182
Views
0
CrossRef citations to date
0
Altmetric
Review

Molecular Imaging of In Vivo Gene Expression

&
Pages 503-519 | Published online: 17 Mar 2010

Bibliography

  • Collins FS , MckusickVA. Implications of the human genome project for medical science.JAMA285(5), 540–544 (2001).
  • Piwnica-Worms DR . Introduction to molecular imaging.J. Am. Coll. Radiol.1(1 Suppl. 1), 2–3 (2004).
  • Meade TJ . Seeing is believing.Acad. Radiol.8(1), 1–3 (2001).
  • Cho S -M, Ha HK, Byun JY et al. Usefulness of FDG PET for assessment of early recurrent epithelial ovarian cancer. Am. J. Roentgenol.179(2), 391–395 (2002).
  • Beer AJ , GrosuAL, CarlsenJet al. [18F]Galacto-RGD positron emission tomography for imaging of αvβ3 expression on the neovasculature in patients with squamous cell carcinoma of the head and neck. Clin. Cancer Res. 13(22 Pt 1), 6610–6616 (2007).
  • Wong FC , KimEE. A review of molecular imaging studies reaching the clinical stage.Eur. J. Radiol.70(2), 205–211 (2009).
  • Linden HM , StekhovaSA, LinkJMet al. Quantitative fluoroestradiol: positron emission tomography imaging predicts response to endocrine treatment in breast cancer. J. Clin. Oncol. 24(18), 2793–2799 (2006).
  • Beer AJ , LorenzenS, MetzSet al. Comparison of integrin αvβ3 expression and glucose metabolism in primary and metastatic lesions in cancer patients: a PET study using 18F-galacto-RGD and 18F-FDG. J. Nucl. Med. 49(1), 22–29 (2008).
  • Weissleder R , MahmoodU. Molecular imaging.Radiology219(2), 316–333 (2001).
  • Weissleder R . Scaling down imaging: molecular mapping of cancer in mice.Nat. Rev. Cancer2(1), 11–18 (2002).
  • Tsien RY . Imagining imaging’s future.Nat. Rev. Mol. Cell Biol. (Suppl.), SS16–SS21 (2003).
  • Ntziachristos V , BremerC, GravesEE, RipollJ, WeisslederR. In vivo tomographic imaging of near-infrared fluorescent probes. Mol. Imaging1(2), 82–88 (2002).
  • Ripoll J , Nieto-VesperinasM, WeisslederR, NtziachristosV. Fast analytical approximation for arbitrary geometries in diffuse optical tomography.Opt. Lett.27(7), 527–529 (2002).
  • Nowotschin S , EakinGS, HadjantonakisAK. Live-imaging fluorescent proteins in mouse embryos: multi-dimensional, multi-spectral perspectives.Trends Biotechnol.27(5), 266–276 (2009).
  • Quaresima V , MatcherSJ, FerrariM. Identification and quantification of intrinsic optical contrast for near-infrared mammography.Photochem. Photobiol.67(1), 4–14 (1998).
  • Kahraman S , DiriceE, SanliogluADet al. In vivo fluorescence imaging is well-suited for the monitoring of adenovirus directed transgene expression in living organisms. Mol. Imaging Biol. (2009) (Epub ahead of print).
  • Oshiro M , MoomawB. Cooled vs. intensified vs. electron bombardment CCD cameras – applications and relative advantages. In: Methods in Cell Biology (Volume 72). Academic Press, NY, USA, 133–156 (2003).
  • Ntziachristos V , BremerC, WeisslederR. Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging. Eur. Radiol.13(1), 195–208 (2003).
  • Montet X , NtziachristosV, GrimmJ, WeisslederR. Tomographic fluorescence mapping of tumor targets.Cancer Res.65(14), 6330–6336 (2005).
  • Graves EE , RipollJ, WeisslederR, NtziachristosV. A submillimeter resolution fluorescence molecular imaging system for small animal imaging.Med. Phys.30(5), 901–911 (2003).
  • Ntziachristos V , Tung Ch, Bremer C, Weissleder R. Fluorescence molecular tomography resolves protease activity in vivo.Nat. Med.8(7), 757–760 (2002).
  • Ntziachristos V , YodhAG, SchnallM, ChanceB. Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement.Proc. Natl Acad. Sci. USA97(6), 2767–2772 (2000).
  • Taroni P , PifferiA, TorricelliA, ComelliD, CubedduR. In vivo absorption and scattering spectroscopy of biological tissues. Photochem. Photobiol. Sci.2(2), 124–129 (2003).
  • Schick F . Whole-body MRI at high field: technical limits and clinical potential.Eur. Radiol.15(5), 946–959 (2005).
  • Tyszka JM , FraserSE, JacobsRE. Magnetic resonance microscopy: recent advances and applications.Curr. Opin. Biotechnol.16(1), 93–99 (2005).
  • Smirnov P , Poirier-QuinotM, WilhelmCet al. In vivo single cell detection of tumor-infiltrating lymphocytes with a clinical 1.5 Tesla MRI system. Magn. Res. Med.60(6), 1292–1297 (2008).
  • Sigurdsson EM , WadghiriYZ, MosconiLet al. A non-toxic ligand for voxel-based MRI analysis of plaques in AD transgenic mice. Neurobiol. Aging 29(6), 836–847 (2008).
  • Lee S -C, Mietchen D, Cho J-H et al.In vivo magnetic resonance microscopy of differentiation in Xenopus laevis embryos from the first cleavage onwards. Differentiation75(1), 84–92 (2007).
  • Glover P , MansfieldSP. Limits to magnetic resonance microscopy.Reports Progr. Phys.65, 1489–1511 (2002).
  • Jacoby C , BöringYC, BeckAet al. Dynamic changes in murine vessel geometry assessed by high-resolution magnetic resonance angiography: a 9.4T study. J. Magn. Res. Imaging 28(3), 637–645 (2008).
  • Modo M , MellodewK, CashDet al. Mapping transplanted stem cell migration after a stroke: a serial, in vivo magnetic resonance imaging study. NeuroImage 21(1), 311–317 (2004).
  • Louie AY , HuberMM, AhrensETet al. In vivo visualization of gene expression using magnetic resonance imaging. Nat. Biotech.18(3), 321–325 (2000).
  • Belayev L , ObenausA, ZhaoWet al. Experimental intracerebral hematoma in the rat: characterization by sequential magnetic resonance imaging, behavior, and histopathology. Effect of albumin therapy. Brain Res. 1157, 146–155 (2007).
  • Cherry SR . In vivo molecular and genomic imaging: new challenges for imaging physics. Phys. Med. Biol.49(3), R13–R48 (2004).
  • Dodd SJ , WilliamsM, SuhanJP, WilliamsDS, KoretskyAP, HoC. Detection of single mammalian cells by high-resolution magnetic resonance imaging.Biophys. J.76(1), 103–109 (1999).
  • Caravan P , EllisonJJ, McmurryTJ, LaufferRB. Gadolinium(III) chelates as MRI contrast agents: structure, dynamics, and applications.Chem. Rev.99(9), 2293–2352 (1999).
  • Caravan P , FarrarCT, FrullanoL, UppalR. Influence of molecular parameters and increasing magnetic field strength on relaxivity of gadolinium- and manganese-based T1 contrast agents. Contrast Media Mol. Imaging4(2), 89–100 (2009).
  • Mahmood U , WeisslederR. Near-infrared optical imaging of proteases in cancer.Mol. Cancer Ther.2(5), 489–496 (2003).
  • Kang JH , Chung J-K. Molecular-genetic imaging based on reporter gene expression. J. Nucl. Med.49(Suppl. 2), 164S–179S (2008).
  • Song Y , KohlmeirEK Meade TJ. Synthesis of multimeric MR contrast agents for cellular imaging. J. Am. Chem. Soc.130(21), 6662–6663 (2008).
  • de Sousa PL , LivramentoJB, HelmLet al. In vivo MRI assessment of a novel Gd(III)-based contrast agent designed for high magnetic field applications. Contrast Media Mol. Imaging3(2), 78–85 (2008).
  • Caravan P , CloutierNJ, GreenfieldMTet al. The interaction of MS-325 with human serum albumin and its effect on proton relaxation rates. J. Am. Chem. Soc. 124(12), 3152–3162 (2002).
  • Gross S , Piwnica-WormsD. Spying on cancer: molecular imaging in vivo with genetically encoded reporters. Cancer Cell7(1), 5–15 (2005).
  • Massoud TF , PaulmuruganR, DeA, RayP, GambhirSS. Reporter gene imaging of protein–protein interactions in living subjects.Curr. Opin. Biotechnol.18(1), 31–37 (2007).
  • Villalobos V , NaikS, Piwnica-WormsD. Current state of imaging protein-protein interactions in vivo with genetically encoded reporters. Annu. Rev. Biomed. Eng.9, 321–349 (2007).
  • Prasher DC , EckenrodeVK, WardWW, PrendergastFG, CormierMJ. Primary structure of the aequorea victoria green-fluorescent protein.Gene111(2), 229–233 (1992).
  • Griesbeck O , BairdGS, CampbellRE, ZachariasDA, TsienRY. Reducing the environmental sensitivity of yellow fluorescent protein: mechanism and applications.J. Biol. Chem.276(31), 29188–29194 (2001).
  • Heim R , PrasherDC, TsienRY. Wavelength mutations and posttranslational autoxidation of green fluorescent protein.Proc. Natl Acad. Sci. USA91(26), 12501–12504 (1994).
  • Heim R , TsienRY. Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer.Curr. Biol.6(2), 178–182 (1996).
  • Rizzo MA , SpringerGH, GranadaB, PistonDW. An improved cyan fluorescent protein variant useful for fret.Nat Biotechnol.22(4), 445–449 (2004).
  • Nowotschin S , EakinGS, Hadjantonakis A-K. Dual transgene strategy for live visualization of chromatin and plasma membrane dynamics in murine embryonic stem cells and embryonic tissues. Genesis47(5), 330–336 (2009).
  • Chudakov DM , LukyanovS, LukyanovKA. Fluorescent proteins as a toolkit for in vivo imaging. Trends Biotechnol.23(12), 605–613 (2005).
  • Mizuno H , SawanoA, EliP, HamaH, MiyawakiA. Red fluorescent protein from discosoma as a fusion tag and a partner for fluorescence resonance energy transfer.Biochemistry40(8), 2502–2510 (2001).
  • Shaner NC , SteinbachPA, TsienRY. A guide to choosing fluorescent proteins.Nat. Meth.2(12), 905–909 (2005).
  • Shaner NC , CampbellRE, SteinbachPA, GiepmansBNG, PalmerAE, TsienRY. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat. Biotech.22(12), 1567–1572 (2004).
  • Deliolanis NC , KasmiehR, WurdingerT, TannousBA, ShahK, NtziachristosV. Performance of the red-shifted fluorescent proteins in deep-tissue molecular imaging applications.J. Biomed. Optics13(4), 44008–44009 (2008).
  • Truong K , IkuraM. The use of FRET imaging microscopy to detect protein-protein interactions and protein conformational changes in vivo.Curr. Opin. Struct. Biol.11(5), 573–578 (2001).
  • Didenko VV . DNA probes using fluorescence resonance energy transfer (FRET): designs and applications.Biotechniques31(5), 1106–1121 (2001).
  • Forster T . Transfer mechanisms of electronic excitation energy.Radiat. Res. (Suppl. 2), 326–339 (1960).
  • Wu PG , BrandL. Resonance energy transfer: methods and applications.Anal. Biochem.218(1), 1–13 (1994).
  • Mitra RD , SilvaCM, YouvanDC. Fluorescence resonance energy transfer between blue-emitting and red-shifted excitation derivatives of the green fluorescent protein.Gene173(1), 13–17 (1996).
  • Kamiyama D , ChibaA. Endogenous activation patterns of CDC42 GTPase within drosophila embryos.Science324(5932), 1338–1340 (2009).
  • Chan FK , SiegelRM, ZachariasDet al. Fluorescence resonance energy transfer analysis of cell surface receptor interactions and signaling using spectral variants of the green fluorescent protein. Cytometry 44(4), 361–368 (2001).
  • Pollok BA , HeimR. Using GFP in FRET-based applications.Trends Cell Biol.9(2), 57–60 (1999).
  • Miyawaki A , LlopisJ, HeimRet al. Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388(6645), 882–887 (1997).
  • Hara M , BindokasV, LopezJPet al. Imaging endoplasmic reticulum calcium with a fluorescent biosensor in transgenic mice. Am. J. Physiol. Cell Physiol. 287(4), C932–C938 (2004).
  • Higashijima S -I, Masino MA, Mandel G, Fetcho JR. Imaging neuronal activity during zebrafish behavior with a genetically encoded calcium indicator. J. Neurophysiol.90(6), 3986–3997 (2003).
  • Kerr R , Lev-RamV, BairdG, VincentP, TsienRY, SchaferWR. Optical imaging of calcium transients in neurons and pharyngeal muscle of C. elegans.Neuron26(3), 583–594 (2000).
  • Tyas L , BrophyVA, PopeA, RivettAJ, TavareJM. Rapid caspase-3 activation during apoptosis revealed using fluorescence-resonance energy transfer.EMBO Rep.1(3), 266–270 (2000).
  • Zhou F , XingD, WuS, ChenWR. Intravital imaging of tumor apoptosis with FRET probes during tumor therapy.Mol. Imaging Biol.12(1), 63–70 (2010).
  • Sato A , KlaunbergB, TolwaniR. In vivo bioluminescence imaging. Comp. Med.54(6), 631–634 (2004).
  • Fraga H . Firefly luminescence: a historical perspective and recent developments.Photochem. Photobiol. Sci.7(2), 146–158 (2008).
  • McElroy WD , SeligerHH, WhiteEH. Mechanism of bioluminescence, chemiluminescence and enzyme function in the oxidation of firefly luciferin.Photochem. Photobiol.10(3), 153–170 (1969).
  • Lorenz WW , CormierMJ, O‘KaneDJ, HuaD, EscherAA, SzalayAA. Expression of the Renilla reniformis luciferase gene in mammalian cells. J. Biolumin. Chemilumin.11(1), 31–37 (1996).
  • Bhaumik S , GambhirSS. Optical imaging of Renilla luciferase reporter gene expression in living mice. Proc. Natl Acad. Sci. USA99(1), 377–382 (2002).
  • Contag CH , BachmannMH. Advances in in vivo bioluminescence imaging of gene expression. Annu. Rev. Biomed. Eng.4, 235–260 (2002).
  • Ma L , XiangZ, SherrillTPet al. Bioluminescence imaging visualizes activation of nuclear factor-κB in mouse cardiac transplantation. Transplantation 85(6), 903–910 (2008).
  • de Wet JR , WoodKV, DeLucaM, HelinskiDR, SubramaniS. Firefly luciferase gene: structure and expression in mammalian cells.Mol. Cell. Biol.7(2), 725–737 (1987).
  • Leo BM , LiX, BalianG, AndersonDG. In vivo bioluminescent imaging of virus-mediated gene transfer and transduced cell transplantation in the intervertebral disc. Spine (Phila. PA. 1976)29(8), 838–844 (2004).
  • Berger F , PaulmuruganR, BhaumikS, GambhirSS. Uptake kinetics and biodistribution of 14C-D-luciferin – a radiolabeled substrate for the firefly luciferase catalyzed bioluminescence reaction: impact on bioluminescence based reporter gene imaging. Eur. J. Nucl. Med. Mol. Imaging35(12), 2275–2285 (2008).
  • Contag CH , ContagPR, MullinsJI, SpilmanSD, StevensonDK, BenaronDA. Photonic detection of bacterial pathogens in living hosts.Mol. Microbiol.18(4), 593–603 (1995).
  • Hutchens M , LukerGD. Applications of bioluminescence imaging to the study of infectious diseases.Cell. Microbiol.9(10), 2315–2322 (2007).
  • Mook-Kanamori B , RouseM, Kang C-I, Van De Beek D, Steckelberg J, Patel R. Daptomycin in experimental murine pneumococcal meningitis. BMC Infect. Dis.9(1), 50 (2009).
  • Thorn RMS , NelsonSM, GreenmanJ. Use of a bioluminescent Pseudomonas aeruginosa strain within an in vitro microbiological system, as a model of wound infection, to assess the antimicrobial efficacy of wound dressings by monitoring light production. Antimicrob. Agents Chemother.51(9), 3217–3224 (2007).
  • Dothager RS , FlentieK, MossB, Pan M-H, Kesarwala A, Piwnica-Worms D. Advances in bioluminescence imaging of live animal models. Curr. Opin. Biotechnol.20(1), 45–53 (2009).
  • Luker KE , LukerGD. Applications of bioluminescence imaging to antiviral research and therapy: multiple luciferase enzymes and quantitation.Antiviral Res.78(3), 179–187 (2008).
  • Luker GD , BardillJP, PriorJL, PicaCM, Piwnica-WormsD, LeibDA. Noninvasive bioluminescence imaging of herpes simplex virus type 1 infection and therapy in living mice.J. Virol.76(23), 12149–12161 (2002).
  • Mizuno T , MohriK, NasuS, DanjoK, OkamotoH. Dual imaging of pulmonary delivery and gene expression of dry powder inhalant by fluorescence and bioluminescence.J. Control. Release134(2), 149–154 (2009).
  • Zincarelli C , SoltysS, RengoG, RabinowitzJE. Analysis of AAV serotypes 1–9 mediated gene expression and tropism in mice after systemic injection.Mol. Ther.16(6), 1073–1080 (2008).
  • Klerk CP , OvermeerRM, NiersTMet al. Validity of bioluminescence measurements for noninvasive in vivo imaging of tumor load in small animals. Biotechniques 43(1 Suppl.), 7–13, 30 (2007).
  • Scatena CD , HepnerMA, OeiYAet al. Imaging of bioluminescent LNCaP-luc-M6 tumors: a new animal model for the study of metastatic human prostate cancer. Prostate 59(3), 292–303 (2004).
  • Paroo Z , BollingerRA, BraaschDAet al. Validating bioluminescence imaging as a high-throughput, quantitative modality for assessing tumor burden. Mol. Imaging 3(2), 117–124 (2004).
  • Wetterwald A , Van Der PluijmG, QueIet al. Optical imaging of cancer metastasis to bone marrow: a mouse model of minimal residual disease. Am. J. Pathol.160(3), 1143–1153 (2002).
  • Shi HY , LiangR, TempletonNS, ZhangM. Inhibition of breast tumor progression by systemic delivery of the maspin gene in a syngeneic tumor model.Mol. Ther.5(6), 755–761 (2002).
  • Zhang M , ShengS, MaassN, SagerR. mMaspin: the mouse homolog of a human tumor suppressor gene inhibits mammary tumor invasion and motility.Mol. Med.3(1), 49–59 (1997).
  • Huang C , MaWY, DawsonMI, RinconM, FlavellRA, DongZ. Blocking activator protein-1 activity, but not activating retinoic acid response element, is required for the antitumor promotion effect of retinoic acid.Proc. Natl Acad. Sci. USA94(11), 5826–5830 (1997).
  • Laxman B , HallDE, BhojaniMSet al. Noninvasive real-time imaging of apoptosis. Proc. Natl Acad. Sci. USA 99(26), 16551–16555 (2002).
  • Petroski MD . The ubiquitin system, disease, and drug discovery.BMC Biochem9(Suppl. 1), S7 (2008).
  • Chauhan D , HideshimaT, MitsiadesC, RichardsonP, AndersonKC. Proteasome inhibitor therapy in multiple myeloma.Mol. Cancer Ther.4(4), 686–692 (2005).
  • Kimbrel EA , DavisTN, BradnerJE, KungAL. In vivo pharmacodynamic imaging of proteasome inhibition. Mol. Imaging8(3), 140–147 (2009).
  • Kesarwala AH , SamrakandiMM, Piwnica-WormsD. Proteasome inhibition blocks ligand-induced dynamic processing and internalization of epidermal growth factor receptor via altered receptor ubiquitination and phosphorylation.Cancer Res.69(3), 976–983 (2009).
  • Luker GD , PicaCM, SongJ, LukerKE, Piwnica-WormsD. Imaging 26S proteasome activity and inhibition in living mice.Nat. Med.9(7), 969–973 (2003).
  • Xu Y , PistonDW, JohnsonCH. A bioluminescence resonance energy transfer (BRET) system: application to interacting circadian clock proteins.Proc. Natl Acad. Sci. USA96(1), 151–156 (1999).
  • Koterba KL , RowanBG. Measuring ligand-dependent and ligand-independent interactions between nuclear receptors and associated proteins using bioluminescence resonance energy transfer (BRET).Nucl. Recept. Signal.4, e021 (2006).
  • De A , RayP, LoeningAM, GambhirSS. BRET3: a red-shifted bioluminescence resonance energy transfer (BRET)-based integrated platform for imaging protein-protein interactions from single live cells and living animals.FASEB J.23, 2702–2709 (2009).
  • De A , LoeningAM, GambhirSS. An improved bioluminescence resonance energy transfer strategy for imaging intracellular events in single cells and living subjects.Cancer Res.67(15), 7175–7183 (2007).
  • Rogers KL , MartinJR, RenaudOet al. Electron-multiplying charge-coupled detector-based bioluminescence recording of single-cell Ca2+. J. Biomed. Opt. 13(3), 031211 (2008).
  • Iglesias P , CostoyaJA. A novel BRET-based genetically encoded biosensor for functional imaging of hypoxia.Biosens. Bioelectron.24(10), 3126–3130 (2009).
  • Lee K -H, Byun SS, Paik J-Y et al. Cell uptake and tissue distribution of radioiodine labelled D-luciferin: implications for luciferase based gene imaging. Nucl. Med. Commun.24(9), 1003–1009 (2003).
  • Shinde R , PerkinsJ, ContagCH. Luciferin derivatives for enhanced in vitro and in vivo bioluminescence assays. Biochemistry45(37), 11103–11112 (2006).
  • Seemann MD . Whole-body PET/MRI: the future in oncological imaging.Technol. Cancer Res. Treat.4(5), 577–582 (2005).
  • Gilad AA , WinnardPT Jr, Van Zijl PCM, Bulte JWM. Developing MR reporter genes: promises and pitfalls. NMR Biomed.20(3), 275–290 (2007).
  • Cohen B , ZivK, PlaksV, HarmelinA, NeemanM. Ferritin nanoparticles as magnetic resonance reporter gene.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.1(2), 181–188 (2009).
  • St Pierre TG , ChanP, BauchspiessKRet al. Synthesis, structure and magnetic properties of ferritin cores with varying composition and degrees of structural order: models for iron oxide deposits in iron-overload diseases. Coord. Chem. Rev. 151, 125–143 (1996).
  • Genove G , DemarcoU, XuH, GoinsWF, AhrensET. A new transgene reporter for in vivo magnetic resonance imaging. Nat. Med.11(4), 450–454 (2005).
  • Cohen B , ZivK, PlaksVet al. MRI detection of transcriptional regulation of gene expression in transgenic mice. Nat. Med. 13(4), 498–503 (2007).
  • Bartzokis G , AravagiriM, OldendorfWH, MintzJ, MarderSR. Field dependent transverse relaxation rate increase may be a specific measure of tissue iron stores.Magn. Reson. Med.29(4), 459–464 (1993).
  • Deans AE , WadghiriYZ, BernasLM, YuX, RuttBK, TurnbullDH. Cellular MRI contrast via coexpression of transferrin receptor and ferritin.Magn. Reson. Med.56(1), 51–59 (2006).
  • Arosio P , LeviS. Ferritin, iron homeostasis, and oxidative damage.Free Radic. Biol. Med.33(4), 457–463 (2002).
  • Zurkiya O , ChanAW, HuX. MagA is sufficient for producing magnetic nanoparticles in mammalian cells, making it an MRI reporter.Magn. Reson. Med.59(6), 1225–1231 (2008).
  • Watson CM , TrainorPA, RadziewicTet al. Application of LacZ transgenic mice to cell lineage studies. Methods Mol. Biol. 461, 149–164 (2008).
  • Bogdanov A , WeisslederR. In vivo imaging of gene delivery and expression. Trends Biotechnol.20(8), S11–S18 (2002).
  • Moats RA , FraserSE, MeadeTJ. A ‘smart’ magnetic resonance imaging agent that reports on specific enzymatic activity.Angew. Chem. Int. Ed. Eng.36(7), 726–728 (1997).
  • Urbanczyk-Pearson LM , FemiaFJ, SmithJet al. Mechanistic investigation of β-galactosidase-activated MR contrast agents. Inorg. Chem. 47(1), 56–68 (2008).
  • Urbanczyk-Pearson LM , MeadeTJ. Preparation of magnetic resonance contrast agents activated by β-galactosidase.Nat. Protoc.3(3), 341–350 (2008).
  • Alauddin MM , LouieAY, ShahinianA, MeadeTJ, ContiPS. Radiolabeling of a MRI contrast agent with In-111, and its biological evaluation in vitro and in vivo. J. Nucl. Med.43(5), 503 (2002).
  • Alauddin MM , LouieAY, ShahinianA, MeadeTJ, ContiPS. Receptor mediated uptake of a radiolabeled contrast agent sensitive to β-galactosidase activity.Nucl. Med. Biol.30(3), 261–265 (2003).
  • Chang Y -T, Cheng C-M, Su Y-Z et al. Synthesis and characterization of a new bioactivated paramagnetic gadolinium(III) complex [Gd(DOTA-FPG)(H2O)] for tracing gene expression. Bioconjug. Chem.18(6), 1716–1727 (2007).
  • Tung C -H, Zeng Q, Shah K, Kim D-E, Schellingerhout D, Weissleder R. In vivo imaging of {β}-galactosidase activity using far red fluorescent switch. Cancer Res.64(5), 1579–1583 (2004).
  • Josserand V , Texier-NoguesI, HuberP, FavrotMC, CollJL. Non-invasive in vivo optical imaging of the lacZ and luc gene expression in mice. Gene Ther.14(22), 1587–1593 (2007).
  • Zhang G -J, Chen T-B, Connolly B et al.In vivo optical imaging of lacZ expression using lacZ transgenic mice. ASSAY Drug Develop. Technol.7(4), 391–399 (2009).
  • Corey PF , TrimmerRW, BiddlecomWG. A new chromogenic β-galactosidase substrate: 7-β-D-galactopyranosyloxy-9,9-dimethyl-9-H-acridin-2-one.Angew. Chem. Int. Ed. Eng.30(12), 1646–1648 (1991).
  • Wehrman TS , Von Degenfeld G, Krutzik PO, Nolan GP, Blau HM. Luminescent imaging of β-galactosidase activity in living subjects using sequential reporter-enzyme luminescence. Nat. Meth.3(4), 295–301 (2006).
  • Yao H , SoMK, RaoJ. A bioluminogenic substrate for in vivo imaging of β-lactamase activity. Angew. Chem. Int. Ed. Engl.46(37), 7031–7034 (2007).
  • Zlokarnik G , NegulescuPA, KnappTEet al. Quantitation of transcription and clonal selection of single living cells with β-lactamase as reporter. Science 279(5347), 84 (1998).
  • Xing B , KhanamiryanA, RaoJ. Cell-permeable near-infrared fluorogenic substrates for imaging β-lactamase activity.J. Am. Chem. Soc.127(12), 4158–4159 (2005).
  • Lee S , ParkK, KimK, ChoiK, KwonIC. Activatable imaging probes with amplified fluorescent signals.Chem. Commun. (Camb.)36, 4250–4260 (2008).
  • Maxwell D , ChangQ, ZhangX, BarnettEM, Piwnica-WormsD. An improved cell-penetrating, caspase-activatable, near-infrared fluorescent peptide for apoptosis imaging.Bioconjug. Chem.20(4), 702–709 (2009).
  • Sega EI , LowPS. Tumor detection using folate receptor-targeted imaging agents.Cancer Metastasis Rev.27(4), 655–664 (2008).
  • Ke S , WenX, GurfinkelMet al. Near-infrared optical imaging of epidermal growth factor receptor in breast cancer xenografts. Cancer Res. 63(22), 7870–7875 (2003).
  • Stearns M e, Wang M. Type IV collagenase (Mr 72,000) expression in human prostate: benign and malignant tissue. Cancer Res.53(4), 878–883 (1993).
  • Hu L , RothJM, BrooksP, LutyJ, KarpatkinS. Thrombin up-regulates cathepsin D which enhances angiogenesis, growth, and metastasis.Cancer Res.68(12), 4666–4673 (2008).
  • Hotary K , AllenE, PunturieriA, YanaI, WeissSJ. Regulation of cell invasion and morphogenesis in a three-dimensional type I collagen matrix by membrane-type matrix metalloproteinases 1, 2, and 3.J. Cell Biol.149(6), 1309–1323 (2000).
  • Whittaker M , FloydCD, BrownP, GearingAJH. Design and therapeutic application of matrix metalloproteinase inhibitors.Chem. Rev.99(9), 2735–2776 (1999).
  • Kato D , BoatrightKM, BergerABet al. Activity-based probes that target diverse cysteine protease families. Nat. Chem. Biol. 1(1), 33–38 (2005).
  • Blum G , Von Degenfeld G, Merchant MJ, Blau HM, Bogyo M. Noninvasive optical imaging of cysteine protease activity using fluorescently quenched activity-based probes. Nat. Chem. Biol.3(10), 668–677 (2007).
  • Greish K . Enhanced permeability and retention of macromolecular drugs in solid tumors: a royal gate for targeted anticancer nanomedicines.J. Drug Target.15(7–8), 457–464 (2007).
  • Weissleder R , TungCH, MahmoodU, BogdanovA Jr. In vivo imaging of tumors with protease-activated near-infrared fluorescent probes. Nat. Biotechnol.17(4), 375–378 (1999).
  • Tung CH , MahmoodU, BredowS, WeisslederR. In vivo imaging of proteolytic enzyme activity using a novel molecular reporter. Cancer Res.60(17), 4953–4958 (2000).
  • Bremer C , NtziachristosV, WeitkampB, TheilmeierG, HeindelW, WeisslederR. Optical imaging of spontaneous breast tumors using protease sensing ‘smart’ optical probes.Invest. Radiol.40(6), 321–327 (2005).
  • Bremer C , Tung C-H, Weissleder R. In vivo molecular target assessment of matrix metalloproteinase inhibition. Nat. Med.7(6), 743–748 (2001).
  • Jastrzebska B , LebelR, McIntyreOJet al. Monitoring of MMPs activity in vivo, non-invasively, using solubility switchable MRI contrast agent. Adv. Exp. Med. Biol. 611, 453–454 (2009).
  • Lebel R , JastrzebskaB, TherriaultHet al. Novel solubility-switchable MRI agent allows the noninvasive detection of matrix metalloproteinase-2 activity in vivo in a mouse model. Magn. Reson. Med. 60(5), 1056–1065 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.