35
Views
0
CrossRef citations to date
0
Altmetric
Review

The contemplation of amylose for the delivery of ulcerogenic nonsteroidal anti-inflammatory drugs

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 791-809 | Received 08 Feb 2024, Accepted 08 Mar 2024, Published online: 04 Apr 2024

References

  • Agrahari V, Mitra AK. Therapeutic delivery. Ther. Deliv. 7(2), 117–138 (2016).
  • Lee B-S, Yoon CW, Osipov A et al. Nanoprodrugs of NSAIDs: preparation and characterization of flufenamic acid nanoprodrugs. J. Drug Deliv. 2011, 1–13 (2011).
  • Passi M, Shahid S, Chockalingam S, Sundar IK, Packirisamy G. Conventional and nanotechnology based approaches to combat chronic obstructive pulmonary disease: Implications for chronic airway diseases. Int. J. Nanomed. 15, 3803–3826 (2020).
  • Fatima R, Sharma M, Prasher P et al. Diversity of rationally modified polysaccharides for pharmaceutical applications. Chem. Select 8(20), Article e202300941 (2023).
  • Banks SR, Enck K, Wright M, Opara EC, Welker ME. Chemical modification of alginate for controlled oral drug delivery. J. Agric. Food Chem. 67(37), 10481–10488 (2019).
  • Li L, Lei D, Zhang J et al. Dual-responsive alginate hydrogel constructed by sulfhdryl dendrimer as an intelligent system for drug delivery. Molecules 27(1), 1–13 (2022).
  • Eltaweil AS, Ahmed MS, El-Subruiti GM, Khalifa RE, Omer AM. Efficient loading and delivery of ciprofloxacin by smart alginate/carboxylated graphene oxide/aminated chitosan composite microbeads: in vitro release and kinetic studies. Arab. J. Chem. 16(4), 104533 (2023).
  • Singh B, Sharma V, Mohan M, Rohit, Sharma P, Ram K. Design of ciprofloxacin impregnated dietary fiber psyllium-moringa gum-alginate network hydrogels via green approach for use in gastro-retentive drug delivery system. Bioact. Carbohydr. Diet. Fibre 29, 100345 (2023).
  • Long T, Tan W, Tian X et al. Gelatin/alginate-based microspheres with sphere-in-capsule structure for spatiotemporal manipulative drug release in gastrointestinal tract. Int. J. Biol. Macromol. 226, 485–495 (2023).
  • Ab'lah N, Yusuf CYL, Rojsitthisak P, Wong TW. Reinvention of starch for oral drug delivery system design. Int. J. Biol. Macromol. 241, 124506 (2023).
  • Prasher P, Fatima R, Sharma M. Therapeutic delivery with V-amylose. Drug Dev. Res. 82(6), 727–729 (2021).
  • Dadkhah Tehrani A, Parsamanesh M. Preparation, characterization and drug delivery study of a novel nanobiopolymeric multidrug delivery system. Mater. Sci. Eng. C. 73, 516–524 (2017).
  • Nouri A, Khoee S. Preparation of amylose-poly(methyl methacrylate) inclusion complex as a smart nanocarrier with switchable surface hydrophilicity. Carbohydr. Polym. 246(5), 116662 (2020).
  • Prasher P, Sharma M, Singh SP. Drug encapsulating polysaccharide-loaded metal nanoparticles: a perspective drug delivery system. Drug Dev. Res. 82(2), 145–148 (2021).
  • Masina N, Choonara YE, Kumar P et al. A review of the chemical modification techniques of starch. Carbohydr. Polym. 157, 1226–1236 (2017).
  • Mahmoudi Najafi SH, Baghaie M, Ashori A. Preparation and characterization of acetylated starch nanoparticles as drug carrier: ciprofloxacin as a model. Int. J. Biol. Macromol. 87, 48–54 (2016).
  • Zhou D, Liu S, Song H, Liu X, Tang X. Preparation and characterization of chemically modified high amylose maize starch-ascorbyl palmitate inclusion complexes in mild reaction condition. LWT 142, 110983 (2021).
  • Yu D, Xiao S, Tong C, Chen L, Liu X. Dialdehyde starch nanoparticles: preparation and application in drug carrier. Chinese Sci. Bull 52(21), 2913–2918 (2007).
  • Carlson TL, Lock JY, Carrier RL. Engineering the mucus barrier. Annu. Rev. Biomed. Eng. 20, 197–220 (2018).
  • Cone RA. Barrier properties of mucus. Adv. Drug Deliv. Rev. 61(2), 75–85 (2009).
  • Prasher P, Fatima R, Sharma M. Cationic polysaccharides: emerging drug delivery vehicle across the physiological mucus barrier. Future Med. Chem. 14(8), 531–533 (2022).
  • Nouri A, Jelkmann M, Khoee S, Bernkop-Schnürch A. Diaminated starch: a competitor of chitosan with highly mucoadhesive properties due to increased local cationic charge density. Biomacromolecules 21(2), 999–1008 (2020).
  • Jelkmann M, Leichner C, Menzel C, Kreb V, Bernkop-Schnürch A. Cationic starch derivatives as mucoadhesive and soluble excipients in drug delivery. Int. J. Pharm. 570(9), 118664 (2019).
  • Luo P, Liu L, Xu W, Fan L, Nie M. Preparation and characterization of aminated hyaluronic acid/oxidized hydroxyethyl cellulose hydrogel. Carbohydr. Polym. 199(2), 170–177 (2018).
  • Nadanaciva S, Aleo MD, Strock CJ, Stedman DB, Wang H, Will Y. Toxicity assessments of nonsteroidal anti-inflammatory drugs in isolated mitochondria, rat hepatocytes, and zebrafish show good concordance across chemical classes. Toxicol. Appl. Pharmacol. 272(2), 272–280 (2013).
  • Beck PL, Xavier R, Lu N et al. Mechanisms of NSAID-induced gastrointestinal injury defined using mutant mice. Gastroenterology 119(3), 699–705 (2000).
  • Prasher P, Sharma M. Medicinal chemistry of anthranilic acid derivatives: a mini review. Drug Dev. Res. 82(7), 945–958 (2021).
  • Whitehouse M. Drugs to treat inflammation: a historical overview. Front. Med. Chem. 4, 707–729 (2012).
  • Oktaviyanti IK, Thalib I, Suhartono E. The protective efficacy of quercetin on mefenamic acid-induced gastric mucosal damage. Int. J. Pharm. Clin. Res. 8(10), 1390–1395 (2016).
  • Rainsford K, Stetsko P. Gastrointestinal mucosal injury following repeated daily oral administration of conventional formulations of indometacin and other non-steroidal anti-inflammatory. J. Pharm. Pharmacol. 55(5), 661–668 (2003).
  • Lee W, Mun Y, Lee K-Y et al. Mefenamic acid-upregulated Nrf2/SQSTM1 protects hepatocytes against oxidative stress-induced cell damage. Toxics 11(9), 735 (2023).
  • Daniels MJD, Rivers-Auty J, Schilling T et al. Fenamate NSAIDs inhibit the NLRP3 inflammasome and protect against Alzheimer's disease in rodent models. Nat. Commun. 7, 24–30 (2016).
  • Khansari PS, Halliwell RF. Mechanisms underlying neuroprotection by the NSAID mefenamic acid in an experimental model of stroke. Front. Neurosci. 13(2), 1–10 (2019).
  • Chiou SK, Mandayam S. NSAIDs enhance proteasomic degradation of survivin, a mechanism of gastric epithelial cell injury and apoptosis. Biochem. Pharmacol. 74(10), 1485–1495 (2007).
  • Kim KM, Song JJ, An JY, Kwon YT, Lee YJ. Pretreatment of acetylsalicylic acid promotes tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis by down-regulating BCL-2 gene expression. J. Biol. Chem. 280(49), 41047–41056 (2005).
  • Redlak MJ, Power JJ, Miller TA. Role of mitochondria in aspirin-induced apoptosis in human gastric epithelial cells. Am. J. Physiol. – Gastrointest. Liver Physiol. 289(4), 731–738 (2005).
  • Pyrko P, Soriano N, Kardosh A et al. Downregulation of survivin expression and concomitant induction of apoptosis by celecoxib and its non-cyclooxygenase-2-inhibitory analog, dimethyl-celecoxib (DMC), in tumor cells in vitro and in vivo. Mol. Cancer 5, 1–16 (2006).
  • Mehihi AAR, Kubba AAR, Shihab WA, Tahtamouni LH. New tolfenamic acid derivatives with hydrazine-1-carbothioamide and 1,3,4-oxadiazole moieties targeting VEGFR: synthesis, in silico studies, and in vitro anticancer assessment. Med. Chem. Res. 32(11), 2334–2348 (2023).
  • Warner TD, Giuliano F, Vojnovic I, Bukasa A, Mitchell JA, Vane JR. Nonsteroid drug selectivities for cyclo-oxygenase-1 rather than cyclo-oxygenase-2 are associated with human gastrointestinal toxicity: a full in vitro analysis. Proc. Natl Acad. Sci. USA 96(13), 7563–7568 (1999).
  • Bjarnason I, Hayllar J, Macpherson AJ, Russell AS. Side effects of nonsteroidal anti-inflammatory drugs on the small and large intestine in humans. Gastroenterology 104(6), 1832–1847 (1993).
  • Kankaanranta H, Moilanen E. Flufenamic and tolfenamic acids inhibit calcium influx in human polymorphonuclear leukocytes. Mol. Pharmacol. 47(5), 1006–1013 (1995).
  • Paik JH, Ju JH, Lee JY, Boudreau MD, Hwang DH. Two opposing effects of non-steroidal anti-inflammatory drugs on the expression of the inducible cyclooxygenase: mediation through different signaling pathways. J. Biol. Chem. 275(36), 28173–28179 (2000).
  • Musumba C, Pritchard DM, Pirmohamed M. Review article: cellular and molecular mechanisms of NSAID-induced peptic ulcers. Aliment. Pharmacol. Ther. 30(6), 517–531 (2009).
  • Bindu S, Mazumder S, Bandyopadhyay U. Non-steroidal anti-inflammatory drugs (NSAIDs) and organ damage: a current perspective. Biochem. Pharmacol. 180, 114147 (2020).
  • Bjarnason I, Scarpignato C, Holmgren E, Olszewski M, Rainsford KD, Lanas A. Mechanisms of damage to the gastrointestinal tract from nonsteroidal anti-inflammatory drugs. Gastroenterology 154(3), 500–514 (2018).
  • Rondeau-Mouro C, Le Bail P, Buléon A. Structural investigation of amylose complexes with small ligands: Inter- or intra-helical associations? Int. J. Biol. Macromol. 34(5), 251–257 (2004).
  • Le Bail P, Rondeau C, Buléon A. Structural investigation of amylose complexes with small ligands: helical conformation, crystalline structure and thermostability. Int. J. Biol. Macromol. 35(1–2), 1–7 (2005).
  • Prasher P, Fatima R, Sharma M. Therapeutic delivery with V-amylose. Drug Dev. Res. 82(6), 727–729 (2021).
  • Ab'lah N, Yusuf CYL, Rojsitthisak P, Wong TW. Reinvention of starch for oral drug delivery system design. Int. J. Biol. Macromol. 241, 124506 (2023).
  • Tester RF, Karkalas J, Qi X. Starch – composition, fine structure and architecture. J. Cereal Sci. 39(2), 151–165 (2004).
  • Tan L, Kong L. Starch-guest inclusion complexes: formation, structure, and enzymatic digestion. Crit. Rev. Food Sci. Nutr. 60(5), 780–790 (2020).
  • Phuong Ta L, Bujna E, Kun S, Charalampopoulos D, Khutoryanskiy VV. Electrosprayed mucoadhesive alginate-chitosan microcapsules for gastrointestinal delivery of probiotics. Int. J. Pharm. 597(2), (2021).
  • Obiro WC, Sinha Ray S, Emmambux MN. V-amylose structural characteristics, methods of preparation, significance, and potential applications. Food Rev. Int. 28(4), 412–438 (2012).
  • Lamberts L, Gomand SV, Derycke V, Delcour JA. Presence of amylose crystallites in parboiled rice. J. Agric. Food Chem. 57(8), 3210–3216 (2009).
  • Karkalas J, Ma S, Morrison WR, Pethrick RA. Some factors determining the thermal properties of amylose inclusion complexes with fatty acids. Carbohydr. Res. 268(2), 233–247 (1995).
  • Kwaśniewska-Karolak I, Nebesny E, Rosicka-Kaczmarek J. Characterization of amylose-lipid complexes derived from different wheat varieties and their susceptibility to enzymatic hydrolysis. Food Sci. Technol. Int. 14(1), 29–37 (2008).
  • Nebesny E, Kwaśniewska-Karolak I, Rosicka-Kaczmarek J. Dependence of thermodynamic characteristics of amylose-lipid complex dissociation on a variety of wheat. Starch – Stärke 57(8), 378–383 (2005).
  • Godet MC, Bizot H, Buléon A. Crystallization of amylose-fatty acid complexes prepared with different amylose chain lengths. Carbohydr. Polym. 27(1), 47–52 (1995).
  • Gelders G, Vanderstukken T, Goesaert H, Delcour J. Amylose–lipid complexation: a new fractionation method. Carbohydr. Polym. 56(4), 447–458 (2004).
  • Derycke V, Vandeputte GE, Vermeylen R et al. Starch gelatinization and amylose-lipid interactions during rice parboiling investigated by temperature resolved wide angle x-ray scattering and differential scanning calorimetry. J. Cereal Sci. 42(3), 334–343 (2005).
  • Jovanovich G, Zamponi RA, Lupano CE, Anon MC. Effect of water content on the formation and dissociation of the amylose–lipid complex in wheat flour. J. Agric. Food Chem. 40(10), 1789–1793 (1992).
  • Tufvesson F, Eliasson A-C. Formation and crystallization of amylose–monoglyceride complex in a starch matrix. Carbohydr. Polym. 43(4), 359–365 (2000).
  • Heinemann C, Zinsli M, Renggli A, Escher F, Conde-Petit B. Influence of amylose-flavor complexation on build-up and breakdown of starch structures in aqueous food model systems. LWT – Food Sci. Technol. 38(8), 885–894 (2005).
  • Tufvesson F, Wahlgren M, Eliasson A. Formation of amylose-lipid complexes and effects of temperature treatment. Part 1. Monoglycerides. Starch – Stärke 55(2), 61–71 (2003).
  • Zabar S, Lesmes U, Katz I, Shimoni E, Bianco-Peled H. Studying different dimensions of amylose-long chain fatty acid complexes:molecular, nano and micro level characteristics. Food Hydrocoll. 23(7), 1918–1925 (2009).
  • TANG M, COPELAND L. Analysis of complexes between lipids and wheat starch. Carbohydr. Polym 67(1), 80–85 (2007).
  • Eliasson AC, Finstad H, Ljunger G. A Study of starch–lipid interactions for some native and modified maize starches. Starch – Stärke 40(3), 95–100 (1988).
  • Fanta G. Steam jet cooking of high-amylose starch-fatty acid mixtures. An investigation of complex formation. Carbohydr. Polym. 38(1), 1–6 (1999).
  • Biliaderis CG, Galloway G. Crystallization behavior of amylose-V complexes: structure–property relationships. Carbohydr. Res. 189(C), 31–48 (1989).
  • Biliaderis CG, Page CM, Maurice TJ. Non-equilibrium melting of amylose-V complexes. Carbohydr. Polym. 6(4), 269–288 (1986).
  • Zhang L, Cheng H, Zheng C et al. Structural and release properties of amylose inclusion complexes with ibuprofen. J. Drug Deliv. Sci. Technol. 31, 101–107 (2016).
  • Yang L, Zhang B, Yi J, Liang J, Liu Y, Zhang LM. Preparation, characterization, and properties of amylose-ibuprofen inclusion complexes. Starch/Staerke 65(7–8), 593–602 (2013).
  • Cai X, Yang L, Zhang LM, Wu Q. Evaluation of amylose used as a drug delivery carrier. Carbohydr. Res. 345(7), 922–928 (2010).
  • Cohen R, Orlova Y, Kovalev M, Ungar Y, Shimoni E. Structural and functional properties of amylose complexes with genistein. J. Agric. Food Chem. 56(11), 4212–4218 (2008).
  • Rezvani M, Mohammadnejad J, Narmani A, Bidaki K. Synthesis and in vitro study of modified chitosan-polycaprolactam nanocomplex as delivery system. Int. J. Biol. Macromol. 113, 1287–1293 (2018).
  • Marinopoulou A, Christofilos D, Arvanitidis J, Raphaelides SN. Interaction of tretinoin and nimesulide with amylose matrices. Starch/Staerke 73(1–2), 1–15 (2021).
  • Carbinatto FM, Ribeiro TS, Colnago LA, Evangelista RC, Cury BSF. Preparation and characterization of amylose inclusion complexes for drug delivery applications. J. Pharm. Sci. 105(1), 231–241 (2016).
  • Galati G, Tafazoli S, Sabzevari O, Chan TS, O'Brien PJ. Idiosyncratic NSAID drug induced oxidative stress. Chem. Biol. Interact. 142(1–2), 25–41 (2002).
  • Siew LF, Man SM, Newton JM, Basit AW. Amylose formulations for drug delivery to the colon: a comparison of two fermentation models to assess colonic targeting performance in vitro. Int. J. Pharm. 273(1–2), 129–134 (2004).
  • Milojevic S, Newton JM, Cummings JH et al. Amylose as a coating for drug delivery to the colon: preparation and in vitro evaluation using 5-aminosalicylic acid pellets. J. Control Release 38(1), 75–84 (1996).
  • Ganje M, Jafari SM, Tamadon AM, Niakosari M, Maghsoudlou Y. Mathematical and fuzzy modeling of limonene release from amylose nanostructures and evaluation of its release kinetics. Food Hydrocoll. 95(4), 186–194 (2019).
  • Fatima R, Sharma M, Prasher P. Targeted delivery of flufenamic acid by V-amylose. Ther. Deliv. 12(8), 575–582 (2021).
  • Prasher P, Fatima R, Sharma M. Resistant starch: ideal candidate for the enteric coating of NSAIDs? Future Med. Chem. 13(17), 1411–1414 (2021).
  • Varum F, Freire AC, Fadda HM, Bravo R, Basit AW. A dual pH and microbiota-triggered coating (Phloral™) for fail-safe colonic drug release. Int. J. Pharm. 583, 119379 (2020).
  • Varum F, Freire AC, Bravo R, Basit AW. OPTICORE™, an innovative and accurate colonic targeting technology. Int. J. Pharm. 583, 119372 (2020).
  • Guerra-Ponce WL, Gracia-Vásquez SL, González-Barranco P et al. In vitro evaluation of sustained released matrix tablets containing ibuprofen: a model poorly water-soluble drug. Brazilian J. Pharm. Sci. 52(4), 751–760 (2016).
  • De Brabander C, Vervaet C, Fiermans L, Remon JP. Matrix mini-tablets based on starch/microcrystalline wax mixtures. Int. J. Pharm. 199(2), 195–203 (2000).
  • Desai KG. Properties of tableted high-amylose corn starch–pectin blend microparticles intended for controlled delivery of diclofenac sodium. J. Biomater. Appl. 21(3), 217–233 (2007).
  • Fatima R, Sharma M, Dhiman A, Arora A, Mudila H, Prasher P. Targeted delivery of fenamates with aminated starch. Ther. Deliv. 14(3), 183–192 (2023).
  • Vangijzegem T, Stanicki D, Laurent S. Magnetic iron oxide nanoparticles for drug delivery: applications and characteristics. Expert Opin. Drug Deliv. 16(1), 69–78 (2019).
  • Dung TT, Danh TM, Hoa LTM, Chien DM, Duc NH. Structural and magnetic properties of starch-coated magnetite nanoparticles. J. Exp. Nanosci. 4(3), 259–267 (2009).
  • Aslam H, Shukrullah S, Naz MY et al. Current and future perspectives of multifunctional magnetic nanoparticles based controlled drug delivery systems. J. Drug Deliv. Sci. Technol. 67, 102946 (2022).
  • Munjeri O, Collett JH, Fell JT. Amidated pectin hydrogel beads for colonic drug delivery – an in vitro study. Drug Deliv. J. Deliv. Target. Ther. Agents 4(3), 207–211 (1997).
  • Okonogi S, Khongkhunthian S, Jaturasitha S. Development of mucoadhesive buccal films from rice for pharmaceutical delivery systems. Drug Discov. Ther. 8(6), 262–267 (2014).
  • Devi M, Sharma M. Statistical optimization of compression coated ketoprofen tablet using amylose/ethyl cellulose mixture for colonic delivery. J. Appl. Pharm. Res. 2348, 10–17 (2015).
  • Cai X, Yang L, Zhang L-M, Wu Q. Synthesis and anaerobic biodegradation of indomethacin-conjugated cellulose ethers used for colon-specific drug delivery. Bioresour. Technol. 100(18), 4164–4170 (2009).
  • Freire C, Podczeck F, Ferreira D, Veiga F, Sousa J, Pena A. Assessment of the in-vivo drug release from pellets film-coated with a dispersion of high amylose starch and ethylcellulose for potential colon delivery. J. Pharm. Pharmacol. 62(1), 55–61 (2010).
  • Le CAK, Ogawa Y, Dubreuil F et al. Crystal and molecular structure of V-amylose complexed with ibuprofen. Carbohydr. Polym. 261(12), Article 117885 (2021).
  • Benyerbah N, Ispas-Szabo P, Sakeer K, Chapdelaine D, Mateescu MA. Ampholytic and polyelectrolytic starch as matrices for controlled drug delivery. Pharmaceutics 11(6), Article 253 (2019).
  • Parra AP, Martínez Ramírez JA, Mora Huertas CE. Preparation and characterization of native starch-ibuprofen molecular inclusion complexes. J. Drug Deliv. Sci. Technol. 63(4), 102509 (2021).
  • Tuleu C, Basit AW, Waddington WA, Ell PJ, Newton JM. Colonic delivery of 4-aminosalicylic acid using amylose-ethylcellulose-coated hydroxypropylmethylcellulose capsules. Aliment. Pharmacol. Ther. 16(10), 1771–1779 (2002).
  • Soares GA, De Castro AD, Cury BSF, Evangelista RC. Blends of cross-linked high amylose starch/pectin loaded with diclofenac. Carbohydr. Polym. 91(1), 135–142 (2013).
  • Bisharat L, Barker SA, Narbad A, Craig DQM. In vitro drug release from acetylated high amylose starch-zein films for oral colon-specific drug delivery. Int. J. Pharm. 556, 311–319 (2019).
  • Meneguin AB, Ferreira Cury BS, dos Santos AM, Franco DF, Barud HS, da Silva Filho EC. Resistant starch/pectin free-standing films reinforced with nanocellulose intended for colonic methotrexate release. Carbohydr. Polym. 157, 1013–1023 (2017).
  • Kshirsagar SJ, Bhalekar MR, Shewale NS, Godbole VP, Jagdale PK, Mohapatra SK. Development of enzyme-controlled colonic drug delivery using amylose and hydroxypropyl methylcellulose: optimization by factorial design. Drug Deliv. 18(6), 385–393 (2011).
  • Baek HH, Kim DH, Kwon SY et al. Development of novel ibuprofen-loaded solid dispersion with enhanced bioavailability using cycloamylose. Arch. Pharm. Res. 35(4), 683–689 (2012).
  • Trenfield SJ, Awad A, McCoubrey LE et al. Advancing pharmacy and healthcare with virtual digital technologies. Adv. Drug Deliv. Rev. 182, 114098 (2022).
  • Styliari ID, Taresco V, Theophilus A, Alexander C, Garnett M, Laughton C. Nanoformulation-by-design: an experimental and molecular dynamics study for polymer coated drug nanoparticles. RSC Adv. 10(33), 19521–19533 (2020).
  • Salma H, Melha YM, Sonia L, Hamza H, Salim N. Efficient prediction of in vitro piroxicam release and diffusion from topical films based on biopolymers using deep learning models and generative adversarial networks. J. Pharm. Sci. 110(6), 2531–2543 (2021).
  • Yacoub AS, Ammar HO, Ibrahim M, Mansour SM, El Hoffy NM. Artificial intelligence-assisted development of in situ forming nanoparticles for arthritis therapy via intra-articular delivery. Drug Deliv. 29(1), 1423–1436 (2022).
  • McCoubrey LE, Favaron A, Awad A, Orlu M, Gaisford S, Basit AW. Colonic drug delivery: formulating the next generation of colon-targeted therapeutics. J. Control. Release 353, 1107–1126 (2023).
  • Yan C, Kim S-R. Microencapsulation for pharmaceutical applications: a review. ACS Appl. Bio. Mater. 7(2), 692–710 (2024).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.