539
Views
0
CrossRef citations to date
0
Altmetric
Review

Native Ms: An ‘Esi’ Way to Support Structure- and Fragment-Based Drug Discovery

, , , &
Pages 35-50 | Published online: 22 Dec 2009

Bibliography

  • Drews J . Drug discovery: a historical perspective.Science287(5460), 1960–1964 (2000).
  • Marriott JF , WilsonKA, LangleyCA, BelcherD. Pharmaceutical Compounding and Dispensing. Pharmaceutical Press, London, UK (2006).
  • Ganem B , LiYT, HenionJD. Detection of noncovalent receptor-ligand complexes by mass spectrometry.J. Am. Chem. Soc.113, 6294–6296 (1991).
  • Katta V , ChaitBT. Observation of the heme-globin complex in native myoglobin by electrospray-ionization mass spectrometry.J. Am. Chem. Soc.113, 8534–8535 (1991).
  • Loo JA . Studying noncovalent protein complexes by electrospray ionization mass spectrometry.Mass Spectrom. Rev.16(1), 1–23 (1997).
  • Schmidt A , BahrU, KarasM. Influence of pressure in the first pumping stage on analyte desolvation and fragmentation in nano-ESI MS.Anal. Chem.73, 6040–6046 (2001).
  • Tahallah N , PinkseM, MaierCS, HeckAJ. The effect of the source pressure on the abundance of ions of noncovalent protein assemblies in an electrospray ionization orthogonal time-of-flight instrument.Rapid Commun. Mass Spectrom.15, 596–601 (2001).
  • Chernushevich IV , ThomsonBA. Collisional cooling of large ions in electrospray mass spectrometry.Anal. Chem.76(6), 1754–1760 (2004).
  • Sanglier S , RamstromH, HaiechJ, LeizeE, DorsselaerAV. Electrospray ionization mass spectrometry analysis revealed a ∼310 kDa noncovalent hexamer of HPr kinase/phosphatase from Bacillus subtilis. Int. J. Mass Spectrom.219(3), 681–696 (2002).
  • Heck AJ . Native mass spectrometry: a bridge between interactomics and structural biology.Nat. Methods5(11), 927–933 (2008).
  • MacRae IJ , MaE, ZhouM, RobinsonCV, DoudnaJA. In vitro reconstitution of the human RISC-loading complex. Proc. Natl Acad. Sci. USA105(2), 512–517 (2008).
  • Sharon M , MaoH, Boeri Erba E, Stephens E, Zheng N, Robinson CV. Symmetrical modularity of the COP9 signalosome complex suggests its multifunctionality. Structure17(1), 31–40 (2009).
  • Taverner T , HernandezH, SharonMet al. Subunit architecture of intact protein complexes from mass spectrometry and homology modeling. Acc. Chem. Res. 41(5), 617–627 (2008).
  • Vaughan CK , GohlkeU, SobottFet al. Structure of an Hsp90–Cdc37–Cdk4 complex. Mol. Cell 23(5), 697–707 (2006).
  • Mirza UA , ChenG, LiuYHet al. Mass spectrometric studies of potent inhibitors of farnesyl protein transferase detection of pentameric noncovalent complexes. J. Mass Spectrom. 43(10), 1393–1401 (2008).
  • Rogniaux H , Van DorsselaerA, BarthPet al. Binding of aldose reductase inhibitors: correlation of crystallographic and mass spectrometric studies – a system for x-ray crystallography and NMR. J. Am. Soc. Mass Spectrom.10, 635–647 (1999).
  • Selevsek N , TholeyA, HeinzleEet al. Studies on ternary metallo-β lactamase-inhibitor complexes using electrospray ionization mass spectrometry. J. Am. Soc. Mass Spectrom. 17, 1000–1004 (2006).
  • Yu Y , SweeneyMD, SaadOM, LearyJA. Potential inhibitors of chemokine function. Analysis of noncovalent complexes of CC chemokine and small polyanionic molecules by ESI FT-ICR mass spectrometry.J. Am. Soc. Mass Spectrom.17(4), 524–535 (2006).
  • Akashi S . Investigation of molecular interaction within biological macromolecular complexes by mass spectrometry.Med. Res. Rev.26(3), 339–368 (2006).
  • Potier N , RogniauxH, ChevreuxG, Van Dorsselaer A. Ligand-metal ion binding to proteins: investigation by ESI mass spectrometry. Methods Enzymol.402, 361–389 (2005).
  • Schermann SM , SimmonsDA, KonermannL. Mass spectrometry-based approaches to protein-ligand interactions.Expert Rev. Proteomics2(4), 475–485 (2005).
  • Carte N , LegendreF, LeizeEet al. Determination by electrospray mass spectrometry of the outersphere association constants of DNA/platinum complexes using 20-mer oligonucleotides and ([Pt(NH3)4]2+, 2Cl-) or ([Pt(py)4]2+, 2Cl-). Anal. Biochem. 284(1), 77–86 (2000).
  • Barraud P , Golinelli-PimpaneauB, AtmaneneCet al. Crystal structure of Thermus thermophilus tRNA m1A58 methyltransferase and biophysical characterization of its interaction with tRNA. J. Mol. Biol. 377(2), 535–550 (2008).
  • Potier N , DonaldLJ, ChernushevichIet al. Study of a noncovalent trp repressor: DNA operator complex by electrospray ionization time-of-flight mass spectrometry. Protein Sci. 7(6), 1388–1395 (1998).
  • Turner KB , KohlwayAS, HaganNA, FabrisD. Noncovalent probes for the investigation of structure and dynamics of protein–nucleic acid assemblies: the case of NC-mediated dimerization of genomic RNA in HIV-1.Biopolymers91(4), 283–296 (2009).
  • Amato J , OlivieroG, De Pauw E, Gabelica V. Hybridization of short complementary PNAs to G-quadruplex forming oligonucleotides: an electrospray mass spectrometry study. Biopolymers91(4), 244–255 (2009).
  • Rosu F , GabelicaV, De Pauw E, Mailliet P, Mergny JL. Cooperative 2:1 binding of a bisphenothiazine to duplex DNA. ChemBioChem9(6), 849–852 (2008).
  • Xu Y , AfonsoC, WenR, Tabet J-C. Investigation of double-stranded DNA/drug interaction by ESI/FT ICR. orientation of dissociations relates to stabilizing salt bridges. J. Mass Spectrom.43(11), 1531–1544 (2008).
  • Kilic T , SanglierS, Van Dorsselaer A, Suck D. Oligomerization behavior of the archaeal Sm2-type protein from Archaeoglobus fulgidus. Protein Sci.15, 2310–2317 (2006).
  • Sanglier S , LeizeE, Van Dorsselaer A, Zal F. Comparative ESI-MS study of approximately 2.2 MDa native hemocyanins from deep-sea and shore crabs: from protein oligomeric state to biotope. J. Am. Soc. Mass Spectrom.14(5), 419–429 (2003).
  • Van den Heuvel RH , HeckAJ. Native protein mass spectrometry: from intact oligomers to functional machineries.Curr. Opin. Chem. Biol.8, 519–526 (2004).
  • Atmanene C , Wagner-RoussetE, MalissardMet al. Extending mass spectrometry contribution to therapeutic monoclonal antibody lead optimization: characterization of immune complexes using noncovalent ESI-MS. Anal. Chem. 81, 6364–6373 (2009).
  • Videler H , IlagLL, McKayAR, HansonCL, RobinsonCV. Mass spectrometry of intact ribosomes.FEBS Lett.579(4), 943–947 (2005).
  • Hernandez H , DziembowskiA, TavernerT, SeraphinB, RobinsonCV. Subunit architecture of multimeric complexes isolated directly from cells.EMBO Rep.7(6), 605–610 (2006).
  • Loo JA , BerhaneB, KaddisCSet al. Electrospray ionization mass spectrometry and ion mobility analysis of the 20S proteasome complex. J. Am. Soc. Mass Spectrom. 16(7), 998–1008 (2005).
  • Huth JR , ParkC, PetrosAMet al. Discovery and design of novel Hsp90 inhibitors using multiple fragment-based design strategies. Chem. Biol. Drug Des. 70(1), 1–12 (2007).
  • Morton VL , StockleyPG, StonehouseNJ, AshcroftAE. Insights into virus capsid assembly from non-covalent mass spectrometry.Mass Spectrom. Rev.27(6), 575–595 (2008).
  • Sharon M , RobinsonCV. The role of mass spectrometry in structure elucidation of dynamic protein complexes.Annu. Rev. Biochem.76, 167–193 (2007).
  • Uetrecht C , VersluisC, WattsNRet al. High-resolution mass spectrometry of viral assemblies: molecular composition and stability of dimorphic hepatitis B virus capsids. Proc. Natl Acad. Sci. USA 105(27), 9216–9220 (2008).
  • Sun N , SunJ, KitovaEN, KlassenJS. Identifying nonspecific ligand binding in electrospray ionization mass spectrometry using the reporter molecule method.J. Am. Soc. Mass Spectrom.20(7), 1242–1250 (2009).
  • Peschke M , VerkerkUH, KebarleP. Features of the ESI mechanism that affect the observation of multiply charged noncovalent protein complexes and the determination of the association constant by the titration method.J. Am. Soc. Mass Spectrom.15, 1424–1434 (2004).
  • Daniel JM , FriessSD, RajagopalanS, WendtS, ZenobiR. Quantitative determination of noncovalent binding interactions using soft ionization mass spectrometry.Int. J. Mass Spectrom.216, 1–27 (2002).
  • Bourguet W , AndryV, IltisCet al. Heterodimeric complex of RAR and RXR nuclear receptor ligand-binding domains: purification, crystallization, and preliminary x-ray diffraction analysis. Protein Expr. Purif. 19(2), 284–288 (2000).
  • de Urquiza AM , LiuS, SjobergMet al. Docosahexaenoic acid, a ligand for the retinoid X receptor in mouse brain. Science 290(5499), 2140–2144 (2000).
  • Elviri L , ZagnoniI, CareriM, CavazziniD, RossiGL. Non-covalent binding of endogenous ligands to recombinant cellular retinol-binding proteins studied by mass spectrometric techniques.Rapid Commun. Mass Spectrom.15(22), 2186–2192 (2001).
  • Potier N , BillasIML, SteinmetzAet al. Using nondenaturing mass spectrometry to detect fortuitous ligands in orphan nuclear receptors. Protein Sci. 12(4), 725–733 (2003).
  • Wisely GB , MillerAB, DavisRGet al. Hepatocyte nuclear factor 4 is a transcription factor that constitutively binds fatty acids. Structure 10(9), 1225–1234 (2002).
  • Ortlund EA , LeeY, SolomonIHet al. Modulation of human nuclear receptor LRH-1 activity by phospholipids and SHP. Nat. Struct. Mol. Biol. 12(4), 357–363 (2005).
  • Bitsch F , AichholzR, KallenJ, GeisseS, FournierB, SchlaeppiJM. Identification of natural ligands of retinoic acid receptor-related orphan receptor alpha ligand-binding domain expressed in Sf9 cells – a mass spectrometry approach.Anal. Biochem.323(1), 139–149 (2003).
  • Kallen JA , SchlaeppiJM, BitschFet al. x-ray structure of the hRORαlpha LBD at 1.63 A: structural and functional data that cholesterol or a cholesterol derivative is the natural ligand of RORα. Structure 10(12), 1697–1707 (2002).
  • Burendahl S , TreuterE, NilssonL. Molecular dynamics simulations of human LRH-1: the impact of ligand binding in a constitutively active nuclear receptor.Biochemistry47(18), 5205–5215 (2008).
  • Gu R , SuCC, ShiFet al. Crystal structure of the transcriptional regulator CmeR from Campylobacter jejuni. J. Mol. Biol. 372(3), 583–593 (2007).
  • McCammon MG , RobinsonCV. Structural change in response to ligand binding.Curr. Opin. Chem. Biol.8(1), 60–65 (2004).
  • Sanglier S , BourguetW, GermainPet al. Monitoring ligand-mediated nuclear receptor-coregulator interactions by noncovalent mass spectrometry. Eur. J. Biochem. 271, 4958–4967 (2004).
  • Bovet C , RuffM, EilerSet al. Monitoring ligand modulation of protein–protein interactions by mass spectrometry: estrogen receptor α-SRC1. Anal. Chem. 80(20), 7833–7839 (2008).
  • Ritschel T , AtmaneneC, ReuterK, Van Dorsselaer A, Sanglier-Cianferani S, Klebe G. An integrative approach combining noncovalent mass spectrometry, enzyme kinetics and x-ray crystallography to decipher Tgt protein-protein and protein-RNA interaction. J. Mol. Biol.393, 833–847 (2009).
  • Cheng X , ChenR, BruceJEet al. Using electrospray ionization FTICR mass spectrometry to study competitive binding of inhibitors to carbonic anhydrase. J. Am. Chem. Soc. 117(34), 8859–8860 (1995).
  • El-Kabbani O , BarthP, ChungRPT, FletcherEV, Van Dorsselaer A, Podjarny A. Aldose and aldehyde reductases: correlation of molecular modeling and mass spectrometric studies on the binding of inhibitors to the active site. Proteins41(3), 407–414 (2000).
  • Veros CT , OldhamNJ. Quantitative determination of lysozyme-ligand binding in the solution and gas phases by electrospray ionisation mass spectrometry.Rapid Commun. Mass Spectrom.21(21), 3505–3510 (2007).
  • Bovet C , WortmannA, EilerSet al. Estrogen receptor-ligand complexes measured by chip-based nanoelectrospray mass spectrometry: an approach for the screening of endocrine disruptors. Protein Sci. 16(5), 938–946 (2007).
  • Nesatyy VJ . Gas-phase binding of non-covalent protein complexes between bovine pancreatic trypsin inhibitor and its target enzymes studied by electrospray ionization tandem mass spectrometry.J. Mass Spectrom.36(8), 950–959 (2001).
  • Pan S , SunX, LeeJK. Stability of complementary and mismatched DNA duplexes: comparison and contrast in gas versus solution phases.Int. J. Mass Spectrom.253(3), 238–248 (2006).
  • Wu Q , GaoJ, Joseph-McCarthyDet al. Carbonic anhydrase-inhibitor binding: from solution to the gas phase. J. Am. Chem. Soc. 119(5), 1157–1158 (1997).
  • Kallen J , SchlaeppiJM, BitschF, DelhonI, FournierB. Crystal structure of the human RORα ligand binding domain in complex with cholesterol sulfate at 2.2 A.J. Biol. Chem.279(14), 14033–14038 (2004).
  • Stehlin-Gaon C , WillmannD, ZeyerDet al. All-trans retinoic acid is a ligand for the orphan nuclear receptor ROR b. Nat. Struct. Biol. 10(10), 820–825 (2003).
  • Seth PP , MiyajiA, JeffersonEAet al. SAR by MS. Discovery of a new class of RNA-binding small molecules for the hepatitis C virus: internal ribosome entry site IIA subdomain. J. Med. Chem. 48(23), 7099–7102 (2005).
  • Congreve M , ChessariG, TisiD, WoodheadAJ. Recent developments in fragment-based drug discovery.J. Med. Chem.51(13), 3661–3680 (2008).
  • Hajduk PJ , GreerJ. A decade of fragment-based drug design: strategic advances and lessons learned.Nat. Rev. Drug Discovery6(3), 211–219 (2007).
  • Hubbard RE . Fragment approaches in structure-based drug discovery.J. Synchrotron. Radiat.15(pt 3), 227–230 (2008).
  • Renaud J -P, Delsuc M-A. Biophysical techniques for ligand screening and drug design. Curr. Opin. Pharmacol.9, 1–7 (2009).
  • Nienaber VL , RichardsonPL, KlighoferV, BouskaJJ, GirandaVL, GreerJ. Discovering novel ligands for macromolecules using x-ray crystallographic screening.Nat. Biotechnol.18(10), 1105–1108 (2000).
  • Swayze EE , JeffersonEA, Sannes-LoweryKAet al. SAR by MS: a ligand based technique for drug lead discovery against structured RNA targets. J. Med. Chem. 45(18), 3816–3819 (2002).
  • Ockey DA , DotsonJL, StrubleMEet al. Structure–activity relationships by mass spectrometry: identification of novel MMP-3 inhibitors. Biorg. Med. Chem. 12(1), 37–44 (2004).
  • Poulsen SA . Direct screening of a dynamic combinatorial library using mass spectrometry.J. Am. Soc. Mass Spectrom.17(8), 1074–1080 (2006).
  • Hurtado-Lorenzo A , AnandVS. Heat shock protein 90 modulates LRRK2 stability. potential implications for Parkinson’s disease treatment.J. Neurosci.28(27), 6757–6759 (2008).
  • Wang L , XieC, GreggioEet al. The chaperone activity of heat shock protein 90 is critical for maintaining the stability of leucine-rich repeat kinase 2. J. Neurosci. 28(13), 3384–3391 (2008).
  • Mahalingam D , SwordsR, CarewJS, NawrockiST, BhallaK, GilesFJ. Targeting Hsp90 for cancer therapy.Br. J. Cancer100(10), 1523–1529 (2009).
  • Zhang S , Van Pelt CK, Wilson DB. Quantitative determination of noncovalent binding interactions using automated nanoelectrospray mass spectrometry. Anal. Chem.75(13), 3010–3018 (2003).
  • Keetch CA , HernandezH, SterlingA, BaumertM, AllenMH, RobinsonCV. Use of a microchip device coupled with mass spectrometry for ligand screening of a multi-protein target.Anal. Chem.75(18), 4937–4941 (2003).
  • Benkestock K , Van Pelt CK, Akerud T, Sterling A, Edlund PO, Roeraade J. Automated nano-electrospray mass spectrometry for protein-ligand screening by noncovalent interaction applied to human H-FABP and A-FABP. J. Biomol. Screen8(3), 247–256 (2003).
  • Hernandez H , RobinsonCV. Determining the stoichiometry and interactions of macromolecular assemblies from mass spectrometry.Nat. Protoc.2(3), 715–726 (2007).
  • Bothner B , SiuzdakG. Electrospray ionization of a whole virus: analyzing mass, structure, and viability.ChemBioChem5(3), 258–260 (2004).
  • Synowsky SA , van den Heuvel RH, Mohammed S, Pijnappel PW, Heck AJ. Probing genuine strong interactions and post-translational modifications in the heterogeneous yeast exosome protein complex. Mol. Cell Proteomics5(9), 1581–1592 (2006).
  • Synowsky SA , HeckAJ. The yeast Ski complex is a hetero-tetramer.Protein Sci.17(1), 119–125 (2008).
  • Lengqvist J , SvenssonR, EvergrenE, MorgensternR, GriffithsWJ. Observation of an intact noncovalent homotrimer of detergent-solubilized rat microsomal glutathione transferase-1 by electrospray mass spectrometry.J. Biol. Chem.279(14), 13311–13316 (2004).
  • Barrera NP , Di Bartolo N, Booth PJ, Robinson CV. Micelles protect membrane complexes from solution to vacuum. Science321(5886), 243–246 (2008).
  • Barrera NP , IsaacsonSC, ZhouMet al. Mass spectrometry of membrane transporters reveals subunit stoichiometry and interactions. Nat. Methods 6(8), 585–587 (2009).
  • Creaser CS , GriffithsJR, BramwellCJ, NoreenS, HillCA, ThomasCLP. Ion mobility spectrometry: a review. Part 1. Structural analysis by mobility measurement.Analyst129, 984–994 (2004).
  • Ruotolo BT , GilesK, CampuzanoI, SandercockAM, BatemanRH, RobinsonCV. Evidence for macromolecular protein rings in the absence of bulk water.Science310(5754), 1658–1661 (2005).
  • Pukala TL , RuotoloBT, ZhouMet al. Subunit architecture of multiprotein assemblies determined using restraints from gas-phase measurements. Structure 17(9), 1235–1243 (2009).
  • Alverdi V , MazonH, VersluisCet al. cGMP-binding prepares PKG for substrate binding by disclosing the C-terminal domain. J. Mol. Biol. 375(5), 1380–1393 (2008).
  • Ruotolo BT , BeneschJL, SandercockAM, HyungSJ, RobinsonCV. Ion mobility-mass spectrometry analysis of large protein complexes.Nat. Protoc.3(7), 1139–1152 (2008).
  • Hyung SJ , RobinsonCV, RuotoloBT. Gas-phase unfolding and disassembly reveals stability differences in ligand-bound multiprotein complexes.Chem. Biol.16(4), 382–390 (2009).
  • Hopper JT , OldhamNJ. Collision induced unfolding of protein ions in the gas phase studied by ion mobility-mass spectrometry. the effect of ligand binding on conformational stability.J. Am. Soc. Mass Spectrom.20(10), 1851–1858 (2009).
  • Schenauer MR , LearyJA. An ion mobility–mass spectrometry investigation of monocyte chemoattractant protein-1.Int. J. Mass Spectrom.287(1–3), 70–76 (2009).
  • Sanglier S , AtmaneneC, ChevreuxG, Van Dorsselaer A. Nondenaturing mass spectrometry to study noncovalent protein/protein and protein/ligand complexes: technical aspects and application to the determination of binding stoichiometries. Methods Mol. Biol.484, 217–243 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.