aminophosphonates as novel antibacterial agents towards Escherichia coli. Chin. J. Chem.39, 2251–2263 (2021).
  • Deng Z , SunH, BheemanaboinaRRY, LuoY, ZhouC-H. Natural aloe emodin-hybridized sulfonamide aminophosphates as novel potential membrane-perturbing and DNA-intercalating agents against Enterococcus faecalis. Bioorg. Med. Chem. Lett.64, 128695 (2022).
  • Wang J , ZhangPL, AnsariMF, LiS, ZhouCH. Molecular design and preparation of 2-aminothiazole sulfanilamide oximes as membrane active antibacterial agents for drug resistant Acinetobacter baumannii. Bioorg. Chem.113, 105039 (2021).
  • Ghorab MM , AlqahtaniAS, SolimanAM, AskarAA. Novel N-(substituted) thioacetamide quinazolinone benzenesulfonamides as antimicrobial agents. Int. J. Nanomed.15, 3161–3180 (2020).
  • Ghorab MM , AlqahtaniAS, SolimanAM, AskarAA. Antimicrobial, anticancer and immunomodulatory potential of new quinazolines bearing benzenesulfonamide moiety. Future Med. Chem.15(3), 275–290 (2023).
  • Türe A , KulabaşN, DingişSIet al. Design, synthesis and molecular modeling studies on novel moxifloxacin derivatives as potential antibacterial and antituberculosis agents. Bioorg. Chem.88, 102965 (2019).
  • Tahir S , MahmoodT, DastgirF, HaqI, WaseemA, RashidU. Design, synthesis and anti-bacterial studies of piperazine derivatives against drug resistant bacteria. Eur. J. Med. Chem.166, 224–231 (2019).
  • Kulabaş N , TüreA, BozdeveciAet al. Novel fluoroquinolones containing 2-arylamino-2-oxoethyl fragment: design, synthesis, evaluation of antibacterial and antituberculosis activities and molecular modeling studies. J. Heterocycl. Chem.59(5), 909 (2022).
  • Sui YF , LiD, WangJet al. Design and biological evaluation of a novel type of potential multi-targeting antimicrobial sulfanilamide hybrids in combination of pyrimidine and azoles. Bioorg. Med. Chem. Lett.30(6), 126982 (2020).
  • He SC , ZhangHZ, ZhangHJ, SunQ, ZhouCH. Design and synthesis of novel sulfonamide-derived triazoles and bioactivity exploration. Med. Chem.16(1), 104–118 (2020).
  • Hu YY , BheemanaboinaRRY, BattiniN, ZhouCH. Sulfonamide-derived four-component molecular hybrids as novel DNA-targeting membrane active potentiators against clinical Escherichia coli. Mol. Pharm.16(3), 1036–1052 (2019).
  • Olar R , BadeaM, ChifiriucMC. Metal complexes-a promising approach to target biofilm associated infections. Molecules27, 758 (2022).
  • Kamoutsis C , FesatidouM, PetrouAet al. Triazolo based-thiadiazole derivatives. Synthesis, biological evaluation and molecular docking studies. Antibiotics10, 804 (2021).
  • Shaker AMM , AbdelallEKA, AbdellatifKRA, Abdel-RahmanHM. Synthesis and biological evaluation of 2-(4-methylsulfonyl phenyl) indole derivatives: multi-target compounds with dual antimicrobial and anti-inflammatory activities. BMC Chemistry14, 23 (2020).
  • Ibezim A , OnukuR, OttihCet al. New sulphonamide-peptide hybrid molecules as potential PBP2a ligands and methicillin resistant Staphylococcus aureus actives. J. Biomol. Struct. Dynam.41(14), 6684–6694 (2022).
  • Ushiyama F , AmadaH, MiharaYet al. Lead optimization of 8-(methylamino)-2-oxo-1,2-dihydroquinolines as bacterial type II topoisomerase inhibitors. Bioorg. Med. Chem.28(22), 115776 (2020).
  • Debbabi KF , Al-HarbiSA, Al-SaidiHMet al. Synthesis, anticancer, antimicrobial, anti-tuberculosis and molecular docking of heterocyclic N-ethyl-N-methylbenzenesulfonamide derivatives. J. Mol. Struct.1203, 127423 (2020).
  • Sanad SMH , MekkyAEM. New pyrido[3′,2′:4,5]thieno[3,2-d]pyrimidin-4(3H)-one hybrids linked to arene units: synthesis of potential MRSA, VRE, and COX-2 inhibitors. Can. J. Chem.99(11), 900–909 (2021).
  • Pucelik B , PaczyńskiR, DubinGet al. Properties of halogenated and sulfonated porphyrins relevant for the selection of photosensitizers in anticancer and antimicrobial therapies. PLOS ONE12(10), e0185984 (2017).
  • Sarabando SN , DiasCJ, VieiraCet al. Sulfonamide porphyrins as potent photosensitizers against multidrug-resistant Staphylococcus aureus (MRSA): the role of co-adjuvants. Molecules28, 2067 (2023).
  • da Silva RN , CunhaA, ToméAC. Phthalocyanine-sulfonamide conjugates: synthesis and photodynamic inactivation of Gram-negative and Gram-positive bacteria. Eur. J. Med. Chem.154, 60–67 (2018).
  • Meşeli T , DoğanSD, GündüzMGet al. Design, synthesis, antibacterial activity evaluation and molecular modeling studies of new sulfonamides containing a sulfathiazole moiety. New J. Chem.45, 8166–8177 (2021).
  • Abdeen S , KunkleT, SalimNet al. Sulfonamido-2-arylbenzoxazole GroEL/ES Inhibitors as potent antibacterials against methicillin-resistant Staphylococcus aureus (MRSA). J. Med. Chem.61(16), 7345–7357 (2018).
  • Ismail MMF , AbdulwahabHG, NossierES, MenofyNGE, AbdelkhalekBA. Synthesis of novel 2-aminobenzothiazole derivatives as potential antimicrobial agents with dual DNA gyrase/topoisomerase IV inhibition. Bioorg. Chem.94, 103437 (2020).
  • Opoku-Temeng C , NaclerioGA, MohammadHet al. N-(1,3,4-oxadiazol-2-yl)benzamide analogs, bacteriostatic agents against methicillin- and vancomycin-resistant bacteria. Eur. J. Med. Chem.155, 797–805 (2018).
  • Naclerio GA , KaranjaCW, Opoku-TemengC, SintimHO. Antibacterial small molecules that potently inhibit Staphylococcus aureus lipoteichoic acid biosynthesis. ChemMedChem14, 1000–1004 (2019).
  • Naclerio GA , OnyedibeKI, KaranjaCW, AryalUK, SintimHO. Comparative studies to uncover mechanisms of action of N-(1,3,4-oxadiazol-2-yl)benzamide containing antibacterial agents. ACS Infect. Dis.8(4), 865–877 (2022).
  • Naclerio GA , AbutalebNS, OnyedibeKIet al. Mechanistic studies and in vivo efficacy of an oxadiazole-containing antibiotic. J. Med. Chem.65(9), 6612–6630 (2022).
  • Naclerio GA , OnyedibeKI, SintimHO. Lipoteichoic Acid biosynthesis inhibitors as potent inhibitors of S. aureus and E. faecalis growth and biofilm formation. Molecules25, 2277 (2020).