225
Views
0
CrossRef citations to date
0
Altmetric
Review

G-quadruplex Ligands As Therapeutic Agents Against cancer, Neurological Disorders and Viral Infections

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1987-2009 | Received 10 Jul 2023, Accepted 18 Sep 2023, Published online: 07 Nov 2023

References

  • Watson JD , CrickFH. Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature171(4356), 737–738 (1953).
  • Javadekar SM , NilavarNM, ParanjapeA, DasK, RaghavanSC. Characterization of G-quadruplex antibody reveals differential specificity for G4 DNA forms. DNA Res.27(5), dsaa024 (2020).
  • Galli S , MelidisL, FlynnSMet al. DNA G-quadruplex recognition in vitro and in live cells by a structure-specific nanobody. J. Am. Chem. Soc.144(50), 23096–23103 (2022).
  • Zeraati M , LangleyDB, SchofieldPet al. I-motif DNA structures are formed in the nuclei of human cells. Nat. Chem.10(6), 631–637 (2018).
  • Mandke PP , KompellaP, LuS, WangG, VasquezK. Cruciform DNA structure formed at short inverted repeats: a source of genetic instability in vivo. FASEB J.33(Suppl. 1), 457.459 (2019).
  • Georgakopoulos-Soares I , ParadaGE, WongHY, MiskaEA, KwokCK, HembergM. Alternative splicing modulation by G-quadruplexes. Nat. Commun.13, 2404 (2022).
  • Mukherjee AK , SharmaS, ChowdhuryS. Non-duplex G-quadruplex structures emerge as mediators of epigenetic modifications. Trends Genet.35(2), 129–144 (2019).
  • Dalloul Z , ChenuetP, DalloulIet al. G-quadruplex DNA targeting alters class-switch recombination in B cells and attenuates allergic inflammation. J. Allergy Clin. Immunol.142(4), 1352–1355 (2018).
  • Hegyi H . Enhancer-promoter interaction facilitated by transiently forming G-quadruplexes. Sci. Rep.5, 9165 (2015).
  • Rhodes D , LippsHJ. G-quadruplexes and their regulatory roles in biology. Nucleic Acids Res.43(18), 8627–8637 (2015).
  • Henderson E , HardinCC, WalkSK, TinocoIJr, BlackburnEH. Telomeric DNA oligonucleotides form novel intramolecular structures containing guanine-guanine base pairs. Cell51(6), 899–908 (1987).
  • Sundquist WI , KlugA. Telomeric DNA dimerizes by formation of guanine tetrads between hairpin loops. Nature342(6251), 825–829 (1989).
  • Parkinson GN , LeeMP, NeidleS. Crystal structure of parallel quadruplexes from human telomeric DNA. Nature417(6891), 876–880 (2002).
  • Zheng KW , ZhangJY, HeYDet al. Detection of genomic G-quadruplexes in living cells using a small artificial protein. Nucleic Acids Res.48(20), 11706–11720 (2020).
  • Di Antonio M , PonjavicA, RadzeviciusAet al. Single-molecule visualization of DNA G-quadruplex formation in live cells. Nat. Chem.12(9), 832–837 (2020).
  • Brown BA 2nd , LiY, BrownJCet al. Isolation and characterization of a monoclonal anti-quadruplex DNA antibody from autoimmune “viable motheaten” mice. Biochemistry37(46), 16325–16337 (1998).
  • Biffi G , TannahillD, MccaffertyJ, BalasubramanianS. Quantitative visualization of DNA G-quadruplex structures in human cells. Nat. Chem.5(3), 182–186 (2013).
  • Lam EY , BeraldiD, TannahillD, BalasubramanianS. G-quadruplex structures are stable and detectable in human genomic DNA. Nat. Commun.4, 1796 (2013).
  • Summers PA , LewisBW, Gonzalez-GarciaJet al. Visualising G-quadruplex DNA dynamics in live cells by fluorescence lifetime imaging microscopy. Nat. Commun.12(1), 162 (2021).
  • Chambers VS , MarsicoG, BoutellJM, DiAntonio M, SmithGP, BalasubramanianS. High-throughput sequencing of DNA G-quadruplex structures in the human genome. Nat. Biotechnol.33(8), 877–881 (2015).
  • Tu J , DuanM, LiuWet al. Direct genome-wide identification of G-quadruplex structures by whole-genome resequencing. Nat. Commun.12(1), 6014 (2021).
  • Bohalova N , MergnyJL, BrazdaV. Novel G-quadruplex prone sequences emerge in the complete assembly of the human X chromosome. Biochimie191, 87–90 (2021).
  • Nurk S , KorenS, RhieAet al. The complete sequence of a human genome. Science376(6588), 44–53 (2022).
  • Xiao CD , ShibataT, YamamotoY, XuY. An intramolecular antiparallel G-quadruplex formed by human telomere RNA. Chem. Commun. (Camb.)54(32), 3944–3946 (2018).
  • Zhang DH , FujimotoT, SaxenaS, YuHQ, MiyoshiD, SugimotoN. Monomorphic RNA G-quadruplex and polymorphic DNA G-quadruplex structures responding to cellular environmental factors. Biochemistry49(21), 4554–4563 (2010).
  • Malgowska M , CzajczynskaK, GudanisD, TworakA, GdaniecZ. Overview of the RNA G-quadruplex structures. Acta Biochim. Pol.63(4), 609–621 (2016).
  • Joachimi A , BenzA, HartigJS. A comparison of DNA and RNA quadruplex structures and stabilities. Bioorg. Med. Chem.17(19), 6811–6815 (2009).
  • Lombardi EP , Londono-VallejoA. A guide to computational methods for G-quadruplex prediction. Nucleic Acids Res.48(3), 1603 (2020).
  • Kypr J , KejnovskaI, RenciukD, VorlickovaM. Circular dichroism and conformational polymorphism of DNA. Nucleic Acids Res.37(6), 1713–1725 (2009).
  • Bochman ML , PaeschkeK, ZakianVA. DNA secondary structures: stability and function of G-quadruplex structures. Nat. Rev. Genet13(11), 770–780 (2012).
  • Huppert JL , BalasubramanianS. Prevalence of quadruplexes in the human genome. Nucleic Acids Res.33(9), 2908–2916 (2005).
  • Huppert JL , BalasubramanianS. G-quadruplexes in promoters throughout the human genome. Nucleic Acids Res.35(2), 406–413 (2007).
  • Balasubramanian S , NeidleS. G-quadruplex nucleic acids as therapeutic targets. Curr. Opin. Chem. Biol.13(3), 345–353 (2009).
  • Andreeva DV , TikhomirovAS, ShchekotikhinAE. Ligands of G-quadruplex nucleic acids. Russian Chemical Reviews90(1), 1–38 (2021).
  • Mulholland K , SiddiqueiF, WuC. Binding modes and pathway of RHPS4 to human telomeric G-quadruplex and duplex DNA probed by all-atom molecular dynamics simulations with explicit solvent. Phys. Chem. Chem. Phys.19(28), 18685–18694 (2017).
  • Sullivan HJ , ReadmondC, RadicellaC, PersadV, FasanoTJ, WuC. Binding of telomestatin, TMPyP4, BSU6037, and BRACO19 to a telomeric G-quadruplex-duplex hybrid probed by all-atom molecular dynamics simulations with explicit solvent. ACS Omega3(11), 14788–14806 (2018).
  • Sullivan HJ , ChenB, WuC. Molecular dynamics study on the binding of an anticancer DNA G-quadruplex stabilizer, CX-5461, to human telomeric, c-KIT1, and c-Myc G-quadruplexes and a DNA duplex. J. Chem. Inf. Model60(10), 5203–5224 (2020).
  • Chung WJ , HeddiB, TeraM, IidaK, NagasawaK, PhanAT. Solution structure of an intramolecular (3 + 1) human telomeric G-quadruplex bound to a telomestatin derivative. J. Am. Chem. Soc.135(36), 13495–13501 (2013).
  • Hu MH , WuTY, HuangQ, JinG. New substituted quinoxalines inhibit triple-negative breast cancer by specifically downregulating the c-MYC transcription. Nucleic Acids Res.47(20), 10529–10542 (2019).
  • Haddach M , SchwaebeMK, MichauxJet al. Discovery of CX-5461, the first direct and selective inhibitor of RNA polymerase I, for cancer therapeutics. ACS Med. Chem. Lett.3(7), 602–606 (2012).
  • Sidibe A , HamonF, LargyEet al. Effects of a halogenated G-quadruplex ligand from the pyridine dicarboxamide series on the terminal sequence of XpYp telomere in HT1080 cells. Biochimie94(12), 2559–2568 (2012).
  • Roxo C , KotkowiakW, PasternakA. G-quadruplex-forming aptamers-characteristics, applications, and perspectives. Molecules24(20), 3781 (2019).
  • Kosiol N , JuranekS, BrossartP, HeineA, PaeschkeK. G-quadruplexes: a promising target for cancer therapy. Mol. Cancer20(1), 40 (2021).
  • Alessandrini I , RecagniM, ZaffaroniN, FoliniM. On the road to fight cancer: the potential of g-quadruplex ligands as novel therapeutic agents. Int. J. Mol. Sci.22(11), 5947 (2021).
  • Asamitsu S , ObataS, YuZ, BandoT, SugiyamaH. Recent progress of targeted g-quadruplex-preferred ligands toward cancer therapy. Molecules24(3), 429 (2019).
  • Local A , ZhangH, BenbatoulKDet al. APTO-253 stabilizes G-quadruplex DNA, inhibits MYC expression, and induces DNA damage in acute myeloid leukemia cells. Mol. Cancer Ther.17(6), 1177–1186 (2018).
  • Papadopoulos K , MitaA, RicartAet al. Pharmacokinetic findings from the phase I study of Quarfloxin (CX-3543): a protein–rDNA quadruplex inhibitor, in patients with advanced solid tumors. Mol. Cancer Ther.6(Suppl. 11), B93 (2007).
  • Lim J , PadgettC, Von HoffDet al. Abstract #3599: quarfloxin phase I clinical data and scientific findings supporting the selection of carcinoid/neuroendocrine tumors as the phase II indication. Cancer Res.69(Suppl. 9), 3599 (2009).
  • Xu H , DiAntonio M, MckinneySet al. CX-5461 is a DNA G-quadruplex stabilizer with selective lethality in BRCA1/2 deficient tumours. Nat. Commun.8, 14432 (2017).
  • Hilton J , CesconDW, BedardPet al. CCTG IND.231: a phase 1 trial evaluating CX-5461 in patients with advanced solid tumors. Ann. Oncol.29, iii8 (2018).
  • Harrison SJ , KhotA, BrajanovskiNet al. A phase 1, open-label, dose escalation, safety, PK and PD study of a first in class Pol1 inhibitor (CX-5461) in patients with advanced hematologic malignancies (HM). J. Clin. Oncol.33(Suppl. 15), e22212 (2015).
  • Hanahan D , WeinbergRA. Hallmarks of cancer: the next generation. Cell144(5), 646–674 (2011).
  • Sengupta A , GangulyA, ChowdhuryS. Promise of G-quadruplex structure binding ligands as epigenetic modifiers with anti-cancer effects. Molecules24(3), 582 (2019).
  • Kim NW , PiatyszekMA, ProwseKRet al. Specific association of human telomerase activity with immortal cells and cancer. Science266(5193), 2011–2015 (1994).
  • Jafri MA , AnsariSA, AlqahtaniMH, ShayJW. Roles of telomeres and telomerase in cancer, and advances in telomerase-targeted therapies. Genome Med.8(1), 69 (2016).
  • Miyazaki T , PanY, JoshiKet al. Telomestatin impairs glioma stem cell survival and growth through the disruption of telomeric G-quadruplex and inhibition of the proto-oncogene, c-Myb. Clin. Cancer Res.18(5), 1268–1280 (2012).
  • Burger AM , DaiF, SchultesCMet al. The G-quadruplex-interactive molecule BRACO-19 inhibits tumor growth, consistent with telomere targeting and interference with telomerase function. Cancer Res.65(4), 1489–1496 (2005).
  • Wang L-X , ShangQ, LiQet al. Pyridostatins selectively recognize two different forms of the human telomeric G-quadruplex structures and their anti-tumor activities in vitro. Tetrahedron71(30), 4982–4986 (2015).
  • Lagah S , TanIL, RadhakrishnanPet al. RHPS4 G-quadruplex ligand induces anti-proliferative effects in brain tumor cells. PLOS ONE9(1), e86187 (2014).
  • Incles CM , SchultesCM, KempskiH, KoehlerH, KellandLR, NeidleS. A G-quadruplex telomere targeting agent produces p16-associated senescence and chromosomal fusions in human prostate cancer cells. Mol. Cancer Ther.3(10), 1201–1206 (2004).
  • Gowan SM , HarrisonJR, PattersonLet al. A G-quadruplex-interactive potent small-molecule inhibitor of telomerase exhibiting in vitro and in vivo antitumor activity. Mol. Pharmacol.61(5), 1154–1562 (2002).
  • Zhou G , LiuX, LiYet al. Telomere targeting with a novel G-quadruplex-interactive ligand BRACO-19 induces T-loop disassembly and telomerase displacement in human glioblastoma cells. Oncotarget7(12), 14925–14939 (2016).
  • Grand CL , HanH, MunozRMet al. The cationic porphyrin TMPyP4 down-regulates c-MYC and human telomerase reverse transcriptase expression and inhibits tumor growth in vivo. Mol. Cancer Ther.1(8), 565–573 (2002).
  • Liu T , YuanX, XuD. Cancer-specific telomerase reverse transcriptase (TERT) promoter mutations: biological and clinical implications. Genes (Basel)7(7), 38 (2016).
  • Bell RJ , RubeHT, Xavier-MagalhaesAet al. Understanding TERT promoter mutations: a common path to immortality. Mol. Cancer Res.14(4), 315–323 (2016).
  • Hafezi F , PerezBercoff D. The solo play of TERT promoter mutations. Cells9(3), 749 (2020).
  • Kang HJ , CuiY, YinHet al. A pharmacological chaperone molecule induces cancer cell death by restoring tertiary DNA structures in mutant hTERT promoters. J. Am. Chem. Soc.138(41), 13673–13692 (2016).
  • Chaudhuri R , BhattacharyaS, DashJ, BhattacharyaS. Recent update on targeting c-MYC G-quadruplexes by small molecules for anticancer therapeutics. J. Med. Chem.64(1), 42–70 (2021).
  • Dang CV . MYC on the path to cancer. Cell149(1), 22–35 (2012).
  • Dang CV , ReddyEP, ShokatKM, SoucekL. Drugging the ‘undruggable’ cancer targets. Nat. Rev. Cancer17(8), 502–508 (2017).
  • Chen BJ , WuYL, TanakaY, ZhangW. Small molecules targeting c-Myc oncogene: promising anti-cancer therapeutics. Int. J. Biol. Sci.10(10), 1084–1096 (2014).
  • Stump S , MouTC, SprangSR, NataleNR, BeallHD. Crystal structure of the major quadruplex formed in the promoter region of the human c-MYC oncogene. PLOS ONE13(10), e0205584 (2018).
  • Prakash A , KiekenF, MarkyLA, BorgstahlGE. Stabilization of a G-Quadruplex from unfolding by replication protein A using potassium and the porphyrin TMPyP4. J. Nucleic Acids2011, 529828 (2011).
  • Rodriguez R , MillerKM, FormentJVet al. Small-molecule-induced DNA damage identifies alternative DNA structures in human genes. Nat. Chem. Biol.8(3), 301–310 (2012).
  • Featherstone C , JacksonSP. DNA double-strand break repair. Curr. Biol.9(20), R759–R761 (1999).
  • Zimmer J , TacconiEMC, FolioCet al. Targeting BRCA1 and BRCA2 deficiencies with G-quadruplex-interacting compounds. Mol. Cell61(3), 449–460 (2016).
  • Sanij E , HannanKM, XuanJet al. CX-5461 activates the DNA damage response and demonstrates therapeutic efficacy in high-grade serous ovarian cancer. Nat. Commun.11(1), 2641 (2020).
  • Mcluckie KI , DiAntonio M, ZecchiniHet al. G-quadruplex DNA as a molecular target for induced synthetic lethality in cancer cells. J. Am. Chem. Soc.135(26), 9640–9643 (2013).
  • Salvati E , ScarsellaM, PorruMet al. PARP1 is activated at telomeres upon G4 stabilization: possible target for telomere-based therapy. Oncogene29(47), 6280–6293 (2010).
  • Paul R , DasT, DebnathM, ChauhanA, DashJ. G-quadruplex-binding small molecule induces synthetic lethality in breast cancer cells by inhibiting c-MYC and BCL2 expression. Chembiochem21(7), 963–970 (2020).
  • Han FX , WheelhouseRT, HurleyLH. Interactions of TMPyP4 and TMPyP2 with quadruplex DNA. Structural basis for the differential effects on telomerase inhibition. J. Am. Chem. Soc.121(15), 3561–3570 (1999).
  • Le VH , NageshN, LewisEA. Bcl-2 promoter sequence G-quadruplex interactions with three planar and non-planar cationic porphyrins: TMPyP4, TMPyP3, and TMPyP2. PLOS ONE8(8), e72462 (2013).
  • Marchetti C , ZynerKG, OhnmachtSAet al. Targeting multiple effector pathways in pancreatic ductal adenocarcinoma with a G-quadruplex-binding small molecule. J. Med. Chem.61(6), 2500–2517 (2018).
  • Lopes-Nunes J , OliveiraPA, CruzC. G-quadruplex-based drug delivery systems for cancer therapy. Pharmaceuticals (Basel)14(7), 671 (2021).
  • Shieh YA , YangSJ, WeiMF, ShiehMJ. Aptamer-based tumor-targeted drug delivery for photodynamic therapy. ACS Nano4(3), 1433–1442 (2010).
  • Carvalho J , PaivaA, CabralCampello MPet al. Aptamer-based targeted delivery of a G-quadruplex ligand in cervical cancer cells. Sci. Rep.9(1), 7945 (2019).
  • Yaku H , MurashimaT, MiyoshiD, SugimotoN. A mRNA-responsive G-quadruplex-based drug release system. Sensors (Basel)15(4), 9388–9403 (2015).
  • Lopes-Nunes J , CarvalhoJ, FigueiredoJet al. Phthalocyanines for G-quadruplex aptamers binding. Bioorg. Chem.100, 103920 (2020).
  • Phatak P , CooksonJC, DaiFet al. Telomere uncapping by the G-quadruplex ligand RHPS4 inhibits clonogenic tumour cell growth in vitro and in vivo consistent with a cancer stem cell targeting mechanism. Br. J. Cancer96(8), 1223–1233 (2007).
  • Tassinari M , Cimino-RealeG, NadaiMet al. Down-regulation of the androgen receptor by G-quadruplex ligands sensitizes castration-resistant prostate cancer cells to enzalutamide. J. Med. Chem.61(19), 8625–8638 (2018).
  • Banerjee K , WangM, CaiE, FujiwaraN, BakerH, CaveJW. Regulation of tyrosine hydroxylase transcription by hnRNP K and DNA secondary structure. Nat. Commun.5, 5769 (2014).
  • Farhath MM , ThompsonM, RayS, SewellA, BalciH, BasuS. G-quadruplex-enabling sequence within the human tyrosine hydroxylase promoter differentially regulates transcription. Biochemistry54(36), 5533–5545 (2015).
  • Didiot MC , TianZ, SchaefferC, SubramanianM, MandelJL, MoineH. The G-quartet containing FMRP binding site in FMR1 mRNA is a potent exonic splicing enhancer. Nucleic Acids Res.36(15), 4902–4912 (2008).
  • Bole M , MenonL, MihailescuMR. Fragile X mental retardation protein recognition of G quadruplex structure per se is sufficient for high affinity binding to RNA. Mol. Biosyst.4(12), 1212–1219 (2008).
  • Conlon EG , LuL, SharmaAet al. The C9ORF72 GGGGCC expansion forms RNA G-quadruplex inclusions and sequesters hnRNP H to disrupt splicing in ALS brains. Elife5, e17820 (2016).
  • Fay MM , AndersonPJ, IvanovP. ALS/FTD-associated C9ORF72 repeat RNA promotes phase transitions in vitro and in cells. Cell Rep.21(12), 3573–3584 (2017).
  • Bose K , MaityA, NgoKH, VandanaJJ, ShneiderNA, PhanAT. Formation of RNA G-wires by G(4)C(2) repeats associated with ALS and FTD. Biochem. Biophys. Res. Commun.610, 113–118 (2022).
  • Zhang C , LiuHH, ZhengKW, HaoYH, TanZ. DNA G-quadruplex formation in response to remote downstream transcription activity: long-range sensing and signal transducing in DNA double helix. Nucleic Acids Res.41(14), 7144–7152 (2013).
  • Xia Y , ZhengKW, HeYDet al. Transmission of dynamic supercoiling in linear and multi-way branched DNAs and its regulation revealed by a fluorescent G-quadruplex torsion sensor. Nucleic Acids Res.46(14), 7418–7424 (2018).
  • Sekibo DaT , FoxKR. The effects of DNA supercoiling on G-quadruplex formation. Nucleic Acids Res.45(21), 12069–12079 (2017).
  • Zamiri B , ReddyK, MacgregorRBJr, PearsonCE. TMPyP4 porphyrin distorts RNA G-quadruplex structures of the disease-associated r(GGGGCC)n repeat of the C9orf72 gene and blocks interaction of RNA-binding proteins. J. Biol. Chem.289(8), 4653–4659 (2014).
  • Simone R , BalendraR, MoensTGet al. G-quadruplex-binding small molecules ameliorate C9orf72 FTD/ALS pathology in vitro and in vivo. EMBO Mol. Med.10(1), 22–31 (2018).
  • Su Z , ZhangY, GendronTFet al. Discovery of a biomarker and lead small molecules to target r(GGGGCC)-associated defects in c9FTD/ALS. Neuron84(1), 239 (2014).
  • Wortman MJ , DagdanovaAV, ClarkAMet al. A synthetic Pur-based peptide binds and alters G-quadruplex secondary structure present in the expanded RNA repeat of C9orf72 ALS/FTD. Biochim. Biophys Acta Mol. Cell Res.1867(6), 118674 (2020).
  • Ofer N , Weisman-ShomerP, ShkloverJ, FryM. The quadruplex r(CGG)n destabilizing cationic porphyrin TMPyP4 cooperates with hnRNPs to increase the translation efficiency of fragile X premutation mRNA. Nucleic Acids Res.37(8), 2712–2722 (2009).
  • Shioda N , YabukiY, YamaguchiKet al. Targeting G-quadruplex DNA as cognitive function therapy for ATR-X syndrome. Nat. Med.24(6), 802–813 (2018).
  • Asamitsu S , YabukiY, IkenoshitaSet al. CGG repeat RNA G-quadruplexes interact with FMRpolyG to cause neuronal dysfunction in fragile X-related tremor/ataxia syndrome. Sci. Adv.7(3), eabd9440 (2021).
  • Turcotte MA , GarantJM, Cossette-RobergeH, PerreaultJP. Guanine nucleotide-binding protein-like 1 (GNL1) binds RNA G-quadruplex structures in genes associated with Parkinson's disease. RNA Biol.18(9), 1339–1353 (2021).
  • Olsthoorn RC . G-quadruplexes within prion mRNA: the missing link in prion disease?Nucleic Acids Res.42(14), 9327–9333 (2014).
  • Pradhan P , SrivastavaA, SinghJet al. Prion protein transcription is auto-regulated through dynamic interactions with G-quadruplex motifs in its own promoter. Biochim. Biophys Acta Gene Regul. Mech.1863(3), 194479 (2020).
  • Daoud H , SuhailH, SabbaghMet al. C9orf72 hexanucleotide repeat expansions as the causative mutation for chromosome 9p21-linked amyotrophic lateral sclerosis and frontotemporal dementia. Arch. Neurol.69(9), 1159–1163 (2012).
  • Dejesus-Hernandez M , MackenzieIR, BoeveBFet al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron72(2), 245–256 (2011).
  • Fratta P , MizielinskaS, NicollAJet al. C9orf72 hexanucleotide repeat associated with amyotrophic lateral sclerosis and frontotemporal dementia forms RNA G-quadruplexes. Sci. Rep.2, 1016 (2012).
  • Haeusler AR , DonnellyCJ, PerizGet al. C9orf72 nucleotide repeat structures initiate molecular cascades of disease. Nature507(7491), 195–200 (2014).
  • Sket P , PohlevenJ, KovandaAet al. Characterization of DNA G-quadruplex species forming from C9ORF72 G4C2-expanded repeats associated with amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Neurobiol. Aging36(2), 1091–1096 (2015).
  • Fomin V , RichardP, HoqueMet al. The C9ORF72 gene, implicated in amyotrophic lateral sclerosis and frontotemporal dementia, encodes a protein that functions in control of endothelin and glutamate signaling. Mol. Cell. Biol.38(22), e00155–18 (2018).
  • Disney MD , LiuB, YangWYet al. A small molecule that targets r(CGG)(exp) and improves defects in fragile X-associated tremor ataxia syndrome. ACS Chem. Biol.7(10), 1711–1718 (2012).
  • Liu H , LuYN, PaulTet al. A helicase unwinds hexanucleotide repeat RNA G-quadruplexes and facilitates repeat-associated non-AUG translation. J. Am. Chem. Soc.143(19), 7368–7379 (2021).
  • Wada T , SuzukiS, ShiodaN. 5-Aminolevulinic acid can ameliorate language dysfunction of patients with ATR-X syndrome. Congenit. Anom. (Kyoto)60(5), 147–148 (2020).
  • Lipinski MM , ZhengB, LuTet al. Genome-wide analysis reveals mechanisms modulating autophagy in normal brain aging and in Alzheimer's disease. Proc. Natl Acad Sci. USA107(32), 14164–14169 (2010).
  • Moruno-Manchon JF , LejaultP, WangYet al. Small-molecule G-quadruplex stabilizers reveal a novel pathway of autophagy regulation in neurons. Elife9, e52283 (2020).
  • Sampath S , KhedrA, QamarSet al. Pandemics throughout the history. Cureus13(9), e18136 (2021).
  • Lyonnais S , HounsouC, Teulade-FichouMP, JeussetJ, LeCam E, MirambeauG. G-quartets assembly within a G-rich DNA flap. A possible event at the center of the HIV-1 genome. Nucleic Acids Res.30(23), 5276–5283 (2002).
  • Lyonnais S , GorelickRJ, MergnyJL, LeCam E, MirambeauG. G-quartets direct assembly of HIV-1 nucleocapsid protein along single-stranded DNA. Nucleic Acids Res.31(19), 5754–5763 (2003).
  • Tuesuwan B , KernJT, ThomasPWet al. Simian virus 40 large T-antigen G-quadruplex DNA helicase inhibition by G-quadruplex DNA-interactive agents. Biochemistry47(7), 1896–1909 (2008).
  • Lavezzo E , BerselliM, FrassonIet al. G-quadruplex forming sequences in the genome of all known human viruses: a comprehensive guide. PLoS Comput. Biol.14(12), e1006675 (2018).
  • Bua G , TedescoD, ContiI, ReggianiA, BartoliniM, GallinellaG. No G-quadruplex structures in the DNA of Parvovirus B19: experimental evidence versus bioinformatic predictions. Viruses12(9), 935 (2020).
  • Abiri A , LavigneM, RezaeiMet al. Unlocking G-quadruplexes as antiviral targets. Pharmacol. Rev.73(3), 897–923 (2021).
  • Bohalova N , CantaraA, BartasMet al. Analyses of viral genomes for G-quadruplex forming sequences reveal their correlation with the type of infection. Biochimie186, 13–27 (2021).
  • Brazda V , PorubiakovaO, CantaraAet al. G-quadruplexes in H1N1 influenza genomes. BMC Genomics22(1), 77 (2021).
  • Bohalova N , CantaraA, BartasMet al. Tracing dsDNA virus–host coevolution through correlation of their G-quadruplex-forming sequences. Int. J. Mol. Sci.22(7), 3433 (2021).
  • Puig Lombardi E , Londono-VallejoA, NicolasA. Relationship between G-quadruplex sequence composition in viruses and their hosts. Molecules24(10), 1942 (2019).
  • Brazda V , DobrovolnaM, BohalovaN, MergnyJL. G-quadruplexes in the evolution of hepatitis B virus. Nucleic Acids Res.51(14), 7198–7204 (2023).
  • Perrone R , NadaiM, PoeJAet al. Formation of a unique cluster of G-quadruplex structures in the HIV-1 Nef coding region: implications for antiviral activity. PLOS ONE8(8), e73121 (2013).
  • Ruggiero E , TassinariM, PerroneR, NadaiM, RichterSN. Stable and conserved G-quadruplexes in the long terminal repeat promoter of retroviruses. ACS Infect. Dis.5(7), 1150–1159 (2019).
  • Perrone R , ButovskayaE, DaelemansD, PaluG, PannecouqueC, RichterSN. Anti-HIV-1 activity of the G-quadruplex ligand BRACO-19. J. Antimicrob. Chemother.69(12), 3248–3258 (2014).
  • Perrone R , DoriaF, ButovskayaEet al. Synthesis, binding and antiviral properties of potent core-extended naphthalene diimides targeting the HIV-1 long terminal repeat promoter G-quadruplexes. J. Med. Chem.58(24), 9639–9652 (2015).
  • Ryazantsev DY , MyshkinMY, AlferovaVAet al. Probing GFP chromophore analogs as anti-HIV agents targeting LTR-III G-quadruplex. Biomolecules11(10), 1409 (2021).
  • Mitrasinovic PM . Structural insights into the binding of small ligand molecules to a G-quadruplex DNA located in the HIV-1 promoter. J. Biomol. Struct. Dyn.36(9), 2292–2302 (2018).
  • Piekna-Przybylska D , BambaraRA, MaggirwarSB, DewhurstS. G-quadruplex ligands targeting telomeres do not inhibit HIV promoter activity and cooperate with latency reversing agents in killing latently infected cells. Cell Cycle19(18), 2298–2313 (2020).
  • Perrone R , NadaiM, FrassonIet al. A dynamic G-quadruplex region regulates the HIV-1 long terminal repeat promoter. J. Med. Chem.56(16), 6521–6530 (2013).
  • Butovskaya E , SoldaP, ScalabrinM, NadaiM, RichterSN. HIV-1 nucleocapsid protein unfolds stable RNA G-quadruplexes in the viral genome and is inhibited by G-quadruplex ligands. ACS Infect. Dis.5(12), 2127–2135 (2019).
  • Piekna-Przybylska D , MaggirwarSB. CD4+ memory T cells infected with latent HIV-1 are susceptible to drugs targeting telomeres. Cell Cycle17(17), 2187–2203 (2018).
  • Murat P , ZhongJ, LekieffreLet al. G-quadruplexes regulate Epstein–Barr virus-encoded nuclear antigen 1 mRNA translation. Nat. Chem. Biol.10(5), 358–364 (2014).
  • Lista MJ , MartinsRP, BillantOet al. Nucleolin directly mediates Epstein-Barr virus immune evasion through binding to G-quadruplexes of EBNA1 mRNA. Nat. Commun.8, 16043 (2017).
  • Reznichenko O , QuillevereA, MartinsRPet al. Novel cationic bis(acylhydrazones) as modulators of Epstein–Barr virus immune evasion acting through disruption of interaction between nucleolin and G-quadruplexes of EBNA1 mRNA. Eur. J. Med. Chem.178, 13–29 (2019).
  • Norseen J , JohnsonFB, LiebermanPM. Role for G-quadruplex RNA binding by Epstein–Barr virus nuclear antigen 1 in DNA replication and metaphase chromosome attachment. J. Virol.83(20), 10336–10346 (2009).
  • Artusi S , NadaiM, PerroneRet al. The herpes simplex virus-1 genome contains multiple clusters of repeated G-quadruplex: implications for the antiviral activity of a G-quadruplex ligand. Antiviral Res.118, 123–131 (2015).
  • Frasson I , NadaiM, RichterSN. Conserved G-quadruplexes regulate the immediate early promoters of human alphaherpesviruses. Molecules24(13), 2375 (2019).
  • Callegaro S , PerroneR, ScalabrinM, DoriaF, PaluG, RichterSN. A core extended naphtalene diimide G-quadruplex ligand potently inhibits herpes simplex virus 1 replication. Sci. Rep.7(1), 2341 (2017).
  • Artusi S , RuggieroE, NadaiMet al. Antiviral activity of the G-quadruplex ligand TMPyP4 against herpes simplex virus-1. Viruses13(2), 196 (2021).
  • Frasson I , SoldaP, NadaiM, LagoS, RichterSN. Parallel G-quadruplexes recruit the HSV-1 transcription factor ICP4 to promote viral transcription in herpes virus-infected human cells. Commun. Biol.4(1), 510 (2021).
  • Biswas B , KandpalM, VivekanandanP. A G-quadruplex motif in an envelope gene promoter regulates transcription and virion secretion in HBV genotype B. Nucleic Acids Res.45(19), 11268–11280 (2017).
  • Molnar OR , VeghA, SomkutiJ, SmellerL. Characterization of a G-quadruplex from hepatitis B virus and its stabilization by binding TMPyP4, BRACO19 and PhenDC3. Sci. Rep.11(1), 23243 (2021).
  • Wang SR , MinYQ, WangJQet al. A highly conserved G-rich consensus sequence in hepatitis C virus core gene represents a new anti-hepatitis C target. Sci. Adv.2(4), e1501535 (2016).
  • Jaubert C , BedratA, BartolucciLet al. RNA synthesis is modulated by G-quadruplex formation in hepatitis C virus negative RNA strand. Sci. Rep.8(1), 8120 (2018).
  • Madireddy A , PurushothamanP, LoosbroockCP, RobertsonES, SchildkrautCL, VermaSC. G-quadruplex-interacting compounds alter latent DNA replication and episomal persistence of KSHV. Nucleic Acids Res.44(8), 3675–3694 (2016).
  • Kumar S , ChoudharyD, PatraA, BhaveshNS, VivekanandanP. Analysis of G-quadruplexes upstream of herpesvirus miRNAs: evidence of G-quadruplex mediated regulation of KSHV miR-K12-1-9,11 cluster and HCMV miR-US33. BMC Mol. Cell Biol.21(1), 67 (2020).
  • Kong JN , ZhangC, ZhuYCet al. Identification and characterization of G-quadruplex formation within the EP0 promoter of pseudorabies virus. Sci. Rep.8(1), 14029 (2018).
  • Deng H , GongB, YangZet al. Intensive distribution of G(2)-quaduplexes in the sseudorabies virus genome and their sensitivity to cations and G-quadruplex ligands. Molecules24(4), 774 (2019).
  • Zhu Y , LiuW, ZhangC. G-quadruplexes formation at the upstream region of replication origin (OriL) of the pseudorabies virus: implications for antiviral targets. Viruses13(11), 2219 (2021).
  • Ravichandran S , KimYE, BansalVet al. Genome-wide analysis of regulatory G-quadruplexes affecting gene expression in human cytomegalovirus. PLOS Pathog.14(9), e1007334 (2018).
  • Majee P , KumarMishra S, PandyaNet al. Identification and characterization of two conserved G-quadruplex forming motifs in the Nipah virus genome and their interaction with G-quadruplex specific ligands. Sci. Rep.10(1), 1477 (2020).
  • Muturi E , MengF, LiuH, JiangM, WeiH, YangH. Comprehensive analysis of G-quadruplexes in African swine fever virus genome reveals potential antiviral targets by G-quadruplex stabilizers. Front. Microbiol.12, 798431 (2021).
  • Majee P , PattnaikA, SahooBRet al. Inhibition of Zika virus replication by G-quadruplex-binding ligands. Mol. Ther. Nucleic Acids23, 691–701 (2021).
  • Zhao C , QinG, NiuJet al. Targeting RNA G-quadruplex in SARS-CoV-2: a promising therapeutic target for COVID-19? Angew Chem. Int. Ed. Engl. 60(1), 432–438 (2021).
  • Miclot T , HognonC, BignonEet al. Structure and dynamics of RNA guanine quadruplexes in SARS-CoV-2 genome. Original strategies against emerging viruses. J. Phys. Chem. Lett.12(42), 10277–10283 (2021).
  • Lavigne M , HelynckO, RigoletPet al. SARS-CoV-2 Nsp3 unique domain SUD interacts with guanine quadruplexes and G4-ligands inhibit this interaction. Nucleic Acids Res.49(13), 7695–7712 (2021).
  • Liu G , DuW, SangXet al. RNA G-quadruplex in TMPRSS2 reduces SARS-CoV-2 infection. Nat. Commun.13(1), 1444 (2022).
  • Sakurai Y , NgweTun MM, KurosakiYet al. 5-amino levulinic acid inhibits SARS-CoV-2 infection in vitro. Biochem. Biophys. Res. Commun.545, 203–207 (2021).
  • Ngwe Tun MM , SakuraT, SakuraiYet al. Antiviral activity of 5-aminolevulinic acid against variants of severe acute respiratory syndrome coronavirus 2. Trop Med. Health50(1), 6 (2022).
  • Kumar S , RamamurthyC, ChoudharyDet al. Contrasting roles for G-quadruplexes in regulating human Bcl-2 and virus homologues KSHV KS-Bcl-2 and EBV BHRF1. Sci. Rep.12(1), 5019 (2022).
  • Bian WX , XieY, WangXNet al. Binding of cellular nucleolin with the viral core RNA G-quadruplex structure suppresses HCV replication. Nucleic Acids Res.47(1), 56–68 (2019).
  • Tosoni E , FrassonI, ScalabrinMet al. Nucleolin stabilizes G-quadruplex structures folded by the LTR promoter and silences HIV-1 viral transcription. Nucleic Acids Res.43(18), 8884–8897 (2015).
  • Lista MJ , JoussetAC, ChengMet al. DNA topoisomerase 1 represses HIV-1 promoter activity through its interaction with a guanine quadruplex present in the LTR sequence. Retrovirology20(1), 10 (2023).
  • Satkunanathan S , ThorpeR, ZhaoY. The function of DNA binding protein nucleophosmin in AAV replication. Virology510, 46–54 (2017).
  • Gilbert-Girard S , GravelA, ArtusiSet al. Stabilization of Telomere G-Quadruplexes Interferes with Human Herpesvirus 6A Chromosomal Integration. J. Virol.91(14), e00402–17 (2017).
  • Yett A , LinLY, BeseisoD, MiaoJ, YatsunykLA. N-methyl mesoporphyrin IX as a highly selective light-up probe for G-quadruplex DNA. J. Porphyr. Phthalocyanines23(11n12), 1195–1215 (2019).
  • Artusi S , PerroneR, LagoSet al. Visualization of DNA G-quadruplexes in herpes simplex virus 1-infected cells. Nucleic Acids Res.44(21), 10343–10353 (2016).
  • Panda M , KalitaE, RaoA, PrajapatiVK. Mechanism of cell cycle regulation and cell proliferation during human viral infection. Adv. Protein Chem. Struct. Biol.135, 497–525 (2023).
  • Ruggiero E , RichterSN. Targeting G-quadruplexes to achieve antiviral activity. Bioorg. Med. Chem. Lett.79, 129085 (2023).
  • Porru M , ZizzaP, FranceschinM, LeonettiC, BiroccioA. EMICORON: a multi-targeting G4 ligand with a promising preclinical profile. Biochim. Biophys Acta Gen. Subj.1861(5 Pt B), 1362–1370 (2017).
  • Zeng L , WuQ, WangTet al. Selective stabilization of multiple promoter G-quadruplex DNA by using 2-phenyl-1H-imidazole-based tanshinone IIA derivatives and their potential suppressing function in the metastatic breast cancer. Bioorg. Chem.106, 104433 (2021).
  • Hu MH , YuBY, WangX, JinG. Drug-like biimidazole derivatives dually target c-MYC/BCL-2 G-quadruplexes and inhibit acute myeloid leukemia. Bioorg. Chem.104, 104264 (2020).
  • Salerno S , BarresiE, BagliniE, PoggettiV, TalianiS, DaSettimo F. Dual targeting topoisomerase/G-quadruplex agents in cancer therapy –an overview. Biomedicines10(11), 2932 (2022).
  • Le DD , DiAntonio M, ChanLK, BalasubramanianS. G-quadruplex ligands exhibit differential G-tetrad selectivity. Chem. Commun. (Camb.)51(38), 8048–8050 (2015).
  • Zegers J , PetersM, AlbadaB. DNA G-quadruplex-stabilizing metal complexes as anticancer drugs. JBIC28(2), 117–138 (2023).
  • Machireddy B , KalraG, JonnalagaddaS, RamanujacharyK, WuC. Probing the binding pathway of BRACO19 to a parallel-stranded human telomeric G-quadruplex using molecular dynamics binding simulation with AMBER DNA OL15 and ligand GAFF2 force fields. J. Chem. Inf. Model57(11), 2846–2864 (2017).
  • Jain AK , BhattacharyaS. Groove binding ligands for the interaction with parallel-stranded ps-duplex DNA and triplex DNA. Bioconjug. Chem.21(8), 1389–1403 (2010).
  • Bhaduri S , RanjanN, AryaDP. An overview of recent advances in duplex DNA recognition by small molecules. Beilstein J. Org. Chem.14, 1051–1086 (2018).
  • Cosconati S , MarinelliL, TrottaRet al. Structural and conformational requisites in DNA quadruplex groove binding: another piece to the puzzle. J. Am. Chem. Soc.132(18), 6425–6433 (2010).
  • Neupane A , CharikerJH, RouchkaEC. Structural and Functional classification of G-quadruplex families within the human genome. Genes (Basel)14(3), 645 (2023).
  • Balasubramanian S , HurleyLH, NeidleS. Targeting G-quadruplexes in gene promoters: a novel anticancer strategy?Nat. Rev. Drug Discov.10(4), 261–275 (2011).
  • Read M , HarrisonRJ, RomagnoliBet al. Structure-based design of selective and potent G quadruplex-mediated telomerase inhibitors. Proc. Natl Acad Sci. USA98(9), 4844–4849 (2001).
  • Dai J , CarverM, HurleyLH, YangD. Solution structure of a 2:1 quindoline-c-MYC G-quadruplex: insights into G-quadruplex-interactive small molecule drug design. J. Am. Chem. Soc.133(44), 17673–17680 (2011).
  • Wang P , RenL, HeH, LiangF, ZhouX, TanZ. A phenol quaternary ammonium porphyrin as a potent telomerase inhibitor by selective interaction with quadruplex DNA. Chembiochem7(8), 1155–1159 (2006).
  • Nguyen TQN , LimKW, PhanAT. A dual-specific targeting approach based on the simultaneous recognition of duplex and quadruplex motifs. Sci. Rep.7(1), 11969 (2017).
  • Scott L , ChalikianTV. Stabilization of G-quadruplex-duplex hybrid structures induced by minor groove-binding drugs. Life (Basel)12(4), 597 (2022).
  • Platella C , NapolitanoE, RiccardiC, MusumeciD, MontesarchioD. Affinity chromatography-based assays for the screening of potential ligands selective for G-quadruplex structures. Chemistry Open11(5), e202200090 (2022).
  • Ranjan N , AndreasenKF, AroraY, XueL, AryaDP. Surface dependent dual recognition of a G-quadruplex DNA with neomycin-intercalator conjugates. Front. Chem.8, 60 (2020).
  • Sanchez-Martin V , SorianoM, Garcia-SalcedoJA. Quadruplex ligands in cancer therapy. Cancers (Basel)13(13), 3156 (2021).
  • Haudecoeur R , StefanL, DenatF, MonchaudD. A model of smart G-quadruplex ligand. J. Am. Chem. Soc.135(2), 550–553 (2013).
  • Samudrala R , ZhangX, WadkinsRM, MatternDL. Synthesis of a non-cationic, water-soluble perylenetetracarboxylic diimide and its interactions with G-quadruplex-forming DNA. Bioorg. Med. Chem.15(1), 186–193 (2007).
  • Li Z , TanJH, HeJHet al. Disubstituted quinazoline derivatives as a new type of highly selective ligands for telomeric G-quadruplex DNA. Eur. J. Med. Chem.47(1), 299–311 (2012).
  • Busto N , Garcia-CalvoJ, CuevasJVet al. Influence of core extension and side chain nature in targeting G-quadruplex structures with perylene monoimide derivatives. Bioorg. Chem.108, 104660 (2021).
  • Ebrahimi Z , TalaeiS, AghamiriS, GoradelNH, JafarpourA, NegahdariB. Overcoming the blood-brain barrier in neurodegenerative disorders and brain tumours. IET Nanobiotechnol.14(6), 441–448 (2020).
  • Neidle S . Human telomeric G-quadruplex: the current status of telomeric G-quadruplexes as therapeutic targets in human cancer. FEBS J.277(5), 1118–1125 (2010).
  • Shan C , TanJ-H, OuT-M, HuangZ-S. Natural products and their derivatives as G-quadruplex binding ligands. Sci. China Chem.56(10), 1351–1363 (2013).
  • Che T , WangYQ, HuangZL, TanJH, HuangZS, ChenSB. Natural alkaloids and heterocycles as G-quadruplex ligands and potential anticancer agents. Molecules23(2), 493 (2018).
  • Falanga AP , TerraccianoM, OlivieroG, RovielloGN, BorboneN. Exploring the relationship between G-quadruplex nucleic acids and plants: from plant G-quadruplex function to phytochemical G4 ligands with pharmaceutic potential. Pharmaceutics14(11), 2377 (2022).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.