137
Views
0
CrossRef citations to date
0
Altmetric
Review

Bone-Seeking Probes for Optical and Magnetic Resonance Imaging

&
Pages 521-531 | Published online: 17 Mar 2010

Bibliography

  • Fleisch H . Bisphosphonates in Bone Disease. Academic Press, London, UK (2000).
  • Shea JE , MillerSC. Skeletal function and structure. implications for tissue-targeted therapeutics.Adv. Drug Deliv. Rev.57, 945–957 (2005).
  • Wang D , MillerSC, KopečkováP, KopečekJ. Bone-targeting macromolecular therapeutics.Adv. Drug Deliv. Rev.57, 1049–1076 (2005).
  • Zhang S , GangalG, UludagH. ‘Magic bullets’ for bone diseases. progress in rational design of boneseeking medicinal agents.Chem. Soc. Rev.36, 507–531 (2007).
  • Russell RGG . Bisphosphonates: mode of action and pharmacology.Pediatrics119, S150–S162 (2007).
  • Marczewski AW , JaroniecM. A new isotherm equation for single-solute adsorption from dilute solutions on energetically heterogeneous solids.Monatsh. Chem.114(6-7), 711–715 (1983).
  • Jaroniec M , DeryloA, MarczewskiAW. The Langmuir–Freundlich equation in adsorption from dilute solutions on solids.Monatsh. Chem.114(4), 393–397 (1983).
  • Mukherjee S , SongY, OldfieldE. NMR investigations of the static and dynamic structures of bisphosphonates on human bone: a molecular model.J. Am. Chem. Soc.130(4), 1264–1273 (2008).
  • Kubíček V , RudovskýJ, KotekJet al. A bisphosphonate monoamide analogue of DOTA. a potential agent for bone targeting. J. Am. Chem. Soc. 127, 16477–16485 (2005).
  • Vitha T , KubíčekV, HermannPet al. Lanthanide(III) complexes of bis(Phosphonate) monoamide analogues of DOTA. bone-seeking agents for imaging and therapy. J. Med. Chem. 51, 677–683 (2008).
  • Vitha T , KubíčekV, KotekJet al. A Gd(III) complex of a monophosphinate-bis(Phosphonate) DOTA analogue with a high 1H NMR relaxivity; lanthanide(III) complexes for imaging and radiotherapy of calcified tissues. Dalton Trans. 3201–3214 (2009).
  • Vitha T , KubíčekV, HermannPet al. Complexes of DOTA-bisphosphonate conjugates. probes for determination of adsorption capacity and affinity constants of hydroxyapatite. Langmuir 24, 1952–1958 (2008).
  • Rill C h, Kolar ZI, Kickelbick G, Wolterbeek HTH, Peters JA. Kinetics and thermodynamics of adsorption on hydroxyapatite of the [160Tb]terbium complexes of the bone-targeting ligands DOTP and BPPED. Langmuir25(4), 2294–2301 (2009).
  • The Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging . MerbachAE, TóthÉ, (Eds). Wiley, Chichester, UK (2001).
  • Friebolin H . Basic One- and Two-Dimensional NMR Spectroscopy. VCH, Germany (2005).
  • Aime S , BottaM, TerrenoE. Gd(III)-based contrast agents for MRI.Adv. Inorg. Chem.57, 173-237 (2005).
  • Hermann P , KotekJ, KubíčekV, LukešI. Gadolinium(III) complexes as MRI contrast agents. ligand design and properties of the complexes.Dalton Trans.3027–3047 (2008).
  • Kubíček V , Tóth É. Design and function of metal complexes as contrast agents in MRI. Adv. Inorg. Chem.61, 63–129 (2009).
  • Aime S , CabellaC, ColombattoS, CrichSG, GianolioE, MaggioniF. Insights into the use of paramagnetic Gd(III) complexes in MR-molecular imaging investigations.J. Magn. Reson. Imaging16, 394–406 (2002).
  • Langereis S , DirksenA, HackengTM, van Genderen MHP, Meijer EW. Dendrimers and magnetic resonance imaging. New J. Chem.31, 1152–1160 (2007).
  • Konda SD , ArefM, WangS, BrechbielM, WienerEC. Specific targeting of folate–dendrimer MRI contrast agents to the high affinity folate receptor expressed in ovarian tumor xenografts.Magn. Reson. Mater. Phys. Biol. Med.12, 104–113 (2001).
  • Wehrli FW , SongHK, SahaPK, WrightAC. Quantitative MRI for the assessment of bone structure and function.NMR Biomed.19, 731–764 (2006).
  • Biswal S , ResnickDL, HoffmanJM, GambhirSS. Molecular imaging: integration of molecular imaging into the musculoskeletal imaging practice.Radiology244(3), 651–671 (2007).
  • Lang P , HondaG, RobertsTet al. Musculoskeletal neoplasm: perineoplastic edema versus tumor on dynamic postcontrast MR images with spatial mapping of instantaneous enhancement rates. Radiology 197, 831–839 (1995).
  • Dangman BC , HofferFA, RandFF, O‘RourkeEJ. Osteomyelitis in children: gadolinium-enhanced MR imaging.Radiology182, 743–747 (1992).
  • Gylys-Morin VM , GrahamTB, BlebeaJSet al. Knee in early juvenile rheumatoid arthritis: MR imaging findings. Radiology 220, 696–706 (2001).
  • Bonnerot V , SebagG, de Montalembert M et al. Gadolinium-DOTA enhanced MRI of painful osseous crises in children with sickle cell anemia. Pediatr. Radiol.24, 92–95 (1994).
  • Bligh SWA , Harding ChT, McEwen AB, Adler PJ. Synthesis, characterisation and comparative study of aminophosphonate chelates of gadolinium(III) ions as magnetic resonance imaging contrast agents. Polyhedron13(12), 1937–1943 (1994).
  • Alves CF , DonatoP, SherryADet al. Silencing of phosphonate-gadolinium magnetic resonance imaging contrast by hydroxyapatite binding. Invest. Radiol. 38(12), 750–760 (2003).
  • Adzamli K , BlauM. Phosphonate-modified GdDTPA complexes. I. NMRD study of the solution behavior of new tissue-specific contrast agents.Magnet. Reson. Med.17(1), 141–148 (1991).
  • Adzamli K , BlauM, PfefferMA, DavisMA. Phosphonate-modified Gd-DTPA complexes. III: the detection of myocardial infarction by MRI.Magnet. Reson. Med.29(4), 505–511 (1993).
  • Adzamli K , JohnsonD, BlauM. Phosphonate-modified GdDTPA complexes. II. Evaluation in a rat myocardial infarction model.Invest. Radiol.26(2), 143–148 (1991).
  • Adzamli K , GriesH, JohnsonD, BlauM. Development of phosphonate derivatives of gadolinium chelates for NMR imaging of calcified soft tissues.J. Med. Chem.32, 139–144 (1989).
  • Shu C h-Y, Wang Ch-R, Zhang J-F et al. Organophosphonate functionalized Gd@C82 as a magnetic resonance imaging contrast agent. Chem. Mater.20, 2106–2109 (2008).
  • Miller SC , WangD, KopečkováP, KopečekJ. Biopolymer-based delivery systems for advanced imaging and skeletal tissue-specific therapeutics.J. Bone Miner. Metab.23(Suppl.), 103–108 (2005).
  • Mayer-Kuckuk P , GadeTPF, BuchananIMet al. High-resolution imaging of bone precursor cells within the intact bone marrow cavity of living mice. Mol. Ther. 12(1), 33–41 (2005).
  • Chesnick IE , TodorovTI, CentenoJA, NewburyDE, SmallJA, PotterK. Manganese-enhanced magnetic resonance microscopy of mineralization.Magn. Reson. Imaging25, 1095–1104 (2007).
  • Laurent S , Vander Elst L, Copoix F, Muller RN. Stability of MRI paramagnetic contrast media: a proton relaxometric protocol for transmetallation assessment. Invest. Radiol.36(2), 115–122 (2001).
  • Frangioni JV . In vivo near-infrared fluorescence imaging. Curr. Opin. Chem. Biol.7, 626–634 (2003).
  • Rao J , Dragulescu-AndrasiA, YaoH. Fluorescence imaging in vivo: recent advances. Curr. Opin. Biotech.18, 17–25 (2007).
  • Mitose K , KojimaH, NaganoT. Functional near-infrared fluorescent probes.Chem. Asian J.3, 506–515 (2008).
  • Michalet X , PinaudFF, BentolilaLAet al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307, 538–544 (2005).
  • Thibon A , PierreVC. Principles of responsive lanthanide-based luminescent probes for cellular imaging.Anal. Bioanal. Chem.394, 107–120 (2009).
  • Hale LV , MaYF, SanterreRF. Semi-quantitative fluorescence analysis of calcein binding as a measurement of in vitro mineralization. Calcif. Tissue Int.67, 80–84 (2000).
  • Zaheer A , LenkinskiRE, MahmoodA, JonesAG, CantleyLC, FrangioniJV. In vivo near-infrared fluorescence imaging of osteoblastic activity. Nat. Biotechnol.19(12), 1148–1154 (2001).
  • Lenkinski RE , AhmedM, ZaheerA, FrangioniJV, GoldbergSN. Near-infrared fluorescence imaging of microcalcification in an animal model of breast cancer.Acad. Radiol.10(10), 1159–1164 (2003).
  • Zaheer A , MurshedM, De Grand AM, Morgan TG, Karsenty G, Frangioni JV. Optical imaging of hydroxyapatite in the calcified vasculature of transgenic animals. Arterioscler. Thromb. Vasc. Biol.26, 1132–1136 (2006).
  • Bhushan KR , TanakaE, FrangioniJV. Synthesis of conjugatable bisphosphonates for molecular imaging of large animals.Angew. Chem. Int. Ed.46, 7969–7971 (2007).
  • Bhushan KR , MisraP, LiuF, MathurS, LenkinskiRE, FrangioniJV. Detection of breast cancer microcalcifications using a dual-modality SPECT/NIR fluorescent probe.J. Am. Chem. Soc.130(52), 17648–17649 (2008).
  • Kashemirov BA , BalaJLF, ChenXet al. Fluorescently labeled risedronate and related analogues: ‘magic linker’ synthesis. Bioconjugate Chem. 19(12), 2308–2310 (2008).
  • Maalouf MA , WiemerAJ, KuderCH, HohlRJ, WiemerDF. Synthesis of fluorescently tagged isoprenoid bisphosphonates that inhibit protein geranylgeranylation.Bioorg. Med. Chem.15, 1959–1966 (2007).
  • Kozloff KM , WeisslederR, MahmoodU. Noninvasive optical detection of bone mineral.J. Bone Miner. Res.22(8), 1208–1216 (2007).
  • Aikawa E , NahrendorfM, Figueiredo J-L et al. Osteogenesis associates with inflammation in early-stage atherosclerosis evaluated by molecular imaging in vivo. Circulation116, 2841–2850 (2007).
  • Zilberman Y , KallaiI, GafniYet al. Fluorescence molecular tomography enables in vivo visualization and quantification of nonunion fracture repair induced by genetically engineered mesenchymal stem cells. J. Orthop. Res. 26, 522–530 (2008).
  • Kozloff KM , QuintiL, PatntirapongSet al. Non-invasive optical detection of cathepsin K-mediated fluorescence reveals osteoclast activity in vitro and in vivo. Bone 44, 190–198 (2009).
  • White GW , GibbyWA, TweedleMF. Comparison of Gd(DTPA-BMA) (Omniscan) versus Gd(HP-DO3A) (ProHance) relative to gadolinium retention in human bone tissue by inductively coupled plasma mass spectroscopy.Invest. Radiol.41(3), 272–278 (2006).
  • De Leon-Rodriguez LM , LubagAJM, MalloyCR, MartinezGV, GilliesRJ, SherryAD. Responsive MRI agents for sensing metabolism in vivo. Acc. Chem. Res.42(7), 948–957 (2009).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.