52
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Facile synthesis and in silico studies of benzothiazole-linked hydroxypyrazolones targeting α-amylase and α-glucosidase 

, , , , , , , , , & show all
Pages 999-1027 | Received 15 Dec 2023, Accepted 19 Mar 2024, Published online: 22 May 2024

References

  • Havrylyuk D, Mosula L, Zimenkovsky B et al. Synthesis and anticancer activity evaluation of 4-thiazolidinones containing benzothiazole moiety. Eur. J. Med. Chem. 2010;45:5012–5021. doi:10.1016/j.ejmech.2010.08.008
  • Kerru N, Singh-Pillay A, Awolade P et al. Current anti-diabetic agents and their molecular targets: a review. Eur. J. Med. Chem. 2018;152:436–488. doi:10.1016/j.ejmech.2018.04.061
  • Ong KL, Stafford LK, McLaughlin SA et al. Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic analysis for the Global Burden of Disease Study 2021. Lancet 2023;402:203–234. doi:10.1016/S0140-6736(23)01301-6
  • Rubin R, Strayer DS, Rubin E. Rubin's pathology: clinicopathologic foundations of medicine. Philadelphia, PA, USA: Wolters Kluwer/Lippincott Williams & Wilkins; 2008.
  • Marcovecchio M, Mohn A, Chiarelli F. Type 2 diabetes mellitus in children and adolescents. J. Endocrinol. Invest. 2005;28:853–863. doi:10.1007/BF03347581
  • Kumar S, Mittal A, Mittal A. A review upon medicinal perspective and designing rationale of DPP-4 inhibitors. Bioorg. Med. Chem. 2021;46:116354. doi:10.1016/j.bmc.2021.116354
  • Sales PM, Souza PM, Simeoni LA et al. α-Amylase inhibitors: a review of raw material and isolated compounds from plant source. J. Pharm. Pharm. Sci. 2012;15:141–183. doi:10.18433/J35S3K
  • Dileep KV, Nithiyanandan K, Remya C. Binding of acarbose, an anti-diabetic drug to lysozyme: a combined structural and thermodynamic study. J. Biomol. Struct. Dyn. 2018;36:3354–3361. doi:10.1080/07391102.2017.1388283
  • van de Laar FA, Lucassen PL, Akkermans RP et al. α-Glucosidase inhibitors for patients with Type 2 diabetes. Diabetes Care 2005;28:154–163. doi:10.2337/diacare.28.1.154
  • Keri RS, Patil MR, Patil SA et al. A comprehensive review in current developments of benzothiazole-based molecules in medicinal chemistry. Eur. J. Med. Chem. 2015;89:207–251. doi:10.1016/j.ejmech.2014.10.059
  • Kaur I, Khajuria A, Ohri P et al. Benzothiazole based Schiff-base – a mechanistically discrete sensor for HSO4- and I-: application to bioimaging and vapour phase sensing of ethyl acetate. Sens. Actuators B Chem. 2018;268:29–38. doi:10.1016/j.snb.2018.04.072
  • Sharma AK, Sharma R, Gangwal A. Surface tension studies of ternary system: Cu (II) surfactants-2-amino-6-methyl benzothiazole complex plus methanol plus benzene at 311 K. Curr. Phys. Chem. 2018;8:151–161. doi:10.2174/1877946808666180914164134
  • Abd El-Meguid EA, Naglah AM, Moustafa GO et al. Novel benzothiazole-based dual VEGFR-2/EGFR inhibitors targeting breast and liver cancers: synthesis, cytotoxic activity, QSAR and molecular docking studies. Bioorg. Med. Chem. Lett. 2022;58:128529. doi:10.1016/j.bmcl.2022.128529
  • Chu P-L, Feng Y-M, Long Z-Q et al. Novel benzothiazole derivatives as potential anti-quorum sensing agents for managing plant bacterial diseases: synthesis, antibacterial activity assessment, and SAR study. J. Agric. Food Chem. 2023;71:6525–6540. doi:10.1021/acs.jafc.2c07810
  • Haroun M. Review on the developments of benzothiazole-containing antimicrobial agents. Curr. Top. Med. Chem. 2022;22:2630–2659. doi:10.2174/1568026623666221207161752
  • Srinivasa MG, Aggarwal NN, Gatpoh BFD et al. Identification of benzothiazole-rhodanine derivatives as α-amylase and α-glucosidase inhibitors: design, synthesis, in silico, and in vitro analysis. J. Mol. Recognit. 2022;35:e2959. doi:10.1002/jmr.2959
  • Xu S, Sun L, Dick A et al. Design, synthesis, and mechanistic investigations of phenylalanine derivatives containing a benzothiazole moiety as HIV-1 capsid inhibitors with improved metabolic stability. Eur. J. Med. Chem. 2022;227:113903. doi:10.1016/j.ejmech.2021.113903
  • Malik S, Miana GA, Ata A et al. Synthesis, characterization, in-silico, and pharmacological evaluation of new 2-amino-6-trifluoromethoxy benzothiazole derivatives. Bioorg. Chem. 2023;130:106175. doi:10.1016/j.bioorg.2022.106175
  • Yadav R, Meena D, Singh K et al. Recent advances in the synthesis of new benzothiazole based anti-tubercular compounds. RSC Adv. 2023;13:21890–21925. doi:10.1039/D3RA03862A
  • Gupta K, Sirbaiya AK, Kumar V et al. Current perspective of synthesis of medicinally relevant benzothiazole based molecules: potential for antimicrobial and anti-inflammatory activities. Mini Rev. Med. Chem. 2022;22:1895–1935. doi:10.2174/1389557522666220217101805
  • Sharma PC, Sinhmar A, Sharma A et al. Medicinal significance of benzothiazole scaffold: an insight view. J. Enzyme Inhib. Med. Chem. 2013;28:240–266. doi:10.3109/14756366.2012.720572
  • Liu X, Dong Z. A review on domino condensation/cyclization reactions for the synthesis of 2-substituted 1,3-benzothiazole derivatives. Eur. J. Org. Chem. 2020;2020:408–419. doi:10.1002/ejoc.201901502
  • Qadir T, Amin A, Salhotra A et al. Recent advances in the synthesis of benzothiazole and its derivatives. Curr. Org. Chem. 2022;26:189–214. doi:10.2174/1385272826666211229144446
  • Kumar V, Kaur K, Gupta GK et al. Pyrazole containing natural products: synthetic preview and biological significance. Eur. J. Med. Chem. 2013;69:735–753. doi:10.1016/j.ejmech.2013.08.053
  • Küçükgüzel ŞG, Şenkardeş S. Recent advances in bioactive pyrazoles. Eur. J. Med. Chem. 2015;97:786–815. doi:10.1016/j.ejmech.2014.11.059
  • Rao BM, Ramesh S, Bardalai D et al. Synthesis, characterization and evaluation of anti-epileptic activity of four new 2-pyrazoline derivatives compounds. Sch. J. App. Med. Sci. 2013;1:20–27. doi:10.36347/sjams.2013.v01i01.006
  • Ma Y, Yang L, Liu X et al. Development of celecoxib-derived antifungals for crop protection. Bioorg. Chem. 2020;97:103670. doi:10.1016/j.bioorg.2020.103670
  • Pettinari C, Tăbăcaru A, Galli S. Coordination polymers and metal–organic frameworks based on poly(pyrazole)-containing ligands. Coord. Chem. Rev. 2016;307:1–31. doi:10.1016/j.ccr.2015.08.005
  • Li M-M, Huang H, Pu Y et al. A close look into the biological and synthetic aspects of fused pyrazole derivatives. Eur. J. Med. Chem. 2022;243:114739. doi:10.1016/j.ejmech.2022.114739
  • Chalkha M, Akhazzane M, Moussaid FZ et al. Design, synthesis, characterization, in vitro screening, molecular docking, 3D-QSAR, and ADME-Tox investigations of novel pyrazole derivatives as antimicrobial agents. New J. Chem. 2022;46:2747–2760. doi:10.1039/D1NJ05621B
  • Turanlı S, Nalbat E, Lengerli D et al. Vicinal diaryl-substituted isoxazole and pyrazole derivatives with in vitro growth inhibitory and in vivo antitumor activity. ACS Omega 2022;7:36206–36226. doi:10.1021/acsomega.2c03405
  • Kumar R, Sharma R, Sharma DK. Pyrazole; a privileged scaffold of medicinal chemistry: a comprehensive review. Curr. Top. Med. Chem. 2023;23:2097–2115. doi:10.2174/1568026623666230714161726
  • Kumar S, Gupta S, Rani V et al. Pyrazole containing anti-HIV agents: an update. Med. Chem. 2022;18:831–846. doi:10.2174/1573406418666220106163846
  • Li G, Cheng Y, Han C, Song C, Huang N, Du Y. Pyrazole-containing pharmaceuticals: target, pharmacological activity, and their SAR studies. RSC Med. Chem. 2022;13:1300–1321. doi:10.1039/D2MD00206J
  • Mor S, Khatri M, Punia R et al. Recent progress in anticancer agents incorporating pyrazole scaffold. Mini Rev. Med. Chem. 2022;22:115–163. doi:10.2174/1389557521666210325115218
  • Khan I, Shareef MA, Kumar CG. An overview on the synthetic and medicinal perspectives of indenopyrazoles. Eur. J. Med. Chem. 2019;178:1–12. doi:10.1016/j.ejmech.2019.05.070
  • Hosseini Nasab N, Han Y, Hassan Shah F et al. Synthesis, biological evaluation, migratory inhibition and docking study of indenopyrazolones as potential anticancer agents. Chem. Biodivers. 2022;19:e202200399. doi:10.1002/cbdv.202200399
  • Mor S, Khatri M. Synthesis, antimicrobial evaluation, α-amylase inhibitory ability and molecular docking studies of 3-alkyl-1-(4-(aryl/heteroaryl)thiazol-2-yl)indeno[1,2-c]pyrazol-4(1H)-ones. J. Mol. Struct. 2022;1249:131526. doi:10.1016/j.molstruc.2021.131526
  • Cui Y-J, Liu C, Ma C-C et al. SAR investigation and discovery of water-soluble 1-methyl-1,4-dihydroindeno[1,2-c]pyrazoles as potent tubulin polymerization inhibitors. J. Med. Chem. 2020;63:14840–14866. doi:10.1021/acs.jmedchem.0c01345
  • Mykhailiuk PK. Fluorinated pyrazoles: from synthesis to applications. Chem. Rev. 2021;121:1670–1715. doi:10.1021/acs.chemrev.0c01015
  • Rostami H, Shiri L, Khani Z. Recent advances in the synthesis of pyrazole scaffolds via nanoparticles: a review. Tetrahedron 2022;110:132688. doi:10.1016/j.tet.2022.132688
  • Mor S, Khatri M, Punia R et al. A new insight into the synthesis and biological activities of pyrazole based derivatives. Mini Rev. Org. Chem. 2022;19:717–778. doi:10.2174/1570193X19666220118111614
  • Zhang L, Zhao J, Jiang Y et al. Synthesis of tetracyclic indenopyrazolopyrazolones through cascade reactions of aryl azomethine imines with propargyl alcohols. Org. Chem. Front. 2021;8:3734–3739. doi:https://doi.org/10.1039/D1QO00025J
  • Dhawan SN, Dasgupta S, Mor S et al. Orientational preferences in the synthesis of some indeno [2,1-c] quinolin-7(H)-ones. Indian J. Heterocycl. Chem. 1993;2:155–158.
  • Mor S, Sindhu S. Synthesis, Type II diabetes inhibitory activity, antimicrobial evaluation and docking studies of indeno[1,2-c]pyrazol-4(1H)-ones. Med. Chem. Res. 2020;29:46–62. doi:10.1007/s00044-019-02457-8
  • Wickramaratne MN, Punchihewa JC, Wickramaratne DBM. In-vitro alpha amylase inhibitory activity of the leaf extracts of Adenanthera pavonina. BMC Complement. Altern. Med. 2016;16:1–5. doi:10.1186/s12906-016-1452-y
  • Kim Y-M, Wang M-H, Rhee H-I. A novel α-glucosidase inhibitor from pine bark. Carbohydr. Res. 2004;339:715–717. doi:10.1016/j.carres.2003.11.005
  • Kaur R, Kumar R, Dogra N et al. Synthesis and studies of thiazolidinedione–isatin hybrids as α-glucosidase inhibitors for management of diabetes. Future Med. Chem. 2021;13:457–485. doi:10.4155/fmc-2020-0022
  • Rizvi SMD, Mudagal MP, Boregowda SS et al. The flavonoid hesperidin methyl chalcone as a potential therapeutic agent for cancer therapy: molecular docking, in vitro cytotoxicity, and in vivo antitumor activity. Arab. J. Chem. 2023;16:104769. doi:10.1016/j.arabjc.2023.104769
  • Van Der Spoel D, Lindahl E, Hess B et al. GROMACS: fast, flexible, and free. J. Comput. Chem. 2005;26:1701–1718. doi:10.1002/jcc.20291
  • Huang J, MacKerell AD. CHARMM36 all-atom additive protein force field: validation based on comparison to NMR data. J. Comput. Chem. 2013;34:2135–2145. doi:10.1002/jcc.23354
  • Brooks BR, Bruccoleri RE, Olafson BD et al. CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J. Comput. Chem. 1983;4:187–217. doi:10.1002/jcc.540040211
  • Mathew AT, Baidya ATK, Das B et al. N-glycosylation induced changes in tau protein dynamics reveal its role in tau misfolding and aggregation: a microsecond long molecular dynamics study. Proteins 2023;91:147–160. doi:https://doi.org/10.1002/prot.26417
  • Dolomanov OV, Bourhis LJ, Gildea RJ et al. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009;42:339–341. doi:10.1107/S0021889808042726
  • Sheldrick GM. Crystal structure refinement with SHELXL. Acta Crystallogr. C Struct. Chem. 2015;71:3–8. doi:10.1107/S2053229614024218
  • Sheldrick GM. A short history of SHELX. Acta Crystallogr. A 2008;64:112–122. doi:10.1107/S0108767307043930
  • Dhawan SN, Mor S, Sharma K et al. On the mechanism of formation of pyrazoles from 1, 3-diketones and hydrazines: isolation of hydroxypyrazoline intermediates. Indian J. Chem. Sect. B 1994;33:38–42.
  • Mor S, Khatri M, Punia R et al. Synthesis and in vitro anticancer evaluation of 8b-hydroxy-1-(6-substitutedbenzo[d]thiazol-2-yl)-3-(3-substitutedphenyl)-1,8b-dihydroindeno[1,2-c]pyrazol-4(3aH)-ones. J. Mol. Struct. 2022;1269:133858. doi:10.1016/j.molstruc.2022.133858
  • Gupta A, Sahu N, Singh AP et al. Exploration of novel lichen compounds as inhibitors of SARS-CoV-2 Mpro: ligand-based design, molecular dynamics, and ADMET analyses. Appl. Biochem. Biotechnol. 2022;194:6386–6406. doi:10.1007/s12010-022-04103-3

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.