65
Views
0
CrossRef citations to date
0
Altmetric
Review

Pharmacokinetic Correlation of Structurally Modified Chalcone Derivatives As Promising Leads to Treat Tuberculosis

ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon
Pages 1903-1913 | Received 02 Jun 2023, Accepted 11 Sep 2023, Published online: 25 Oct 2023

References

  • Miggiano R , RizziM , FerrarisDM. Mycobacterium tuberculosis pathogenesis, infection prevention and treatment. Pathogens9(5), 1–82020).
  • Keshavjee S , FarmerPE. Tuberculosis, drug resistance, and the history of modern medicine. N. Engl. J. Med.367(10), 931–936 (2012).
  • Kaufmann SHE . Vaccine development against tuberculosis over the last 140 years: failure as part of success. Front. Microbiol.12, 1–12 (2021).
  • Calmette A . Preventive vaccination against tuberculosis with BCG. Proc. R. Soc. Med.24(11), 1481–1490 (1931).
  • Verma AK , KalraOP. Discovery of new drugs against tuberculosis: history guides. Arch. Clin. Infect. Dis.7(4), 109–112 (2012).
  • Davies PDO . The role of DOTS in tuberculosis treatment and control. Am. J. Respir. Med.2(3), 203–209 (2003).
  • Magis-Escurra C , vanden Boogaard J , IjdemaD , BoereeM , AarnoutseR. Therapeutic drug monitoring in the treatment of tuberculosis patients. Pulm. Pharmacol. Ther.25(1), 83–86 (2012).
  • Burman W , BenatorD , VernonAet al. Acquired rifamycin resistance with twice-weekly treatment of HIV-related tuberculosis. Am. J. Respir. Crit. Care Med.173(3), 350–356 (2006).
  • Nijland HM , RuslamiR , StalenhoefJEet al. Exposure to rifampicin is strongly reduced in patients with tuberculosis and type 2 diabetes. Clin. Infect. Dis.43(7), 848–854 (2006).
  • Boulanger C , HollenderE , FarrellKet al. Pharmacokinetic evaluation of rifabutin in combination with lopinavir–ritonavir in patients with HIV infection and active tuberculosis. Clin. Infect. Dis.49(9), 1305–1311 (2009).
  • Ruslami R , NijlandHM , AdhiartaIGet al. Pharmacokinetics of antituberculosis drugs in pulmonary tuberculosis patients with type 2 diabetes. Antimicrob. Agents Chemother.54(3), 1068–1074 (2010).
  • Xu Y , WuJ , LiaoS , SunZ. Treating tuberculosis with high doses of anti-TB drugs: mechanisms and outcomes. Ann. Clin. Microbiol. Antimicrob.16(1), 67 (2017).
  • Widyarti S , KamaruddinM , AristyaniSet al. Bioinorganic chemistry and computational study of herbal medicine to treatment of tuberculosis. In: Medicinal Plants.HassanBAR ( Ed.). IntechOpen, Rijeka, Croatia (2019).
  • Salehi B , QuispeC , ChamkhiIet al. Pharmacological properties of chalcones: a review of preclinical including molecular mechanisms and clinical evidence. Front. Pharmacol.11, (2021).
  • Zhuang C , ZhangW , ShengC , ZhangW , XingC , MiaoZ. Chalcone: a privileged structure in medicinal chemistry. Chem. Rev.117(12), 7762–7810 (2017).
  • Daina A , MichielinO , ZoeteV. iLOGP: a simple, robust, and efficient description of n-octanol/water partition coefficient for drug design using the GB/SA approach. J. Chem. Inf. Model.54(12), 3284–3301 (2014).
  • Benet LZ , HoseyCM , UrsuO , OpreaTI. BDDCS, the rule of 5 and drugability. Adv. Drug Deliv. Rev.101, 89–98 (2016).
  • Pollastri MP . Overview on the rule of five. Curr. Protoc. Pharmacol.Chapter 9, Unit 9.12 (2010).
  • Lipinski CA , LombardoF , DominyBW , FeeneyPJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev.23(1), 3–25 (1997).
  • Fullam E , YoungRJ. Physicochemical properties and Mycobacterium tuberculosis transporters: keys to efficacious antitubercular drugs?RSC Med. Chem.12(1), 43–56 (2021).
  • van Staden D , HaynesRK , ViljoenJM. Adapting clofazimine for treatment of cutaneous tuberculosis by using self-double-emulsifying drug delivery systems. Antibiotics (Basel)11(6), 806 (2022).
  • Stanley RE , BlahaG , GrodzickiRL , StricklerMD , SteitzTA. The structures of the anti-tuberculosis antibiotics viomycin and capreomycin bound to the 70S ribosome. Nat. Struct. Mol. Biol.17(3), 289–293 (2010).
  • Fernandes GFS , ThompsonAM , CastagnoloD , DennyWA , DosSantos JL. Tuberculosis drug discovery: challenges and new horizons. J. Med. Chem.65(11), 7489–7531 (2022).
  • Elkanzi NAA , HrichiH , AlolayanRA , DerafaW , ZahouFM , BakrRB. Synthesis of chalcones derivatives and their biological activities: a review. ACS Omega7(32), 27769–27786 (2022).
  • Pires DEV , BlundellTL , AscherDB. pkCSM: predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J. Med. Chem.58(9), 4066–4072 (2015).
  • Alzahabi KH , UsmaniO , GeorgiouTKet al. Approaches to treating tuberculosis by encapsulating metal ions and anti-mycobacterial drugs utilizing nano- and microparticle technologies. Emerg. Top. Life Sci.4(6), 581–600 (2020).
  • Sorkun MC , KhetanA , ErS. AqSolDB, a curated reference set of aqueous solubility and 2D descriptors for a diverse set of compounds. Sci. Data6(1), 143 (2019).
  • Ahmed I , LeachDN , WohlmuthH , DeVoss JJ , BlanchfieldJT. Caco-2 cell permeability of flavonoids and saponins from Gynostemma pentaphyllum: the immortal herb. ACS Omega5(34), 21561–21569 (2020).
  • Yan A , WangZ , CaiZ. Prediction of human intestinal absorption by GA feature selection and support vector machine regression. Int. J. Mol. Sci.9(10), 1961–1976 (2008).
  • Sharom FJ . The P-glycoprotein multidrug transporter. Essays Biochem.50(1), 161–178 (2011).
  • Dewanjee S , DuaTK , BhattacharjeeNet al. Natural products as alternative choices for P-glycoprotein (P-gp) inhibition. Molecules22(6), 871 (2017).
  • Amin ML . P-glycoprotein inhibition for optimal drug delivery. Drug Target Insights7, 27–34 (2013).
  • Øie S . Drug distribution and binding. J. Clin. Pharmacol.26(8), 583–586 (1986).
  • Krauß J , BracherF. Pharmacokinetic enhancers (boosters) – escort for drugs against degrading enzymes and beyond. Sci. Pharm.86(4), 43 (2018).
  • Gatwiri W , KagiaR. Identification of potential compounds for the management of multidrug-resistant tuberculosis using computational methods [version 1; peer review: awaiting peer review]. F1000Res.12, 298 (2023).
  • Vijay U , GuptaS , MathurP , SuravajhalaP , BhatnagarP. Microbial mutagenicity assay: Ames test. Bio Protoc.8(6), e2763 (2018).
  • He S , YeT , WangRet al. An in silico model for predicting drug-induced hepatotoxicity. Int. J. Mol. Sci.20(8), 1–12 (2019).
  • Gadaleta D , VukovićK , TomaCet al. SAR and QSAR modeling of a large collection of LD50 rat acute oral toxicity data. J. Cheminform.11(1), 58 (2019).
  • Rodríguez-Silva NC , ProkopczykMI , DosSantos JL. The medicinal chemistry of chalcones as anti-Mycobacterium tuberculosis agents. Mini Rev. Med. Chem.22(16), 2068–2080 (2022).
  • Tekale S , MasheleS , PooeO , ThoreS , KendrekarP , PawarR. Biological role of chalcones in medicinal chemistry. In: Vector-Borne Diseases.ClabornD, BhattacharyaS, RoyS ( Eds). IntechOpen, Rijeka, Croatia (2020).
  • Leite FF , de SousaNF , de OliveiraBHet al. Anticancer activity of chalcones and its derivatives: review and in silico studies. Molecules28(10), (2023).
  • Shalaby MA , RizkSA , FahimAM. Synthesis, reactions and application of chalcones: a systematic review. Org. Biomol. Chem.21(26), 5317–5346 (2023).
  • Dartois VA , RubinEJ. Anti-tuberculosis treatment strategies and drug development: challenges and priorities. Nat. Rev. Microbiol.20(11), 685–701 (2022).
  • Lienhardt C , RaviglioneM , SpigelmanMet al. New drugs for the treatment of tuberculosis: needs, challenges, promise, and prospects for the future. J. Infect. Dis.205(Suppl. 2), S241–S249 (2012).
  • Akhtar MS , RehmanAU , ArshadHet al. In vitro antioxidant activities and the therapeutic potential of some newly synthesized chalcones against 4-acetaminophenol induced hepatotoxicity in rats. Dose Response19(1), 1559325821996955 (2021).
  • Yang Y , ZhuZ , Adu-FrimpongMet al. Micelles of licorice chalcone A for oral administration: preparation, in vitro, in vivo, and hepatoprotective activity evaluation. J. Nanopart. Res.24(6), 110 (2022).
  • Singh H , SidhuS , ChopraK , KhanMU. Hepatoprotective effect of trans-chalcone on experimentally induced hepatic injury in rats: inhibition of hepatic inflammation and fibrosis. Can. J. Physiol. Pharmacol.94(8), 879–887 (2016).
  • Karimi-Sales E , MohaddesG , AlipourMR. Chalcones as putative hepatoprotective agents: preclinical evidence and molecular mechanisms. Pharmacol. Res.129, 177–187 (2018).
  • Islam S , SalekeenR , AshrafA. Computational screening of natural MtbDXR inhibitors for novel anti-tuberculosis compound discovery. J. Biomol. Struct. Dyn.42(06), 1–11 (2023).
  • Chiaradia LD , MartinsPGA , CordeiroMNSet al. Synthesis, biological evaluation, and molecular modeling of chalcone derivatives as potent inhibitors of Mycobacterium tuberculosis protein tyrosine phosphatases (PtpA and PtpB). J. Med. Chem.55(1), 390–402 (2012).
  • Sabarathinam S , GanamuraliN. Chalcones reloaded: an integration of network pharmacology and molecular docking for type 2 diabetes therapy. J. Biomol. Struct. Dyn.43(7), 1–13 (2023).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.