16
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Elongation on Aliphatic Chain Improves Selectivity of 2-Hydroxy-3,4,6-Trimethoxyphenyl Chalcone on Trypanosoma Cruzi

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 11-26 | Received 13 Jun 2023, Accepted 09 Nov 2023, Published online: 12 Dec 2023

References

  • Pérez-Molina JA , Molina I . Chagas disease. Lancet 391(10115), 82–94 (2018).
  • WHO . Chagas disease – PAHO/WHO. Pan American Health Organization (2022). www.paho.org/en/topics/chagas-disease
  • Coura JR . The main sceneries of Chagas disease transmission. The vectors, blood and oral transmissions – a comprehensive review. Mem. Inst. Oswaldo Cruz 110(3), 277–282 (2014).
  • Fernandes MC , Andrews NW . Host cell invasion by Trypanosoma cruzi: a unique strategy that promotes persistence. FEMS Microbiol. Rev. 36(3), 734–747 (2012).
  • Echeverria LE , Morillo CA . American trypanosomiasis (Chagas disease). Infect. Dis. Clin. North Am. 33(1), 119–134 (2019).
  • Boeck P , Bandeira Falcão CA , Leal PC et al. Synthesis of chalcone analogues with increased antileishmanial activity. Bioorg. Med. Chem. 14(5), 1538–1545 (2006).
  • Mastachi-Loza S , Ramírez-Candelero TI , Benítez-Puebla LJ , Fuentes-Benítes A , González-Romero C , Vázquez MA . Chalcones, a privileged scaffold: highly versatile molecules in [4+2] cycloadditions. Chem. Asian J. 17(20), e202200706 (2022).
  • Rammohan A , Reddy JS , Sravya G , Rao CN , Zyryanov GV . Chalcone synthesis, properties and medicinal applications: a review. Environ. Chem. Lett. 18(2), 433–458 (2020).
  • Constantinescu T , Lungu CN . Anticancer activity of natural and synthetic chalcones. Int. J. Mol. Sci. 22(21), 11306 (2021).
  • Okolo EN , Ugwu DI , Ezema BE et al. New chalcone derivatives as potential antimicrobial and antioxidant agent. Sci. Rep. 11(1), 21781 (2021).
  • Mittal A , Vashistha VK , Das DK . Recent advances in the antioxidant activity and mechanisms of chalcone derivatives: a computational review. Free Radic. Res. 56(5–6), 378–397 (2022).
  • de Oliveira AS , Valli M , Ferreira LL et al. Novel trypanocidal thiophen-chalcone cruzain inhibitors: structure- and ligand-based studies. Future Med. Chem. 14(11), 795–808 (2022).
  • Matos MGCM , da Silva LP , Wagner Queiroz Almeida-Neto F et al. Quantum mechanical, molecular docking, molecular dynamics, ADMET and antiproliferative activity on Trypanosoma cruzi (Y strain) of chalcone (E)-1-(2-hydroxy-3,4,6-trimethoxyphenyl)-3-(3-nitrophenyl)prop-2-en-1-one derived from a natural product. Phys. Chem. Chem. Phys. 24(8), 5052–5069 (2022).
  • Magalhães EP , Gomes NDB , de Freitas TA et al. Chloride substitution on 2-hydroxy-3,4,6-trimethoxyphenylchalcones improves in vitro selectivity on Trypanosoma cruzi strain Y. Chem. Biol. Interact. 361, 109920 (2022).
  • Mosmann T . Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods. 65(1–2), 55–63 (1983).
  • de Menezes RRPPB , Sampaio TL , Lima DB et al. Antiparasitic effect of (−)-α-bisabolol against Trypanosoma cruzi Y strain forms. Diagn. Microbiol. Infect. Dis. 95(3), 114860 (2019).
  • Lima DB , Sousa PL , Torres AFC et al. Antiparasitic effect of Dinoponera quadriceps giant ant venom. Toxicon 120, 128–132 (2016).
  • Kessler RL , Soares MJ , Probst CM , Krieger MA . Trypanosoma cruzi response to sterol biosynthesis inhibitors: morphophysiological alterations leading to cell death. PLOS ONE 8(1), e55497 (2013).
  • Zimmermann M , Meyer N . Annexin V/7-AAD staining in keratinocytes. In: Mammalian Cell Viability. Stoddart M ( Ed.), Humana Totowa, NJ, USA, 57–63 (2011).
  • Eruslanov E , Kusmartsev S . Identification of ROS using oxidized DCFDA and flow-cytometry. Methods Mol. Biol. 594, 57–72 (2010).
  • Aranda A , Sequedo L , Tolosa L et al. Dichloro-dihydro-fluorescein diacetate (DCFH-DA) assay: a quantitative method for oxidative stress assessment of nanoparticle-treated cells. Toxicol. In Vitro 27(2), 954–963 (2013).
  • Baracca A , Sgarbi G , Solaini G , Lenaz G . Rhodamine 123 as a probe of mitochondrial membrane potential: evaluation of proton flux through F0 during ATP synthesis. Biochim. Biophys. Acta Bioenergetics. 1606(1–3), 137–146 (2003).
  • Csizmadia P . MarvinSketch and MarvinView: molecule applets for the world wide web. ChemAxon (1999). https://chemaxon.com/blog/presentation/marvinsketch-and-marvinview-molecule-applets-for-the-world-wide-web
  • Hanwell MD , Curtis DE , Lonie DC , Vandermeerschd T , Zurek E , Hutchison GR . Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform. 4(1), 17 (2012).
  • Halgren TA . Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. J. Comput. Chem. 17(5–6), 490–519 (1996).
  • Marinho MM , Almeida-Neto FWQ , Marinho EM et al. Quantum computational investigations and molecular docking studies on amentoflavone. Heliyon 7(1), e06079 (2021).
  • Saravanamuthu A , Vickers TJ , Bond CS , Peterson MR , Hunter WN , Fairlamb AH . Two interacting binding sites for quinacrine derivatives in the active site of trypanothione reductase: a template for drug design. J Biol Chem. 279(28), 29493–29500 (2004).
  • Brak K , Kerr ID , Barrett KT et al. Nonpeptidic tetrafluorophenoxymethyl ketone cruzain inhibitors as promising new leads for Chagas disease chemotherapy. J. Med. Chem. 53(4), 1763–1773 (2010).
  • Pettersen EF , Goddard TD , Huang CC et al. UCSF Chimera–a visualization system for exploratory research and analysis. J. Comput. Chem. 25(13), 1605–1612 (2004).
  • Trott O , Olson AJ . AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31(2), 455–461 (2010).
  • Marinho EM , Batista de Andrade Neto J , Silva J et al. Virtual screening based on molecular docking of possible inhibitors of Covid-19 main protease. Microb. Pathog. 148, 104365 (2020).
  • Shityakov S , Förster C . In silico predictive model to determine vector-mediated transport properties for the blood-brain barrier choline transporter. Adv. Appl. Bioinform. Chem. 7(1), 23–36 (2014).
  • Kadela-Tomanek M , Jastrzębska M , Marciniec K , Chrobak E , Bębenek E , Boryczka S . Lipophilicity, pharmacokinetic properties, and molecular docking study on SARS-CoV-2 target for betulin triazole derivatives with attached 1,4-quinone. Pharmaceutics 13(6), 741 (2021).
  • Imberty A , Hardman KD , Carver JP , Perez S . Molecular modelling of protein-carbohydrate interactions. Docking of monosaccharides in the binding site of concanavalin A. Glycobiology 1(6), 631–642 (1991).
  • Visualizer D.S. Accelrys Software Inc. 4(0.100.13345) (2005). https://discover.3ds.com/discovery-studio-visualizer-download
  • Franco CH , Alcântara LM , Chatelain E , Freitas-Junior L , Moraes CB . 2019 Drug Discovery for Chagas Disease: Impact of Different Host Cell Lines on Assay Performance and Hit Compound Selection. Trop. Med. Infect. Dis. 4(2), 1–14 (2019).
  • Silva PT , Lopes LMA , Xavier JC et al. Cytotoxic and antifungal activity of chalcones synthesized from natural acetophenone isolated from Croton anisodontus . Revista Virtual de Química 12(3), 712–723 (2020).
  • Kasemets K , Kahru A , Laht T-M , Paalme T . Study of the toxic effect of short- and medium-chain monocarboxylic acids on the growth of Saccharomyces cerevisiae using the CO2-auxo-accelerostat fermentation system. Int. J. Food Microbiol. 111(3), 206–215 (2006).
  • Wang L , Ye X , Li X et al. Synthesis and antimicrobial activity of 3-alkoxyjatrorrhizine derivatives. Planta Med. 74(3), 290–292 (2008).
  • Yong Y , Xiao-li Y , Xue-gang L , Jing Z , Baoshun Z , Lujiang Y . Synthesis and antimicrobial activity of 8-alkylberberine derivatives with a long aliphatic chain. Planta Med. 73(6), 602–604 (2007).
  • Adade CM , Souto-Padrón T . Contributions of ultrastructural studies to the cell biology of trypanosmatids: targets for anti-parasitic drugs. Open Parasitol. J. 4(1), 178–187 (2010).
  • Zhuang C , Zhang W , Sheng C , Zhang W , Xing C , Miao Z . Chalcone: a privileged structure in medicinal chemistry. Chem. Rev. 117(12), 7762–7810 (2017).
  • Caputto ME , Ciccarelli A , Frank F et al. Synthesis and biological evaluation of some novel 1-indanone thiazolylhydrazone derivatives as anti-Trypanosoma cruzi agents. Eur. J. Med. Chem. 55, 155–163 (2012).
  • de Araújo-Jorge TC . Respostas imune inata, inflamatória e de fase aguda na doença de Chagas. In: Doença de Chagas: manual para experimentação animal. Araújo-Jorge TC , Castro SL (Eds)., Editora FIOCRUZ, Rio de Janeiro, Brazil, 39–47 (2000).
  • Krauth-Siegel RL , Enders B , Henderson GB , Fairlamb AH , Schirmer RH . Trypanothione reductase from Trypanosoma cruzi. Purification and characterization of the crystalline enzyme. Eur. J. Biochem. 164(1), 123–128 (1987).
  • Pariona-Llanos R , Pavani RS , Reis M et al. Glyceraldehyde 3-phosphate dehydrogenase-telomere association correlates with redox status in Trypanosoma cruzi . PLOS ONE 10(3), e0120896 (2015).
  • Sajid M , Robertson SA , Brinen LS , McKerrow JH . Cruzain: the path from target validation to the clinic. In: Cysteine Proteases of Pathogenic Organisms. Robinson MW , Dalton JP ( Eds). Springer, NY,USA, 100–115 (2011).
  • Borges-Argáez R , Vela-Catzín T , Yam-Puc A , Chan-Bacab M , Moo-Puc R , Cáceres-Farfán M . Antiprotozoal and cytotoxic studies on some isocordoin derivatives. Planta Med. 75(12), 1336–1338 (2009).
  • Bortoluzzi AAM , Staffen IV , Banhuk FW et al. Determination of chemical structure and anti-Trypanosoma cruzi activity of extracts from the roots of Lonchocarpus cultratus (Vell.) A.M.G. Azevedo & H.C. Lima. Saudi J. Biol. Sci. 28(1), 99–108 (2021).
  • Gomes KS , da Costa-Silva TA , Oliveira IH et al. Structure-activity relationship study of antitrypanosomal chalcone derivatives using multivariate analysis. Bioorg. Med. Chem. Lett. 29(12), 1459–1462 (2019).
  • Peña I , Pilar Manzano M , Cantizani J et al. New compound sets identified from high throughput phenotypic screening against three kinetoplastid parasites: an open resource. Sci. Rep. 5(1), 8771 (2015).
  • Apt W . Current and developing therapeutic agents in the treatment of Chagas disease. Drug Des. Devel. Ther. 243 (2010).
  • Lentini G , dos Santos Pacheco N , Burleigh BA . Targeting host mitochondria: a role for the Trypanosoma cruzi amastigote flagellum. Cell. Microbiol. 20(2), e12807 (2018).
  • Aucamp J , N’Da DD . In vitro antileishmanial efficacy of antiplasmodial active aminoquinoline-chalcone hybrids. Exp. Parasitol. 236–237, 108249 (2022).
  • de Mello MVP , de Abrahim-Vieira BA , Domingos TFS et al. A comprehensive review of chalcone derivatives as antileishmanial agents. Eur. J. Med. Chem. 150, 920–929 (2018).
  • Thapa P , Upadhyay SP , Suo WZ et al. Chalcone and its analogs: therapeutic and diagnostic applications in Alzheimer’s disease. Bioorg. Chem. 108, 104681 (2021).
  • Pinto P , Machado CM , Moreira J et al. Chalcone derivatives targeting mitosis: synthesis, evaluation of antitumor activity and lipophilicity. Eur. J. Med. Chem. 184, 111752 (2019).
  • González LA , Robledo S , Upegui Y , Escobar G , Quiñones W . Synthesis and evaluation of trypanocidal activity of chromane-type compounds and acetophenones. Molecules 26(23), 7067 (2021).
  • Jahan-Tigh RR , Ryan C , Obermoser G , Schwarzenberger K . Flow cytometry. J. Invest. Dermatol. 132(10), 1–6 (2012).
  • McKinnon KM . Flow cytometry: an overview. Curr. Protoc. Immunol. 120(1), 5.1.1–5.1.11 (2018).
  • Schmit T , Klomp M , Khan MN . An overview of flow cytometry: its principles and applications in allergic disease research. Methods Mol. Biol. 2223, 169–182 (2021).
  • Jiménez-Ruiz A , Alzate J , MacLeod E , Lüder CG , Fasel N , Hurd H . Apoptotic markers in protozoan parasites. Parasit. Vectors 3(1), 104 (2010).
  • Menna-Barreto RFS , Salomão K , Dantas AP et al. Different cell death pathways induced by drugs in Trypanosoma cruzi: an ultrastructural study. Micron 40(2), 157–168 (2009).
  • Figarella K , Uzcategui NL , Beck A et al. Prostaglandin-induced programmed cell death in Trypanosoma brucei involves oxidative stress. Cell Death Differ. 13(10), 1802–1814 (2006).
  • Paiva CN , Bozza MT . Are reactive oxygen species always detrimental to pathogens? Antioxid. Redox Signal. 20(6), 1000–1037 (2014).
  • Paiva CN , Medei E , Bozza MT . ROS and Trypanosoma cruzi: Fuel to infection, poison to the heart. PLOS Pathog. 14(4), e1006928 (2018).
  • Cardoso MS , Reis-Cunha JL , Bartholomeu DC . Evasion of the immune response by Trypanosoma cruzi during acute infection. Front. Immunol. 6, 1–15 (2016).
  • Paiva CN , Feijó DF , Dutra FF et al. Oxidative stress fuels Trypanosoma cruzi infection in mice. J. Clin. Investigat. 122(7), 2531–2542 (2012).
  • da Silva AL , Moretti NS , Ramos TCP et al. A membrane-bound eIF2 alpha kinase located in endosomes is regulated by heme and controls differentiation and ROS levels in Trypanosoma cruzi . PLOS Pathog. 11(2), e1004618 (2015).
  • Brazão V , Santello FH , Colato RP et al. Melatonin: antioxidant and modulatory properties in age-related changes during Trypanosoma cruzi infection. J. Pineal Res. 63(1), e12409 (2017).
  • Bombaça ACS , Viana PG , Santos ACC et al. Mitochondrial disfunction and ROS production are essential for anti-Trypanosoma cruzi activity of β-lapachone-derived naphthoimidazoles. Free Radic. Biol. Med. 130, 408–418 (2019).
  • Nogueira NP , Saraiva FMS , Oliveira MP et al. Heme modulates Trypanosoma cruzi bioenergetics inducing mitochondrial ROS production. Free Radic. Biol. Med. 108, 183–191 (2017).
  • Lu J , Vodnala SK , Gustavsson A-L et al. Ebsulfur is a benzisothiazolone cytocidal inhibitor targeting the trypanothione reductase of Trypanosoma brucei . J. Biol. Chem. 288(38), 27456–27468 (2013).
  • de Molfetta FA , de Freitas RF , da Silva ABF , Montanari CA . Docking and molecular dynamics simulation of quinone compounds with trypanocidal activity. J. Mol. Model. 15(10), 1175–1184 (2009).
  • de Araújo JIF , Aires NL , Almeida-Neto FWQ et al. Antiproliferative activity on Trypanosoma cruzi (Y strain) of the triterpene 3β,6β,16β-trihidroxilup-20 (29)-ene isolated from Combretum leprosum . J. Biomol. Struct. Dyn. 40(22), 12302–12315 (2022).
  • Colotti G , Saccoliti F , Gramiccia M et al. Structure-guided approach to identify a novel class of anti-leishmaniasis diaryl sulfide compounds targeting the trypanothione metabolism. Amino Acids. 52(2), 247–259 (2020).
  • Mahapatra DK , Bharti SK , Asati V . Chalcone scaffolds as anti-infective agents: structural and molecular target perspectives. Eur. J. Med. Chem. 101, 496–524 (2015).
  • de Oliveira AS , Valli M , Ferreira LL et al. Novel trypanocidal thiophen-chalcone cruzain inhibitors: structure- and ligand-based studies. Future Med. Chem. 14(11), 795–808 (2022).
  • Geysillene Castro Matos M , da Silva LP , Wagner Queiroz Almeida-Neto F et al. Quantum mechanical, molecular docking, molecular dynamics, ADMET and antiproliferative activity on Trypanosoma cruzi (Y strain) of chalcone (E)-1-(2-hydroxy-3,4,6-trimethoxyphenyl)-3-(3-nitrophenyl)prop-2-en-1-one derived from a natural product. Phys. Chem. Chem. Phys. 24(8), 5052–5069 (2022).
  • Li R , Chen X , Gong B et al. Structure-based design of parasitic protease inhibitors. Bioorg. Med. Chem. 4(9), 1421–1427 (1996).
  • Caputto ME , Fabian LE , Benítez D et al. Thiosemicarbazones derived from 1-indanones as new anti-Trypanosoma cruzi agents. Bioorg. Med. Chem. 19(22), 6818–6826 (2011).
  • Martinez-Mayorga K , Byler KG , Ramirez-Hernandez AI , Terrazas-Alvares DE . Cruzain inhibitors: efforts made, current leads and a structural outlook of new hits. Drug Discov. Today 20(7), 890–898 (2015).
  • de Burger MCM , Fernandes JB , da Silva MF das GF et al. Structures and bioactivities of dihydrochalcones from Metrodorea stipularis . J. Nat. Prod. 77(11), 2418–2422 (2014).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.