102
Views
0
CrossRef citations to date
0
Altmetric
Review

Photophysical Approaches to Responsive Optical Probes

&
Pages 339-350 | Published online: 17 Mar 2010

Bibliography

  • Grynkiewicz G , PoenieM, TsienRY. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem.260, 3440–3450 (1985).
  • Tsien RY . New calcium indicators and buffers with high selectivity against magnesium and protons – design, synthesis, and properties of prototype structures.Biochemistry19(11), 2396–2404 (1980).
  • Minta A , KaoJP, TsienRY. Fluorescent indicators for cytosolic calcium based on rhodamine and fluorescein chromophores.J. Biol. Chem.264(14), 8171–8178 (1989).
  • Lipp P , NiggliE. Ratiometric confocal Ca2+ measurements with visible wavelength indicators in isolated cardiac myocytes. Cell Calcium14(5), 359–372 (1993).
  • Basabe-Desmonts L , ReinhoudtDN, Crego-CalamaM. Design of fluorescent materials for chemical sensing.Chem. Soc. Rev.36(6), 993–1017 (2007).
  • Hemmila IA . Applications of Fluorescence in Immunoassays. Wiley (1991).
  • Hemmila I , LaitalaV. Progress in lanthanides as luminescent probesJ. Fluoresc.15, 529–542 (2005).
  • Trinquet E , MathisG. Fluorescence technologies for the investigation of chemical libraries.Mol. Biosyst.2(8), 381–387 (2006).
  • Faulkner S , MatthewsJL. Fluorescent and luminescent complexes for biomedical applications. In: Comprehensive Coordination Chemistry (2nd Edition). (Volume 9, Applications of Coordination Chemistry). Ward MD (Ed.). Elsevier (2004).
  • Beeby A , BotchwaySW, ClarksonIMet al. Luminescence imaging microscopy and lifetime mapping using kinetically stable lanthanide(III) complexes. J. Photochem. Photobiol. B Biol. 57(2–3), 83–89 (2000).
  • Charbonniere L , ZiesselR, GuardigliM, RodaA, SabbatiniN, CesarioM. Lanthanide tags for time-resolved luminescence microscopy displaying improved stability and optical properties.J. Am. Chem. Soc.123, 2436–2437 (2001).
  • Weibel N , CharbonniereLJ, GuardigliM, RodaA, ZiesselR. Engineering of highly luminescent lanthanide tags suitable for protein labeling and time-resolved luminescence imaging.J. Am. Chem. Soc.126, 4888–4896 (2004).
  • Faulkner S , NatrajanLS, PerryWS, SykesD. Sensitised luminescence in lanthanide containing arrays and d–f hybrids.Dalton Trans.3890–3899 (2009).
  • Sambrook MR , CurielD, HayesEJ, BeerPD, PopeSJA, FaulknerS. Sensitised near infrared emission from lanthanides via anion-templated assembly of d–f heteronuclear [2]pseudorotaxanes.New J. Chem.30(8), 1133–1136 (2006).
  • Lazarides T , SykesD, FaulknerS, BarbieriA, WardMD. On the mechanism of d–f energy transfer in Ru-II/Ln(III) and Os-II/Ln(III) dyads: dexter-type energy transfer over a distance of 20 angstrom.Chem. Eur. J.14(30), 9389–9399 (2008).
  • Beeby A , ParkerD, WilliamsJAG. Photochemical investigations of functionalised 1,4,7,10-tetraazacyclododecane ligands incorporating naphthyl chromophores.J. Chem. Soc. Perkin Trans. I2, 1565–1579 (1996).
  • Kielar F , CongreveA, LawGLet al. Two-photon microscopy study of the intracellular compartmentalisation of emissive terbium complexes and their oligo-arginine and oligo-guanidinium conjugates. Chem. Commun. (21), 2435–2437 (2008).
  • Dieters E , SongB, ChauvinAS. Luminescent bimetallic lanthanide bioprobes for cellular imaging with excitation in the visible-light range.Chem. Eur. J.15(4), 885–900 (2009).
  • Zeglis BM , PierreVC, BartonJK. Metallo-intercalators and metallo-insertors.Chem. Commun.4565–4579 (2007).
  • Vos JG , KellyJM: Ruthenium polypyridyl chemistry; from basic research to applications and back again.Dalton Trans.4869–4883 (2006).
  • Zhang XY , RodgersMAJ. Energy and Electron-transfer reactions of the MLCT state of ruthenium tris(bipyridyl) with molecular oxygen – a laser flash-photolysis study.J. Phys. Chem.99(34), 12797–12803 (1995).
  • Montgomery CP , MurrayBS, NewEJ, PalR, ParkerD. Cell-penetrating metal complex optical probes: targeted and responsive systems based on lanthanide luminescence.Acc. Chem. Res.42(7), 925–937 (2009).
  • Parker D . Excitement in f block: structure, dynamics and function of nine-coordinate chiral lanthanide complexes in aqueous media.Chem. Soc. Rev.33(3), 156–165 (2004).
  • Pandya S , YuJH, ParkerD. Engineering emissive europium and terbium complexes for molecular imaging and sensing.Dalton Trans. (23), 2757–2766 (2006).
  • Gunnlaugsson T , LeonardJP. Responsive lanthanide luminescent cyclen complexes: from switching/sensing to supramolecular architectures.Chem. Commun.25, 3114–3131 (2005).
  • Gunnlaugsson T , GlynnM, TocciGM, KrugerPE, PfefferFM. Anion recognition and sensing in organic and aqueous media using luminescent and colorimetric sensors.Coord. Chem. Rev.250(23–24), 3094–3117 (2006).
  • Bunzli JCG . Lanthanide luminescent bioprobes (LLBs).Chem. Lett.38(2), 104–109 (2009).
  • Aarons RJ , NottaJ, MeloniMMet al. A luminescent probe containing a tuftsin targeting vector coupled to a terbium complex. Chem. Commun. (8), 909–911 (2006).
  • Beeby A , ClarksonIM, DickinsRSet al. Non-radiative deactivation of the excited states of europium, terbium and ytterbium complexes by proximate energy-matched OH, NH and CH oscillators: an improved luminescence method for establishing solution hydration states. J. Chem. Soc. Perkin Trans. I. 2, 493–503 (1999).
  • Faulkner S , Burton-PyeBP, KhanT, MartinLR, WraySD, SkabaraPJ. Interaction between tetrathiafulvalene carboxylic acid and ytterbium D03A: solution state self-assembly of a ternary complex which is luminescent in the near IR.Chem. Commun.1668–1669 (2002).
  • Pope SJA , CoeBJ, FaulknerS, BichenkovaEV, YuX, DouglasKT. Self-assembly of heterobimetallic d–f hybrid complexes: sensitization of lanthanide luminescence by d-block metal-to-ligand charge-transfer excited states.J. Am. Chem. Soc.126, 9490–9491 (2004).
  • Pope SJA , Burton-PyeBP, KhanT, BerridgeR, SkabaraPJ, FaulknerS. Self-assembly of luminescent ternary complexes between seven-coordinate lanthanide(III) complexes and chromophore bearing carboxylates and phosphonates.Dalton Trans.2907–2912 (2006).
  • Massue J , QuinnSJ, GunnlaugssonT. Lanthanide luminescent displacement assays: The sensing of phosphate anions using Eu(III)–cyclen-conjugated gold nanoparticles in aqueous solutionJ. Am. Chem. Soc.130(22), 6900–6901 (2008).
  • Leonard JP , dos Santos CMG, Plush SE, McCabe T, Gunnlaugsson T. pH driven self-assembly of a ternary lanthanide luminescence complex: the sensing of anions using a β-diketonate-Eu(III) displacement assay. Chem. Commun.129–131 (2007).
  • Harte AJ , JensenP, PlushSE, KrugerPE, GunnlaugssonT. A dinuclear lanthanide complex for the recognition of bis(carboxylates): formation of terbium(III) luminescent self-assembly ternary complexes in aqueous solution.Inorg. Chem.45, 9465–9474 (2006).
  • Moats RA , FraserSE, MeadeTJ. A ‘‘smart‘’ magnetic resonance imaging agent that reports on specific enzymatic activityAngew. Chem. Int. Ed. Engl.36(7), 726–728 (1997).
  • Urbanczyk-Pearson LM , MeadeTJ. Preparation of magnetic resonance contrast agents activated by β-galactosidase.Nat. Protoc.3(3), 341–350 (2008).
  • Lowe MP , ParkerD, ReanyOet al. pH-dependent modulation of relaxivity and luminescence in macrocyclic gadolinium and europium complexes based on reversible intramolecular sulfonamide ligation, J. Am. Chem. Soc. 123(31), 7601–7609 (2001).
  • Parker D , YuJH. A pH-insensitive, ratiometric chemosensor for citrate using europium luminescence.Chem. Commun.25, 3141–3143 (2005).
  • Hall J , HamerR, AimeSet al. Relaxometric and luminescence behaviour of triaquahexaazamacrocyclic complexes, the gadolinium complex displaying a high relaxivity with a pronounced pH dependence. New J. Chem. 22(6), 627–631 (1998).
  • Faulkner S , Burton-PyeBP. pH dependent self-assembly of dimetallic lanthanide complexes.Chem. Commun.2, 259–261 (2005).
  • Pal R , ParkerD, CostelloLC. A europium luminescence assay of lactate and citrate in biological fluids.Org. Biomol. Chem.7(8), 1525–1528 (2009).
  • Montgomery CP , NewEJ, ParkerD, PeacockRD. Enantioselective regulation of a metal complex in reversible binding to serum albumin: dynamic helicity inversion signalled by circularly polarised luminescence.Chem. Commun.36, 4261–4263 (2008).
  • Placidi MP , VillarazaAJL, NatrajanLS, SykesD, KenwrightAM, FaulknerS. Synthesis and spectroscopic studies on azo-dye derivatives of polymetallic lanthanide complexes: using diazotization to link metal complexes together.J. Am. Chem. Soc.131(29), 9916–9917 (2009).
  • Beeby A , FaulknerS, WilliamsJAG. pH Dependence of the energy transfer mechanism in a phenanthridine-appended ytterbium complexJ. Chem. Soc. Dalton Trans.1918–1922 (2002).
  • Parker D , SenanayakeK, WilliamsJAG. Luminescent chemosensors for pH, halide and hydroxide ions based on kinetically stable, macrocyclic europium–phenanthridinium conjugates.Chem. Commun.1777–1778 (1997).
  • Parker D , WilliamsJAG. Taking advantage of the pH and pO2 sensitivity of a luminescent macrocyclic terbium phenanthridyl complex. Chem. Commun.245–246 (1998).
  • Beeby A , FaulknerS, ParkerD, WilliamsJAG. Sensitised luminescence from phenanthridine appended lanthanide complexes: analysis of triplet mediated energy transfer processes in terbium, europium and neodymium complexes.J. Chem. Soc. Perkin Trans. I2, 1268–1273 (2001).
  • Thibon A , PierreV. A Highly Selective luminescent sensor for the time-gated detection of potassium.J. Am. Chem. Soc.131(2), 434–435 (2009).
  • Pope SJA , LayeRH. Design, synthesis and photophysical studies of an emissive, europium based, sensor for zinc.Dalton Trans.3108–3113 (2006).
  • Hanaoka K , KickuchiK, KojimaH, UranoY, NaganoT. Development of a zinc ion-selective luminescent lanthanide chemosensor for biological applications.J. Am. Chem. Soc.126(39), 12470–12476 (2004).
  • Parker D , SenanayakePK, WilliamsJAG. Luminescent sensors for pH, pO2, halide and hydroxide ions using phenanthridine as a photosensitiser in macrocyclic europium and terbium complexes. J. Chem. Soc. Perkin Trans. I2, 2129–2139 (1998).
  • Bobba G , BretonniereY, FriasJC, ParkerD. Enantiopure lanthanide complexes incorporating a tetraazatriphenylene sensitiser and three naphthyl groups: exciton coupling, intramolecular energy transfer, efficient singlet oxygen formation and perturbation by DNA binding.Org. Biomol. Chem.1, 1870–1872 (2003).
  • Nonat A , QuinnSJ, GunnlaugssonT. Mixed f-d coordination complexes as dual visible- and near-infrared-emitting probes for targeting DNA.Inorg. Chem.48(11), 4646–4648 (2009).
  • New EJ , ParkerD. The mechanism of cell uptake for luminescent lanthanide optical probes: the role of macropinocytosis and the effect of enhanced membrane permeability on compartmentalisation.Org. Biomol. Chem.7(5), 851–855 (2009).
  • Koullourou T , NatrajanLS, BhavsarHet al. Synthesis and spectroscopic properties of a prototype single molecule dual Imaging agent comprising a heterobimetallic rhenium–gadolinium complex. J. Am. Chem. Soc. 130, 2178–2179 (2008).
  • Faulkner S , ParkerD, WilliamsJAG. Parallel processing in aqueous solution. In: NATO Advanced Study Series ‘Supramolecular Science: Where It Is and Where It Is Going‘. Ungaro R (Ed.). Kluwer (1999).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.