36
Views
1
CrossRef citations to date
0
Altmetric
Review

The anticancer therapeutic potential of pyrimidine–sulfonamide hybrids

, , , & ORCID Icon
Pages 905-924 | Received 10 Jan 2024, Accepted 27 Mar 2024, Published online: 16 Apr 2024

References

  • Boutry J, Tissot S, Ujvari B et al. The evolution and ecology of benign tumors. BBA-Rev. Cancer 2022;1877(1):e188643. doi: 10.1016/j.bbcan.2021.188643.
  • Patel R, Kuwar U, Dhote N et al. Natural polymers as a carrier for the effective delivery of antineoplastic drugs. Curr. Drug Deliv. 2024;21(2):193–210. doi: 10.2174/1567201820666230112170035.
  • World Health Organization. Latest global cancer data: cancer burden rises to 19.3 million new cases and 10.0 million cancer deaths in 2020. www.iarc.who.int/fr/news-events/latest-global-cancer-data-cancer-burden-rises-to-19-3-million-new-cases-and-10-0-million-cancer-deaths-in-2020/
  • Sung H, Ferlay J, Siegel RL et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021;71(3):209–249. doi: 10.3322/caac.21660.
  • Anand U, Dey A, Chandel AKS et al. Cancer chemotherapy and beyond: current status, drug candidates, associated risks and progress in targeted therapeutics. Gen. Dis. 2023;10(4):1367–1401.
  • Aboud K, Meissner M, Ocen J et al. Cytotoxic chemotherapy: clinical aspects. Medicine (United Kingdom) 2023;51(1):23–27.
  • Hofmann WK, Trumpp A, Müller-Tidow C. Therapy resistance mechanisms in hematological malignancies. Int. J. Cancer 2023;152(3):340–347.
  • Zhang L, Ye B, Chen Z et al. Progress in the studies on the molecular mechanisms associated with multidrug resistance in cancers. Acta Pharm. Sin. B 2023;13(3):982–997.
  • Abdellatif KRA, Bakr RB. Pyrimidine and fused pyrimidine derivatives as promising protein kinase inhibitors for cancer treatment. Med. Chem. Res. 2021;30(1):31–49.
  • Jha KT, Shome A, Chahat A et al. Medicinal perspectives and structure–activity relationship studies of pyrimidine based Bruton's tyrosine kinase inhibitors as potential anticancer agents. Proc. Biochem. 2023;132:308–322.
  • Abbas N, Matada GSP, Dhiwar PS et al. Fused and substituted pyrimidine derivatives as profound anti-cancer agents. Anti-Cancer Agents Med. Chem. 2021;21(7):861–893.
  • Chen XB, Wang SQ, Wang S et al. FDA-approved pyrimidine-fused bicyclic heterocycles for cancer therapy: synthesis and clinical application. Eur. J. Med. Chem. 2021;214: e113218.
  • Scarim CB, Pavan FR. An overview of sulfonamide-based conjugates: recent advances for tuberculosis treatment. Drug Dev. Res. 2022;83(3):567–577.
  • Zafar W, Sumrra SH, Hassan AU et al. A review on ‘sulfonamides’: their chemistry and pharmacological potentials for designing therapeutic drugs in medical science. J. Coordin. Chem. 2023;76(5–6):546–580.
  • Moskalik MY. Sulfonamides with heterocyclic periphery as antiviral agents. Molecules 2023;28(1):e51.
  • Egbujor MC, Garrido J, Borges F et al. Sulfonamide a valid scaffold for antioxidant drug development. Mini-Rev. Org. Chem. 2023;20(2):190–209.
  • Ghosh S, Pal PP, Hajra A. N-Heteroarylation of sulfonamides: an overview. Adv. Syn. Catal. 2023;365(18):3020–3043.
  • Culletta G, Tutone M, Zappalà M et al. Sulfonamide moiety as “Molecular Chimera” in the design of new drugs. Curr. Med. Chem. 2023;30(2):128–163.
  • Wan Y, Fang G, Chen H et al. Sulfonamide derivatives as potential anti-cancer agents and their SARs elucidation. Eur. J. Med. Chem. 2021;226: e113837.
  • Hamed FM, Hassan BA, Abdulridha MM. The antitumor activity of sulfonamides derivatives: review. Int. J. Pharm. Res. 2020;12:2512–2519.
  • Singh AK, Kumar A, Singh H et al. Concept of hybrid drugs and recent advancements in anticancer hybrids. Pharmaceuticals 2022;15(9):e1071.
  • Szumilak M, Wiktorowska-Owczarek A, Stanczak A. Hybrid drugs-A strategy for overcoming anticancer drug resistance? Molecules 2021;26(9):e2601.
  • Ayati A, Moghimi S, Toolabi M et al. Pyrimidine-based EGFR TK inhibitors in targeted cancer therapy. Eur. J. Med. Chem. 2021;221:e113523.
  • Rakesh A, Wang SM, Leng J et al. Recent development of sulfonyl or sulfonamide hybrids as potential anticancer agents: a key review. Anti-Cancer Agents Med. Chem. 2018;18(4):488–505.
  • Wang L, Jiang J, Zhang L et al. Discovery and optimization of small molecules targeting the protein–protein interaction of heat shock protein 90 (Hsp90) and cell division cycle 37 (Cdc37) as orally active inhibitors for the treatment of colorectal cancer. J. Med. Chem. 2022;63(3):1281–1297.
  • Zhang Q, Wu X, Zhou J et al. Design, synthesis and bioevaluation of inhibitors targeting HSP90 CDC37 protein–protein interaction based on a hydrophobic core. Eur. J. Med. Chem. 2021;210:e112959.
  • Abdalla AN, Ahmed SA, Al-Qarni AAS et al. Bioactive fluorenes. Part IV: design, synthesis, and a combined in vitro, in silico anticancer and antibacterial evaluation of new fluorene-heterocyclic sulfonamide conjugates. J. Mol. Struct. 2021;1246:e131232.
  • Saleh NM, El-Gaby MSA, El-Adl K et al. Design, green synthesis, molecular docking and anticancer evaluations of diazepam bearing sulfonamide moieties as VEGFR-2 inhibitors. Bioorg. Chem. 2020;104:e104350.
  • Abdel-Mohsen HT, El Kerdawy AM, Omar MA et al. Application of the dual-tail approach for the design and synthesis of novel thiopyrimidine-benzenesulfonamide hybrids as selective carbonic anhydrase inhibitors. Eur. J. Med. Chem. 2022;228:e114004.
  • Abdel-Mohsen HT, Petreni A, Supuran CT. Investigation of the carbonic anhydrase inhibitory activity of benzenesulfonamides incorporating substituted fused-pyrimidine tails. Arch. Pharm. 2022;355(11):e2200274.
  • Samatiwat P, Tabtimmai L, Suphakun P et al. The effect of the EGFR-targeting compound 3-[(4-phenylpyrimidin-2-yl)amino]benzene-1-sulfonamide (13f) against cholangiocarcinoma cell lines. Asian Pac. J. Cancer Prev. 2021;22(2):381–390.
  • Al-Hujaj HH, Al-Masoudi NA, Faeza AKA et al. A click synthesis, molecular docking, cytotoxicity on breast cancer (MDA-MB-231) and anti-HIV activities of new 1,4-disubstituted-1,2,3-triazole thymine derivatives. Russ. J. Bioorg. Chem. 2020;46(3):360–370.
  • Chen L, Jian XE, Li Q et al. Design, synthesis and antiproliferative activity of novel 2,4-diamino-5-methyleneaminopyrimidine derivatives as potential anticancer agents. Bioorg. Med. Chem. Lett. 2021;47:e128213.
  • Cao L, Yao H, Yu L et al. Synthesis and evaluation of sulfonamide derivatives targeting EGFR790M/L858R mutations and ALK rearrangement as anticancer agents. Bioorg. Med.Chem. 2023;85:e117241. doi: 10.1016/j.bmc.2023.117241.
  • Zhou M, Liu Y, Wang S et al. A novel strategy to bind pyrimidine sulfonamide derivatives with odd even chains: exploration of their design, synthesis and biological activity evaluation. Mol. Diversity doi: 10.1007/s11030-023-10729-0 (2024) ( Epub ahead of print).
  • Mettu A, Talla V, Thumm S et al. Mechanistic investigations on substituted benzene sulphonamides as apoptosis inducing anticancer agents Bioorg. Chem. 2020;95:e103539. doi: 10.1016/j.bioorg.2019.103539.
  • Al-Masoudi NA, Jihad RS, Abdul-Rida NA et al. Synthesis, antiproliferative, antioxidant activities, in silico studies, DFT analysis and molecular dynamics simulation of novel 1-(4-chlorobenzhydryl) piperazine derivatives. J. Mol. Struct. 2024;1298:e137028. doi: 10.1016/j.molstruc.2023.137028.
  • Wang X, Lu Y, Sun D et al. Discovery of 4-methoxy-N-(1-naphthyl)benzenesulfonamide derivatives as small molecule dual-target inhibitors of tubulin and signal transducer and activator of transcription 3 (STAT3) based on ABT-751. Bioorg. Chem. 2022;125:e105864. doi: 10.1016/j.bioorg.2022.105864.
  • Zeng WB, Ji TY, Zhang YT et al. Design, synthesis, and biological evaluation of N-(pyridin-3-yl) pyrimidin-4-amine analogues as novel cyclin-dependent kinase 2 inhibitors for cancer therapy. Bioorg. Chem. 2024;143:e107019. doi: 10.1016/j.bioorg.2023.107019.
  • Zhao R, Fu L, Yuan Z et al. Discovery of a novel small-molecule inhibitor of Fam20C that induces apoptosis and inhibits migration in triple negative breast cancer. Eur. J. Med. Chem. 2021;210:e113088. doi: 10.1016/j.ejmech.2020.113088.
  • Tamizharasan N, Gajendran C, Kristam R et al. Discovery and optimization of novel phenyldiazepine and pyridodiazepine based aurora kinase inhibitors. Bioorg. Chem. 2020;99:e103800. doi: 10.1016/j.bioorg.2020.103800.
  • Abdel-Mohsen HT, El Kerdawy AM, Omar MA et al. Application of the dual-tail approach for the design and synthesis of novel thiopyrimidine-benzenesulfonamide hybrids as selective carbonic anhydrase inhibitors. Eur. J. Med. Chem. 2022;228:e114004. doi: 10.1016/j.ejmech.2021.114004.
  • Xi XX, Zhao HY, Mao YZ et al. Modification of osimertinib to discover new potent EGFRC797S-TK inhibitors. Eur. J. Med. Chem. 2023;261:e115865. doi: 10.1016/j.ejmech.2023.115865.
  • Liu Q, Luo Y, Li Z et al. Structural modifications on indole and pyrimidine rings of osimertinib lead to high selectivity towards L858R/T790M double mutant enzyme and potent antitumor activity. Bioorg. Med. Chem. 2021;36:e116094. doi: 10.1016/j.bmc.2021.116094.
  • Kumar JS, Reddy GS, Medishetti R et al. Ultrasound assisted one-pot synthesis of rosuvastatin based novel azaindole derivatives via coupling-cyclization strategy under Pd/Cu-catalysis: their evaluation as potential cytotoxic agents. Bioorg. Chem. 2022;124:e105857. doi: 10.1016/j.bioorg.2022.105857.
  • Cao M, Chen Y, Guo M et al. Pyrroformyl-containing 2,4-diaminopyrimidine derivatives as a new optimization strategy of ALK inhibitors combating mutations. Bioorg. Med. Chem. 2020;28(20):e115715. doi: 10.1016/j.bmc.2020.115715.
  • Dhumad AM, Jassem AM, Alharis RA et al. Design, cytotoxic effects on breast cancer cell line (MDA-MB 231), and molecular docking of some maleimide-benzenesulfonamide derivatives. J. Indian Chem. Soc. 2021;98(4):e100055 doi: 10.1016/j.jics.2021.100055.
  • Fanta BS, Mekonnen L, Basnet SKC et al. 2-Anilino-4-(1-methyl-1H-pyrazol-4-yl)pyrimidine-derived CDK2 inhibitors as anticancer agents: design, synthesis & evaluation. Bioorg. Med. Chem. 2023;80:e117158 doi: 10.1016/j.bmc.2023.117158.
  • Sayed AM, Taher FA, Abdel-Samad MRK et al. Design, synthesis, molecular docking, in silico ADMET profile and anticancer evaluations of sulfonamide endowed with hydrazone-coupled derivatives as VEGFR-2 inhibitors. Bioorg. Chem. 2021;108:e104669. doi: 10.1016/j.bioorg.2021.104669.
  • Alghamdi EM, Alamshany ZM, El-Hamd MA et al. Anticancer activities of tetrasubstituted imidazole-pyrimidine-sulfonamide hybrids as inhibitors of EGFR mutants. ChemMedChem 2023;18(8):e202200641. doi: 10.1002/cmdc.202200641.
  • Ali EMH, El-Telbany RFA, Abdel-Maksoud MS et al. Design, synthesis, biological evaluation, and docking studies of novel (imidazol-5-yl)pyrimidine-based derivatives as dual BRAFV600E/p38α inhibitors. Eur. J. Med. Chem. 2021;215:e113277. doi: 10.1016/j.ejmech.2021.113277.
  • Abdel-Maksoud MS, Mohamed AAB, Hassan RM et al. Design, synthesis and anticancer profile of new 4-(1H-benzo[d]imidazol-1-yl)pyrimidin-2-amine-linked sulfonamide derivatives with V600EBRAF inhibitory effect. Int. J. Mol. Sci. 2021;22(19):e10491. doi: 10.3390/ijms221910491.
  • Abdel-Maksoud MS, Ali EMH, Ammar UM et al. Structural optimization of imidazothiazole derivatives affords a new promising series as B-Raf V600E inhibitors; Synthesis, in vitro assay and in silico screening. Bioorg. Chem. 2020;100:e103967. doi: 10.1016/j.bioorg.2020.103967.
  • Saleh NM, El-Gaby MSA, El-Adl K et al. Design, green synthesis, molecular docking and anticancer evaluations of diazepam bearing sulfonamide moieties as VEGFR-2 inhibitors. Bioorg. Chem. 2020;104:e104350. doi: 10.1016/j.bioorg.2020.104350.
  • Dong G, Li YH, Guo JS et al. Discovery of novel thymidylate synthase (TS) inhibitors that influence cancer angiogenesis and metabolic reprogramming in NSCLC cells. Eur. J. Med. Chem. 2023;258:e115600. doi: 10.1016/j.ejmech.2023.115600.
  • Petreni A, Bonardi A, Lomelino C et al. Inclusion of a 5-fluorouracil moiety in nitrogenous bases derivatives as human carbonic anhydrase IX and XII inhibitors produced a targeted action against MDA-MB-231 and T47D breast cancer cells. Eur. J. Med. Chem. 2020;190:e112112. doi: 10.1016/j.ejmech.2020.112112.
  • Fatahala SS, Sayed AI, Mahgoub S et al. Synthesis of novel 2-thiouracil-5-sulfonamide derivatives as potent inducers of cell cycle arrest and CDK2α inhibition supported by molecular docking. Int. J. Mol. Sci. 2021;22(21):e11957. doi: 10.3390/ijms222111957.
  • Li XY, Wang DP, Lu GQ et al. Development of a novel thymidylate synthase (TS) inhibitor capable of up-regulating P53 expression and inhibiting angiogenesis in NSCLC. J. Adv. Res. 2020;26:95–110. doi: 10.1016/j.jare.2020.07.008.
  • Niu JB, Hua CQ, Liu Y et al. Discovery of N-aryl sulphonamide-quinazoline derivatives as anti-gastric cancer agents in vitro and in vivo via activating the Hippo signalling pathway. J. Enzy. Inhib. Med. Chem. 2021;36(1):1715–1731. doi: 10.1080/14756366.2021.1958211.
  • Amin NH, Elsaadi MT, Zaki SS et al. Design, synthesis and molecular modeling studies of 2-styrylquinazoline derivatives as EGFR inhibitors and apoptosis inducers. Bioorg. Chem. 2020;105:e104358. doi: 10.1016/j.bioorg.2020.104358.
  • Zhang B, Liu Z, Xia S et al. Design, synthesis and biological evaluation of sulfamoylphenyl quinazoline derivatives as potential EGFR/CAIX dual inhibitors. Eur. J. Med. Chem. 2021;216:e113300. doi: 10.1016/j.ejmech.2021.113300.
  • Al-Ashmawy AAK, Elokely KM, Perez-Leal O et al. Discovery and SAR of novel disubstituted quinazolines as dual PI3Kalpha/mTOR inhibitors targeting breast cancer. ACS Med. Chem. Lett. 2020;11(11):2156–2164. doi: 10.1021/acsmedchemlett.0c00289.
  • Abdel-Mohsen HT, Omar MA, Petreni A et al. Novel 2-substituted thioquinazoline-benzenesulfonamide derivatives as carbonic anhydrase inhibitors with potential anticancer activity. Arch. Pharm. 2022;355(12):e2200180. doi: 10.1002/ardp.202200180.
  • Alesawy MS, Ibrahim MK, Eissa IH et al. Design, synthesis, in silico ADMET, docking, and antiproliferative evaluations of [1,2,4]triazolo[4,3-c]quinazolines as classical DNA intercalators. Arch. Pharm. 2022;355:e2100412. doi: 10.1002/ardp.202100412.
  • Xia L, Jiang L, Du T et al. Design, synthesis, and biological evaluation of novel bivalent PI3K inhibitors for the potential treatment of cancer. Bioorg. Chem. 2023;140:e106814. doi: 10.1016/j.bioorg.2023.106814.
  • Ghorab MM, Soliman AM, Bua S et al. Biological evaluation, radiosensitizing activity and structural insights of novel halogenated quinazoline-sulfonamide conjugates as selective human carbonic anhydrases IX/XII inhibitors. Bioorg. Chem. 2021;107:e104618. doi: 10.1016/j.bioorg.2020.104618.
  • Belal A, Eissa IH, El-Gamal KMA et al. Design, synthesis, molecular modeling, in vivo studies and anticancer evaluation of quinazolin-4(3H)-one derivatives as potential VEGFR-2 inhibitors and apoptosis inducers. Bioorg. Chem. 2020;94:e103422. doi: 10.1016/j.bioorg.2019.103422.
  • Ghorab MM, Khalil A, Ramadan E et al. Induction of apoptosis, cytotoxicity and radiosensitization by novel 3,4-dihydroquinazolinone derivatives. Bioorg. Med. Chem. Lett. 2021;49:e128308. doi: 10.1016/j.bmcl.2021.128308.
  • Alqahtani AS, Ghorab MM, Nasr FA et al. Cytotoxicity of newly synthesized quinazoline-sulfonamide derivatives in human leukemia cell lines and their effect on hematopoiesis in zebrafish embryos. Int. J. Mol. Sci. 2022;23:e4720. doi: 10.3390/ijms23094720.
  • Ahmed MZ, Al-Mishari AA, Alqahtani AS et al. The antiproliferative and apoptotic effects of a novel quinazoline carrying substituted-sulfonamides: in vitro and molecular docking study. Molecules 2022;27(3):e981. doi: 10.3390/molecules27030981.
  • Eissa IH, Ibrahim MK, Metwaly AM et al. Design, molecular docking, in vitro, and in vivo studies of new quinazolin-4 (3H)-ones as VEGFR-2 inhibitors with potential activity against hepatocellular carcinoma. Bioorg. Chem. 2021;107:e104532. doi: 10.1016/j.bioorg.2020.104532.
  • Said MA, Eldehna WM, Nocentini A et al. Sulfonamide-based ring-fused analogues for CAN508 as novel carbonic anhydrase inhibitors endowed with antitumor activity: design, synthesis, and in vitro biological evaluation. Eur. J. Med. Chem. 2020;189:e112019. doi: 10.1016/j.ejmech.2019.112019.
  • Wang L, Sun Y, Wang J et al. Design, synthesis, and biological evaluation of a potent PLK4 inhibitor WY29 with 1H-pyrazolo[3,4-d]pyrimidine scaffold. Arch. Pharm. 2023;356(3):e2200490. doi: 10.1002/ardp.202200490.
  • Joshi D, Bahekar R, Soman S et al. Design, synthesis and biological evaluation of novel pyrazolo-pyrimidin-amines as potent and selective BTK inhibitors. Bioorg. Chem. 2023;130:e106238. doi: 10.1016/j.bioorg.2022.106238.
  • Shi X, Quan Y, Wang Y et al. Design, synthesis, and biological evaluation of 2,6,7-substituted pyrrolo[2,3-d]pyrimidines as cyclin dependent kinase inhibitor in pancreatic cancer cells. Bioorg. Med. Chem. Lett. 2021;33:e127725. doi: 10.1016/j.bmcl.2020.127725.
  • Yang B, Quan Y, Zhao W et al. Design, synthesis and biological evaluation of 2-((4-sulfamoylphenyl)amino)pyrrolo[2,3-d]pyrimidine derivatives as CDK inhibitors. J. Enzy. Inhib. Med. Chem. 2023;38(1):e2169282. doi: 10.1080/14756366.2023.2169282.
  • Khalil OM, Kamal AM, Bua S et al. Pyrrolo and pyrrolopyrimidine sulfonamides act as cytotoxic agents in hypoxia via inhibition of transmembrane carbonic anhydrases. Eur. J. Med. Chem. 2020;188:e112021. doi: 10.1016/j.ejmech.2019.112021.
  • Wang R, Zhao X, Yu S et al. Discovery of 7H-pyrrolo[2,3-d]pyridine derivatives as potent FAK inhibitors: design, synthesis, biological evaluation and molecular docking study. Bioorg. Chem. 2020;102:e104092. doi: 10.1016/j.bioorg.2020.10409.
  • Jeon J, Jang SY, Kwak EJ et al. Design and synthesis of 4th generation EGFR inhibitors against human triple (Del19/T790M/C797S) mutation. Eur. J. Med. Chem. 2023;261:e115840. doi: 10.1016/j.ejmech.2023.115840.
  • Li Q, Chen L, Ma YF et al. Development of pteridin-7(8H)-one analogues as highly potent cyclin-dependent kinase 4/6 inhibitors: synthesis, structure–activity relationship, and biological activity. Bioorg. Chem. 2021;116:e105324. doi: 10.1016/j.bioorg.2021.105324.
  • Liang H, Zhu Y, Zhao Z et al. Structure-based design of 2-aminopurine derivatives as CDK2 inhibitors for triple-negative breast cancer. Front. Pharmacol. 2022;13:e864342. doi: 10.3389/fphar.2022.864342.
  • Yu J, Chai X, Pang J et al. Discovery of novel non-nucleoside inhibitors with high potency and selectivity for DNA methyltransferase 3A. Eur. J. Med. Chem. 2022;242:e114646. doi: 10.1016/j.ejmech.2022.114646.
  • Elmongy EI, Binjubair FA, Alshehri OY et al. In silico screening and anticancer-apoptotic evaluation of newly synthesized thienopyrimidine/sulfonamide hybrids. Int. J. Mol. Sci. 2023;24(13):e10827. doi: 10.3390/ijms241310827.
  • Sun Y, Fu R, Lin S et al. Discovery of new thieno[2,3-d]pyrimidine and thiazolo[5,4-d]pyrimidine derivatives as orally active phosphoinositide 3-kinase inhibitors. Bioorg. Med. Chem. 2021;29:e115890. doi: 10.1016/j.bmc.2020.115890.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.