16
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Rh(III) and Ru(II) Complexes With Phosphanyl–Alkylamines: Inhibition of DNA Synthesis Induced By Anticancer Rh Complex

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon & ORCID Icon show all
Pages 1583-1602 | Received 06 Jun 2023, Accepted 10 Aug 2023, Published online: 26 Sep 2023

References

  • Rosenberg B , van CampL , KrigasT. Inhibition of cell division in Escherichia coli by electrolysis products from a platinum electrode. Nature205(4972), 698–699 (1965).
  • Sigel A , SigelH, FreisingerE, SigelRKO. ( Eds). Metallo-Drugs: Development and Action of Anticancer Agents. Metal Ions in Life Sciences Book 18, De Gruyter (Berlin, Germany), 1st ed. (2018).
  • Štarha P , VančoJ , TrávníčekZ. Platinum iodido complexes: a comprehensive overview of anticancer activity and mechanisms of action. Coord. Chem. Rev.380, 103–135 (2019).
  • Gibson D . Platinum(IV) anticancer agents; are we en route to the holy grail or to a dead end?J. Inorg. Biochem.217, 111353 (2021).
  • Deng Z , LiH , ChenSet al. Near-infrared-activated anticancer platinum(IV) complexes directly photooxidize biomolecules in an oxygen-independent manner. Nat. Chem.15, 930–939 (2023).
  • Anthony EJ , BolithoEM , BridgewaterHEet al. Metallodrugs are unique: opportunities and challenges of discovery and development. Chem. Sci.11(48), 12888–12917 (2020).
  • Choroba K , MachuraB , Szlapa-KulaAet al. Square planar Au(III), Pt(II) and Cu(II) complexes with quinoline-substituted 2,2′:6′,2″-terpyridine ligands: from in vitro to in vivo biological properties. Eur. J. Med. Chem.218, 113404 (2021).
  • Elsayed SA , BadrHE , di BiaseA , El-HendawyAM. Synthesis, characterization of ruthenium(II), nickel(II), palladium(II), and platinum(II) triphenylphosphine-based complexes bearing an ONS-donor chelating agent: interaction with biomolecules, antioxidant, in vitro cytotoxic, apoptotic activity and cell cycle analysis. J. Inorg. Biochem.223, 111549 (2021).
  • Patra SA , MohantyM , BanerjeeAet al. Protein binding and cytotoxic activities of monomeric and dimeric oxido-vanadium(V) salan complexes: exploring the solution behavior of monoalkoxido-bound oxido-vanadium(V) complex. J. Inorg. Biochem.224, 111582 (2021).
  • Suárez-Ortiz GA , Hernández-CorreaR , Morales-MorenoMDet al. Diastereomeric separation of chiral fac-tricarbonyl(iminopyridine) rhenium(I) complexes and their cytotoxicity studies: approach toward an action mechanism against glioblastoma. J. Med. Chem.65(13), 9281–9294 (2022).
  • Jaros SW , KomarnickaUK , KyziołAet al. Therapeutic potential of a water-soluble silver-diclofenac coordination polymer on 3D pancreatic cancer spheroids. J. Med. Chem.65(16), 11100–11110 (2022).
  • Gou Y , JiaX , HouLXet al. Dithiocarbazate-FeIII, -CoIII, -NiII, and -ZnII complexes: design, synthesis, structure, and anticancer evaluation. J. Med. Chem.65(9), 6677–6689 (2022).
  • Wang ZF , ZhouXF , WeiQCet al. Novel bifluorescent Zn(II)-cryptolepine-cyclen complexes trigger apoptosis induced by nuclear and mitochondrial DNA damage in cisplatin-resistant lung tumor cells. Eur. J. Med. Chem.238, 114418 (2022).
  • Flocke LS , TrondlR , JakupecMA , KepplerBK. Molecular mode of action of NKP-1339–a clinically investigated ruthenium-based drug–involves ER- and ROS-related effects in colon carcinoma cell lines. Invest. New Drugs34(3), 261–268 (2016).
  • Monro S , ColónKL , YinHet al. Transition metal complexes and photodynamic therapy from a tumor-centered approach: challenges, opportunities, and highlights from the development of TLD1433. Chem. Rev.119(2), 797–828 (2019).
  • Kawczyk-Krupka A , WawrzyniecK , MusiolSK , PotempaM , BugajAM , SierońA. Treatment of localized prostate cancer using WST-09 and WST-11 mediated vascular targeted photodynamic therapy – A review. Photodiag. Photodyn. Ther.12(4), 567–574 (2015).
  • Liu N , LiX , HuangHet al. Clinically used antirheumatic agent auranofin is a proteasomal deubiquitinase inhibitor and inhibits tumor growth. Oncotarget5(14), 5453–5471 (2014).
  • Lazic S , KasplerP , ShiGet al. Novel osmium-based coordination complexes as photosensitizers for panchromatic photodynamic therapy. Photochem. Photobiol.93(5), 1248–1258 (2017).
  • Zhang P , HuangH , BanerjeeSet al. Nucleus-targeted organoiridium-albumin conjugate for photodynamic cancer therapy. Angew. Chem. Int. Ed.58(8), 2350–2354 (2019).
  • Meier-Menches SM , GernerC , BergerW , HartingerCG , KepplerBK. Structure-activity relationships for ruthenium and osmium anticancer agents-towards clinical development. Chem. Soc. Rev.47(3), 909–928 (2018).
  • Leung CH , ZhongHJ , ChanDSH , MaDL. Bioactive iridium and rhodium complexes as therapeutic agents. Coord. Chem. Rev.257(11-12), 1764–1776 (2013).
  • Máliková K , MasarykL , ŠtarhaP. Anticancer half-sandwich rhodium(III) complexes. Inorganics9(4), 26 (2021).
  • Štarha P , TrávníčekZ. Non-platinum complexes containing releasable biologically active ligands. Coord. Chem. Rev.395, 130–145 (2019).
  • Prathima TS , ChoudhuryB , AhmadMG , ChandaK , BalamuraliMM. Recent developments on other platinum metal complexes as target-specific anticancer therapeutics. Coord. Chem. Rev.490, 215231 (2023).
  • Matsheku AC , ChenMYH , JordaanS , PrinceS , SmithGS , MakhubelaBCE. Acridine-containing RuII, OsII, RhIII and IrIII half-sandwich complexes: synthesis, structure and antiproliferative activity. Appl. Organomet. Chem.31(12), e3852 (2017).
  • Parveen S , HanifM , LeungEet al. Anticancer organorhodium and -iridium complexes with low toxicity in vivo but high potency in vitro: DNA damage, reactive oxygen species formation, and haemolytic activity. Chem. Commun.55(80), 12016–12019 (2019).
  • Hu X , GuoL , LiuMet al. Increasing anticancer activity with phosphine ligation in zwitterionic half-sandwich iridium(III), rhodium(III), and ruthenium(II) complexes. Inorg. Chem.61(49), 20008–20025 (2022).
  • Nahaei A , MandeganiZ , ChamyaniSet al. Half-sandwich cyclometalated RhIII complexes bearing thiolate ligands: biomolecular interactions and in vitro and in vivo evaluations. Inorg. Chem.61(4), 2039–2056 (2022).
  • Dkhar L , VermaAK , BanothuV , KaminskyW , KolliparaMR. Ruthenium, rhodium, and iridium complexes featuring coumarin hydrazone derivatives: synthesis, characterization, and preliminary investigation of their anticancer and antibacterial activity. Appl. Organomet. Chem.36(4), e6589 (2022).
  • Wang ZF , NaiXL , XuYet al. Cell nucleus localization and high anticancer activity of quinoline-benzopyran rhodium(III) metal complexes as therapeutic and fluorescence imaging agents. Dalton Trans.51(34), 12866–12875 (2022).
  • Mészáros JP , KandiollerW , SpenglerGet al. Half-sandwich rhodium complexes with releasable N-donor monodentate ligands: solution chemical properties and the possibility for acidosis activation. Pharmaceutics15(2), 356 (2023).
  • Geldmacher Y , SplithK , KitanovicIet al. Cellular impact and selectivity of half-sandwich organorhodium(III) anticancer complexes and their organoiridium(III) and trichloridorhodium(III) counterparts. J. Biol. Inorg. Chem.17(4), 631–646 (2012).
  • Soldevila-Barreda JJ , HabtemariamA , Romero-CanelónI , SadlerPJ. Half-sandwich rhodium(III) transfer hydrogenation catalysts: reduction of NAD+ and pyruvate, and antiproliferative activity. J. Inorg. Biochem.153, 322–333 (2015).
  • Abdur-Rashid K , GuoR , LoughAJ , MorrisRH , SongD. Synthesis of ruthenium hydride complexes containing beta-aminophosphine ligands derived from amino acids and their use in the H2-hydrogenation of ketones and imines. Adv. Synth. Catal.347(4), 571–579 (2005).
  • Blaquiere N , Diallo-GarciaS , GorelskySI , BlackDA , FagnouK. Ruthenium-catalyzed dehydrogenation of ammonia boranes. J. Am. Chem. Soc.130(43), 14034–14035 (2008).
  • Wingad RL , GatesPJ , StreetSTG , WassDF. Catalytic conversion of ethanol to n-butanol using ruthenium P-N ligand complexes. ACS Catal.5(10), 5822–5826 (2015).
  • Angoy M , JiménezMV , García-OrduñaP , OroLA , VispeE , Pérez-TorrenteJJ. Dinuclear phosphine-amido [Rh2(diene){μ-NH(CH2)3PPh2}2] complexes as efficient catalyst precursors for phenylacetylene polymerization. Organometallics38(9), 1991–2006 (2019).
  • Soldevila-Barreda JJ , SadlerPJ. Approaches to the design of catalytic metallodrugs. Curr. Opin. Chem. Biol.25, 172–183 (2015).
  • Yu Z , CowanJA. Catalytic metallodrugs: substrate-selective metal catalysts as therapeutics. Chem. Eur. J.23(57), 14113–14127 (2017).
  • Bertrand B , BodioE , RichardP , PicquetM , LeGendre P , CasiniA. Gold(I) N-heterocyclic carbene complexes with an “activable” ester moiety: possible biological application. J. Organomet. Chem.775, 124–129 (2015).
  • Luengo A , Fernández-MoreiraV , MarzoI , GimenoMC. Trackable metallodrugs combining luminescent Re(I) and bioactive Au(I) fragments. Inorg. Chem.56(24), 15159–15170 (2017).
  • Tasan S , LiconaC , DoulainPEet al. Gold-phosphine-porphyrin as potential metal-based theranostics. J. Biol. Inorg. Chem.20(1), 143–154 (2015).
  • Pliquett J , AmorS , Ponce-VargasMet al. Design of a multifunctionalizable BODIPY platform for the facile elaboration of a large series of gold(I)-based optical theranostics. Dalton Trans.47(32), 11203–11218 (2018).
  • Morris DM , McGeaghM , DePeña D , MerolaJS. Extending the range of pentasubstituted cyclopentadienyl compounds: the synthesis of a series of tetramethyl(alkyl or aryl)cyclopentadienes (Cp*R), their iridium complexes and their catalytic activity for asymmetric transfer hydrogenation. Polyhedron84, 120–135 (2014).
  • White C , YatesA , MaitlisPM. (η5-Pentamethylcyclopentadienyl)rhodium and -iridium compounds. Inorg. Synth.29, 228–234 (1992).
  • Cadenbach T , GemelC , SchmidR , FischerRA. Mechanistic insights into an unprecedented C-C bond activation on a Rh/Ga bimetallic complex: a combined experimental/computational approach. J. Am. Chem. Soc.127(48), 17068–17078 (2005).
  • Bennett MA , HuangTN , MathesonTW , SmithAK. (η6 Hexamethylbenzene)ruthenium complexes. Inorg. Synth.21, 74–78 (1982).
  • Tönnemann J , RisseJ , GroteZ , ScopellitiR , SeverinK. Efficient and rapid synthesis of chlorido-bridged half-sandwich complexes of ruthenium, rhodium, and iridium by microwave heating. Eur. J. Inorg. Chem.2013(26), 4558–4562 (2013).
  • Štarha P , DvořákZ , TrávníčekZ. Half-sandwich Ir(III) and Rh(III) 2,2′-dipyridylamine complexes: synthesis, characterization and in vitro cytotoxicity against the ovarian carcinoma cells. J. Organomet. Chem.872, 114–122 (2018).
  • Sheldrick GM . SHELXT-integrated space-group and crystal-structure determination. Acta Crystallogr.A71(1), 3–8 (2015).
  • Bourhis LJ , DolomanovOV , GildeaR , HowardJAK , PuschmannH. The anatomy of a comprehensive constrained, restrained refinement program for the modern computing environment Olex2 dissected. Acta Crystallogr.A71(1), 59–75 (2015).
  • Dolomanov O , BourhisLJ , GildeaR , HowardJAK , PuschmannH. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr.42(2), 339–341 (2009).
  • Rigaku Oxford Diffraction (2020) CrysAlisPro 1.171.40.82a. (Accessed 12September2020). www.rigaku.com/
  • Macrae CF , SovagoI , CottrellSJet al. Mercury 4.0: from visualization to analysis, design and prediction. J. Appl. Crystallogr.53(1), 226–235 (2020).
  • Stoppioni P , DiVaira M , MaitlisPM. Pentamethylcyclopentadienylrhodium complexes with tripod tetradentate ligands and bidentate ‘mixed’ ligands. J. Chem. Soc. Dalton Trans. (6), 1147–1154 (1982).
  • Groom CR , BrunoIJ , LightfootMP , WardSC. The Cambridge Structural Database. Acta Cryst.B72(2), 171–179 (2016).
  • The European Collection of Authenticated Cell Cultures. (Accessed 15May2023). www.culturecollections.org.uk/products/celllines/generalcell/detail.jsp?refId=93112519&collection=ecacc_gc
  • Jendželovský R , JendželovskáZ , HiľovskáL , KovaľJ , MikešJ , FedoročkoP. Proadifen sensitizes resistant ovarian adenocarcinoma cells to cisplatin. Toxicol. Letters243, 56–66 (2016).
  • Zhang WY , BridgewaterHE , BanerjeeSet al. Ligand-controlled reactivity and cytotoxicity of cyclometalated rhodium(III) complexes. Eur. J. Inorg. Chem.2020(11-12), 1052–1060 (2020).
  • Soldevila-Barreda JJ , FawibeKB , AzmanovaMet al. Synthesis, characterisation and in vitro anticancer activity of catalytically active indole-based half-sandwich complexes. Molecules25(19), 4540 (2020).
  • Nongpiur CGL , VermaAK , SinghRKet al. Half-sandwich ruthenium(II), rhodium(III) and iridium(III) fluorescent metal complexes containing pyrazoline based ligands: DNA binding, cytotoxicity and antibacterial activities. J. Inorg. Biochem.238, 112059 (2023).
  • Bugarcic T , NovakovaO , HalamikovaAet al. Cytotoxicity, cellular uptake, and DNA interactions of new monodentate ruthenium(II) complexes containing terphenyl arenes. J. Med. Chem.51(17), 5310–5319 (2008).
  • Mühlgassner G , BartelC , SchmidWF , JakupecMA , ArionVB , KepplerBK. Biological activity of ruthenium and osmium arene complexes with modified paullones in human cancer cells. J. Inorg. Biochem.116, 180–187 (2012).
  • Vock CA , AngWH , ScolaroCet al. Development of ruthenium antitumor drugs that overcome multidrug resistance mechanisms. J. Med. Chem.50(9), 2166–2175 (2007).
  • Hayward RL , SchornagelQC , TenteRet al. Investigation of the role of Bax, p21/Waf1 and p53 as determinants of cellular responses in HCT116 colorectal cancer cells exposed to the novel cytotoxic ruthenium(II) organometallic agent, RM175. Cancer Chemother. Pharmacol.55(6), 577–583 (2005).
  • Chatterjee S , KunduS , BhattacharyyaA , HartingerCG , DysonPJ. The ruthenium(II)-arene compound RAPTA-C induces apoptosis in EAC cells through mitochondrial and p53-JNK pathways. J. Biol. Inorg. Chem.13(7), 1149–1155 (2008).
  • Kisova A , ZerzankovaL , HabtemariamA , SadlerPJ , BrabecV , KasparkovaJ. Differences in the cellular response and signaling pathways between cisplatin and monodentate organometallic Ru(II) antitumor complexes containing a terphenyl ligand. Mol. Pharm.8(3), 949–957 (2011).
  • Hearn JM , Romero-CanelónI , MunroAFet al. Potent organo-osmium compound shifts metabolism in epithelial ovarian cancer cells. PNAS112(29), E3800–E3805 (2015).
  • Soldevila-Barreda JJ , Romero-CanelónI , HabtemariamA , SadlerPJ. Transfer hydrogenation catalysis in cells as a new approach to anticancer drug design. Nat. Commun.6, 6582 (2015).
  • Masaryk L , OrvošJ , SłoczyńskaKet al. Anticancer half-sandwich Ir(III) complex and its interaction with various biomolecules and their mixtures–a case study with ascorbic acid. Inorg. Chem. Front.9(15), 3758–3770 (2022).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.