40
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Design, synthesis and biological evaluation of 1-aryldonepezil analogues as anti-Alzheimer's disease agents

, , , , , & show all
Pages 983-997 | Received 08 Dec 2023, Accepted 18 Mar 2024, Published online: 16 May 2024

References

  • Buckner RL. Memory and executive function in aging and AD: multiple factors that cause decline and reserve factors that compensate. Neuron 2004;44:195–208. doi:10.1016/j.neuron.2004.09.006
  • Wimo A, Jönsson L, Bond J et al. The worldwide economic impact of dementia 2010. Alzheimer's Dement. 2013;9:1–11. doi:10.1016/j.jalz.2012.11.006
  • Scheltens P, De SB, Kivipelto M et al. Alzheimer's disease. Lancet 2021;397:1577–1590. doi:10.1016/S0140-6736(20)32205-4
  • Rohm TV, Meier DT, Olefsky JM et al. Inflammation in obesity, diabetes, and related disorders. Immunity 2022;55:31–55. doi:10.1016/j.immuni.2021.12.013
  • Karran E, De SB. The amyloid hypothesis in Alzheimer disease: new insights from new therapeutics. Nat. Rev. Drug Discov. 2022;21:306–318. doi:10.1038/s41573-022-00391-w
  • Hajam YA, Rani R, Ganie SY et al. Oxidative stress in human pathology and aging: molecular mechanisms and perspectives. Cell 2022;11:552. doi:10.3390/cells11030552
  • Anand P, Singh B. A review on cholinesterase inhibitors for Alzheimer's disease. Arch. Pharm. Res. 2013;36:375–399. doi:10.1007/s12272-013-0036-3
  • Tan CC, Yu JT, Wang HF et al. Efficacy and safety of donepezil, galantamine, rivastigmine, and memantine for the treatment of Alzheimer's disease: a systematic review and meta-analysis. J. Alzheimers Dis. 2014;41:615–631. doi:10.3233/jad-132690
  • Li J, Wu HM, Zhou RL et al. Huperzine A for Alzheimer's disease. Cochrane Database Syst. Rev. 2008;2:CD005592. doi:10.1016/j.jalz.2008.05.532
  • Rammes G, Danysz W, Parsons CG. Pharmacodynamics of memantine: an update. Curr. Neuropharmacology 2008;6:55–78. doi:10.2174/157015908783769671
  • Savelieff MG, Nam G, Kang J et al. Development of Multifunctional Molecules as Potential Therapeutic Candidates for Alzheimer's Disease, Parkinson's Disease, and Amyotrophic Lateral Sclerosis in the Last Decade. Chem. Rev. 2019;119:1221–1322. doi:10.1021/acs.chemrev.8b00138.
  • Seltzer B. Donepezil: an update. Expert Opin. Pharmaco. 2007;8:1011–1023. doi:10.1517/14656566.8.7.1011.
  • Qian HJ, Yu CY, Zhu HJ et al. Safety, tolerability, and pharmacokinetics of fluoropezil (DC20), a novel acetylcholinesterase inhibitor: a phase I study in healthy young and elderly Chinese subjects. Clin. Transl. Sci. 2023;16:810–822. doi:10.1111/cts.13490
  • Zhou Y, Fu Y, Yin WC et al. Kinetics-driven drug design strategy for next-generation acetylcholinesterase inhibitors to clinical candidate. J. Med. Chem. 2021;64:1844–1855. doi:10.1021/acs.jmedchem.0c01863
  • Gabr MT, Abdel-Raziq MS. Design and synthesis of donepezil analogues as dual AChE and BACE-1 inhibitors. Bioorg. Chem. 2018;80:245–252. doi:10.1016/j.bioorg.2018.06.031
  • Bautista-Aguilera OM, Esteban G, Bolea I et al. Design, synthesis, pharmacological evaluation, QSAR analysis, molecular modeling and ADMET of novel donepezil–indolyl hybrids as multipotent cholinesterase/monoamine oxidase inhibitors for the potential treatment of Alzheimer's disease. Eur. J. Med. Chem. 2014;75:82–95. doi:10.1016/j.ejmech.2013.12.028
  • Costanzo P, Cariati L, Desiderio D et al. Design, synthesis, and evaluation of donepezil-like compounds as AChE and BACE-1 inhibitors. ACS Med. Chem. Lett. 2016;7:470–475. doi:10.1021/acsmedchemlett.5b00483
  • Wu MY, Esteban G, Brogi S et al. Donepezil-like multifunctional agents: design, synthesis, molecular modeling and biological evaluation. Eur. J. Med. Chem. 2016;121:864–879. doi:10.1016/j.ejmech.2015.10.001
  • Mishra CB, Kumari S, Manral A et al. Design, synthesis, in-silico and biological evaluation of novel donepezil derivatives as multi-target-directed ligands for the treatment of Alzheimer's disease. Eur. J. Med. Chem. 2017;125:736–750. doi:10.1016/j.ejmech.2016.09.057
  • Wan LX, Miao SX, He ZX et al. Pd-catalyzed direct modification of an anti-Alzheimer's disease drug: synthesis and biological evaluation of α-aryl donepezil analogues. ACS Omega 2021;6:23347–23354. doi:10.1021/acsomega.1c03103
  • Sain S, Jain S, Srivastava M et al. Application of palladium-catalyzed cross-coupling reactions in organic synthesis. Curr. Org. Synth. 2019;16:1105–1142. doi:10.2174/1570179416666191104093533
  • Barde E, Guérinot A, Cossy J. α-Arylation of amides from α-halo amides using metal-catalyzed cross-coupling reactions. Synthesis 2018;51:178–184. doi:10.1055/s-0037-1611358
  • Brambilla M, Tredwell M. Palladium-catalyzed Suzuki-Miyaura cross-coupling of secondary α-(trifluoromethyl)benzyl tosylates. Angew. Chem. Int. Ed. Engl. 2017;56:11981–11985. doi:10.1002/anie.201706631
  • Ellman GL, Courtney KD, Andres VJ et al. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961;7:88–90. doi:10.1016/0006-2952(61)90145-9
  • Miao SX, Wan LX, He ZX et al. Pd-catalyzed direct diversification of natural anti-Alzheimer's disease drug: synthesis and biological evaluation of N-aryl huperzine A analogues. J. Nat. Prod. 2021;84:2374–2379. doi:10.1021/acs.jnatprod.1c00600
  • Harel M, Schalk I, Ehretsabatier L et al. Quaternary ligand binding to aromatic residues in the active-site gorge of acetylcholinesterase. Proc. Natl Acad. Sci. USA 1993;90:9031–9035. doi:10.1073/pnas.90.19.9031
  • Kosak U, Strasek N, Knez D et al. N-alkylpiperidine carbamates as potential anti-Alzheimer's agents. Eur. J. Med. Chem. 2020;197:112282. doi:10.1016/j.ejmech.2020.112282
  • Egan WJ, Lauri G. Prediction of intestinal permeability. Adv. Drug Deliv. Rev. 2020;54:273–289. doi:10.1016/s0169-409x(02)00004-2
  • León R, Garcia AG, Marco-Contelles J. Recent advances in the multitarget-directed ligands approach for the treatment of Alzheimer's disease. Med. Res. Rev. 2013;33:139–189. doi:10.1002/med.20248
  • Li Q, Yang HY, Chen Y et al. Recent progress in the identification of selective butyrylcholinesterase inhibitors for Alzheimer's disease. Eur. J. Med. Chem. 2017;132:294–309. doi:10.1016/j.ejmech.2017.03.062
  • Pan CL, Giraldo GS, Prentice H et al. Taurine protection of PC12 cells against endoplasmic reticulum stress induced by oxidative stress. J. Biomed. Sci. 2010;17:7–18. doi:10.1186/1423-0127-17-S1-S17
  • Bhat AH, Dar KB, Anees S et al. Oxidative stress, mitochondrial dysfunction and neurodegenerative diseases; a mechanistic insight. Biomed. Pharmacother. 2015;74:101–110. doi:10.1016/j.biopha.2015.07.025
  • Coleman P, Federoff H, Kurlan R. A focus on the synapse for neuroprotection in Alzheimer disease and other dementias. Neurology 2004;63:1155–1162. doi:10.1212/wnl.64.11.1991
  • Guo JA, Mi ZS, Jiang XY et al. Design, synthesis and biological evaluation of potential anti-AD hybrids with monoamine oxidase B inhibitory and iron-chelating effects. Bioorg. Chem. 2021;108:104564. doi:10.1016/j.bioorg.2020.104564

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.