184
Views
0
CrossRef citations to date
0
Altmetric
Review

Optical and Magnetic Resonance Imaging as Complementary Modalities in Drug Discovery

, &
Pages 317-337 | Published online: 17 Mar 2010

Bibliography

  • Rudin M , BeckmannN, RauschM. Magnetic resonance imaging in biomedical research: Imaging of drugs and drug effects.Meth. Enzymol.385, 240–256 (2004).
  • van Laarhoven HW , KlompDW, KammYJ, PuntCJ, HeerschapA. In vivo monitoring of capecitabine metabolism in human liver by 19fluorine magnetic resonance spectroscopy at 1.5 and 3 Tesla field strength. Cancer Res.63(22), 7609–7612 (2003).
  • Hamstra DA , LeeKC, TychewiczJMet al. The use of F-19 spectroscopy and diffusion-weighted MRI to evaluate differences in gene-dependent enzyme prodrug therapies. Mol. Ther. 10(5), 916–928 (2004).
  • Kamm YJ , HeerschapA, Van Den Bergh EJ, Wagener DJ. 19F-magnetic resonance spectroscopy in patients with liver metastases of colorectal cancer treated with 5-fluorouracil. Anticancer Drugs15(3), 229–233 (2004).
  • Reid DG , MurphyPS. Fluorine magnetic resonance in vivo: A powerful tool in the study of drug distribution and metabolism. Drug Discov. Today13(11–12), 473–480 (2008).
  • Griffiths JR , GlicksonJD. Monitoring pharmacokinetics of anticancer drugs: non-invasive investigation using magnetic resonance spectroscopy.Adv. Drug Deliv. Rev.41(1), 75–89 (2000).
  • Artemov D , SolaiyappanM, BhujwallaZM. Magnetic resonance pharmacoangiography to detect and predict chemotherapy delivery to solid tumors.Cancer Res.61(7), 3039–3044 (2001).
  • Kato Y , OkollieB, and Artemov D. Noninvasive H-1/C-13 magnetic resonance spectroscopic imaging of the intratumoral distribution of temozolomide. Magn. Reson. Med.55(4), 755–761 (2006).
  • Rudin M , BeckmannN, SauterA. In vivo pharmacokinetics using MRS [2]. NMR Biomed.12(6), 404 (1999).
  • Rudin M , BeckmannN, PorszaszR, ReeseT, BochelenD, SauterA. In vivo magnetic resonance methods in pharmaceutical research: current status and perspectives [Review]. NMR Biomed.12(2), 69–97 (1999).
  • Beckmann N , LaurentD, TiganiB, PanizzuttiR, RudinM. Magnetic resonance imaging in drug discovery: Lessons from disease areas.Drug Discov. Today9(1), 35–42 (2004).
  • Beckmann N , MuegglerT, AllegriniPR, LaurentD, RudinM. From anatomy to the target: contributions of magnetic resonance imaging to preclinical pharmaceutical research.Anat. Rec.265(2), 85–100 (2001).
  • Aime S , CarreraC, DelliCD, GeninattiCS, TerrenoE. Tunable imaging of cells labeled with MRI-PARACEST agents.Angew. Chem. Int. Ed. Engl.44(12), 1813–1815 (2005).
  • Woods M , DonaldEWC, SherryAD. Paramagnetic lanthanide complexes as PARACEST agents for medical imaging.Chem. Soc. Rev.35(6), 500–511 (2006).
  • Zhou J , Payen J-F, Wilson DA, Traystman RJ, Van Zijl PCM. Using the amide proton signals of intracellular proteins and peptides to detect pH effects in MRI. Nat. Med.9(8), 1085–1090 (2003).
  • Aime S , DelliCD, TerrenoE. Highly sensitive MRI chemical exchange saturation transfer agents using liposomes.Angew. Chem. Int. Ed. Engl.44(34), 5513–5515 (2005).
  • Cunningham CH , AraiT, YangPC, McConnellMV, PaulyJM, ConollySM. Positive contrast magnetic resonance imaging of cells labeled with magnetic nanoparticles.Magn. Reson. Med.53(5), 999–1005 (2005).
  • Mani V , Briley-SaeboKC, ItskovichVV, SamberDD, FayadZA. Gradient echo acquisition for superparamagnetic particles with positive contrast (GRASP): sequence characterization in membrane and glass superparamagnetic iron oxide phantoms at 1.5T and 3T.Magn. Reson. Med.55(1), 126–135 (2006).
  • Takaoka Y , SakamotoT, TsukijiSet al. Self-assembling nanoprobes that display off/on F-19 nuclear magnetic resonance signals for protein detection and imaging. Nat. Chem. 1(7), 557–561 (2009).
  • Mansson S , JohanssonE, MagnussonPet al. 13C imaging-a new diagnostic platform. Eur. Radiol.16(1), 57–67 (2006).
  • Moller HE , ChenXJ, SaamBet al. MRI of the lungs using hyperpolarized noble gases. Magn. Reson. Med. 47(6), 1029–1051 (2002).
  • Patz S , HersmanFW, MuradianIet al. Hyperpolarized 129Xe MRI: a viable functional lung imaging modality? Eur. J. Radiol. 64(3), 335–344 (2007).
  • Gallagher FA , KettunenMI, DaySE, LercheM, BrindleKM. C-13 MR spectroscopy measurements of glutaminase activity in human hepatocellular carcinoma cells using hyperpolarized C-13-labeled glutamine.Magn. Reson. Med.60(2), 253–257 (2008).
  • Weisskoff RM , CheslerD, BoxermanJL, RosenBR. Pitfalls in MR measurement of tissue blood flow with intravascular tracers: Which mean transit time?Magn. Reson. Med.29(4), 553–558 (1993).
  • Rudin M , BeckmannN, SauterA. Analysis of tracer transit in rat brain after carotid artery and femoral vein administration using linear system theory.Magn. Reson. Imaging15(5), 551–558 (1997).
  • Rudin M , PedersenB, UmemuraK, ZierhutW. Determination of rat heart morphology and function in vivo in two models of cardiac hypertrophy by means of magnetic resonance imaging. Basic Res. Cardiol.86(2), 165–174 (1991).
  • Zambrowicz BP , SandsAT. Knockouts model the 100 best-selling drugs – will they model the next 100?Nat. Rev. Drug Discov.2(1), 38–51 (2003).
  • Schafer R , WiskirchenJ, GuoKet al. Aptamer-based isolation and subsequent imaging of mesenchymal stem cells in ischemic myocard by magnetic resonance imaging. Rofo 179(10), 1009–1015 (2007).
  • Schmieder AH , WinterPM, CaruthersSDet al. Molecular MR imaging of melanoma angiogenesis with α(nu)b(3)-targeted paramagnetic nanoparticles. Magn. Reson. Med. 53(3), 621–627 (2005).
  • Winter PM , NeubauerAM, CaruthersSDet al. Endothelial αvβ3 integrin-targeted fumagillin nanoparticles inhibit angiogenesis in atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 26(9), 2103–2109 (2006).
  • Kelly KA , AllportJR, TsourkasA, Shinde-PatilVR, JosephsonL. Detection of vascular adhesion molecule-1 expression using a novel multimodal nanoparticle.Circ. Res.96(3), 327–336 (2005).
  • Schuppli CA , FraserD, McDonaldM. Expanding the three Rs to meet new challenges in humane animal experimentation.Altern. Lab. Anim.32(5), 525–532 (2004).
  • Beckmann N , CannetC, BabinALet al. In vivo visualization of macrophage infiltration and activity in inflammation using MRI. WIREs Nanomed. Nanobiotechnol.1, 272–298 (2009).
  • Frank R , HargreavesR. Clinical biomarkers in drug discovery and development.Nat. Rev. Drug Discov.2(7), 566–580 (2003).
  • Colburn WA . Optimizing the use of biomarkers, surrogate endpoints, and clinical endpoints for more efficient drug development.J. Clin. Pharmacol.40(12 II), 1419–1427 (2000).
  • Lesko LJ , AtkinsonAJ Jr. Use of biomarkers and surrogate endpoints in drug development and regulatory decision making: criteria, validation, strategies. Annu. Rev. Pharmacol. Toxicol.41, 347–366 (2001).
  • Pien HH , FischmanAJ, ThrallJH, SorensenAG. Using imaging biomarkers to accelerate drug development and clinical trials.Drug Discov. Today10(4), 259–266 (2005).
  • Johnson JR , WilliamsG, PazdurR. End points and United States Food and Drug Administration approval of oncology drugs.J. Clin. Oncol.21(7), 1404–1411 (2003).
  • DiMasi JA . The value of improving the productivity of the drug development process: faster times and better decisions.Pharmacoeconomics20(Suppl. 3), 1–10 (2002).
  • Xie J , SchultzPG. A chemical toolkit for proteins – an expanded genetic code.Nat. Rev. Mol. Cell Biol.7(10), 775–782 (2006).
  • Link AJ , MockML, TirrellDA. Non-canonical amino acids in protein engineering.Curr. Opin. Biotechnol.14(6), 603–609 (2003).
  • Caravan P , DasB, DumasSet al. Collagen-targeted MRI contrast agent for molecular imaging of fibrosis. Angew. Chem. Int. Ed. Engl. 46(43), 8171–8173 (2007).
  • Lee CM , JeongHJ, KimEMet al. Superparamagnetic iron oxide nanoparticles as a dual imaging probe for targeting hepatocytes in vivo. Magn. Reson. Med. 62(6), 1440–1446 (2009)
  • Dothager RS , FlentieK, MossB, PanMH, KesarwalaA, Piwnica-WormsD. Advances in bioluminescence imaging of live animal models.Curr. Opin. Biotechnol.20(1), 45–53 (2009).
  • Luker KE , LukerGD. Applications of bioluminescence imaging to antiviral research and therapy: Multiple luciferase enzymes and quantitation.Antiviral Res.78(3), 179–187 (2008).
  • Stell A , BelcreditoS, RamachandranBet al. Multimodality imaging: novel pharmacological applications of reporter systems. Q. J. Nucl. Med. Mol. Imaging 51(2), 127–138 (2007).
  • Ntziachristos V , RipollJ, WangLV, WeisslederR. Looking and listening to light: The evolution of whole-body photonic imaging.Nat. Biotechnol.23(3), 313–320 (2005).
  • Ma R , TaruttisA, NtziachristosV, RazanskyD. Multispectral optoacoustic tomography (MSOT) scanner for whole-body small animal imaging.Opt. Express17(24), 21414–21426 (2009)
  • Razansky D , DistelM, VinegoniCet al. Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo. Nat. Photonics 3(7), 412–417 (2009)
  • Chandran SS , DicksonKA, RainesRT. Latent fluorophore based on the trimethyl lock.J. Am. Chem. Soc.127(6), 1652–1653 (2005).
  • Lavis LD , ChaoTY, RainesRT. Latent blue and red fluorophores based on the trimethyl lock.Chembiochem7(8), 1151–1154 (2006)
  • Cai SX , Zhang H-Z, Guastella J, Drewe J, Yang W, Weber E. Design and synthesis of rhodamine 110 derivative and caspase-3 substrate for enzyme and cell-based fluorescent assay. Bioorg. Med. Chem. Lett.11(1), 39–42 (2001).
  • Bullok K , Piwnica-WormsD. Synthesis and characterization of a small, membrane-permeant, caspase-activatable far-red fluorescent peptide for imaging apoptosis.J. Med. Chem.48(17), 5404–5407 (2005)
  • Bullok KE , MaxwellD, KesarwalaAHet al. Biochemical and in vivo characterization of a small, membrane-permeant, caspase-activatable far-red fluorescent peptide for imaging apoptosis. Biochemistry 46(13), 4055–4065 (2007).
  • Baruch A , JefferyDA, BogyoM. Enzyme activity – it’s all about image.Trends Cell Biol.14(1), 29–35 (2004)
  • Jeffery DA , BogyoM. Chemical proteomics and its application to drug discovery.Curr. Opin. Biotechnol.14(1), 87–95 (2003).
  • Speers AE , CravattBF. Chemical strategies for activity-based proteomics.Chembiochem5(1), 41–47 (2004).
  • Blum G , VonDG, MerchantMJ, BlauHM, BogyoM. Noninvasive optical imaging of cysteine protease activity using fluorescently quenched activity-based probes.Nat. Chem. Biol.3(10), 668–677 (2007).
  • Jedeszko C , SloaneBF. Cysteine cathepsins in human cancer.Biol. Chem.385(11), 1017–1027 (2004).
  • Kelly KA , WatermanP, WeisslederR. In vivo imaging of molecularly targeted phage. Neoplasia8(12), 1011–1018 (2006)
  • Edgington LE , BergerAB, BlumG, AlbrowVE, PaulickMG, LineberryN, BogyoM. Noninvasive optical imaging of apoptosis by caspase-targeted activity-based probes.Nat. Med.15(8), 967–973 (2009).
  • Sletten EM , BertozziCR. Bioorthogonal chemistry: fishing for selectivity in a sea of functionality [Review].Angew. Chem. Int. Ed. Engl.48(38), 6974–6998 (2009)
  • Qian H , GuY, WangM, AchilefuS. Optimization of the near-infrared fluorescence labeling for in vivo monitoring of a protein drug distribution in animal model. J. Fluoresc.19(2), 277–284 (2009).
  • Johnsson N , JohnssonK. A fusion of disciplines: Chemical approaches to exploit fusion proteins for functional genomics.Chembiochem4(9), 803–810 (2003)
  • Fernandez-Suarez M , TingAY. Fluorescent probes for super-resolution imaging in living cells.Nat. Rev. Mol. Cell Biol.9(12), 929–943 (2008).
  • Wang L , XieJ, SchultzPG. Expanding the genetic code.Annu. Rev. Biophys. Biomol. Struct.35, 225–249 (2006).
  • Wang L , SchultzPG. Expanding the genetic code.Angew. Chem. Int. Ed. Engl.44(1), 34–66 (2004).
  • Wang Q , ParrishAR, WangL. Expanding the genetic code for biological studies.Chem. Biol.16(3), 323–336 (2009).
  • Klohs J , GrafeM, GrafKet al. In vivo imaging of the inflammatory receptor CD40 after cerebral ischemia using a fluorescent antibody. Stroke39(10), 2845–2852 (2008).
  • Biffi S , GarrovoC, MacorPet al. In vivo biodistribution and lifetime analysis of cy5.5-conjugated rituximab in mice bearing lymphoid tumor xenograft using time-domain near-infrared optical imaging. Mol. Imaging7(6), 272–282 (2008).
  • Hilger I , LeistnerY, BerndtAet al. Near-infrared fluorescence imaging of HER-2 protein over-expression in tumour cells. Eur. Radiol. 14(6), 1124–1129 (2004).
  • Lee SB , HassanM, FisherRet al. Affibody molecules for in vivo characterization of HER2-positive tumors by near-infrared imaging. Clin. Cancer Res. 14(12), 3840–3849 (2008).
  • Shan L , HaoY, WangSet al. Visualizing head and neck tumors in vivo using near-infrared fluorescent transferrin conjugate. Mol. Imaging 7(1), 42–49 (2008).
  • Koyama Y , BarrettT, HamaY, RavizziniG, ChoykePL, KobayashiH. In vivo molecular imaging to diagnose and subtype tumors through receptor-targeted optically labeled monoclonal antibodies. Neoplasia9(12), 1021–1029 (2007).
  • Gee MS , UpadhyayR, BergquistH, WeisslederR, JosephsonL, MahmoodU. Multiparameter noninvasive assessment of treatment susceptibility, drug target inhibition and tumor response guides cancer treatment.Int. J. Cancer121(11), 2492–2500 (2007)
  • Steegmaier M , HoffmannM, BaumAet al. BI 2536, a potent and selective inhibitor of polo-like kinase 1, inhibits tumor growth in vivo. Curr. Biol. 17(4), 316–322 (2007)
  • Newton JR , KellyKA, MahmoodU, WeisslederR, DeutscherSL. In vivo selection of phage for the optical imaging of PC-3 human prostate carcinoma in mice. Neoplasia8(9), 772–780 (2006).
  • Kelly KA , WatermanP, WeisslederR. In vivo imaging of molecularly targeted phage. Neoplasia8(12), 1011–1018 (2006).
  • Chang SK , RizviI, SolbanN, HasanT. In vivo optical molecular imaging of vascular endothelial growth factor for monitoring cancer treatment. Clin. Cancer Res.14(13), 4146–4153 (2008).
  • Backer MV , LevashovaZ, PatelVet al. Molecular imaging of VEGF receptors in angiogenic vasculature with single-chain VEGF-based probes. Nat. Med. 13(4), 504–509 (2007).
  • Dietrich T , PerlitzC, LichaKet al. ED-B fibronectin (ED-B) can be targeted using a novel single chain antibody conjugate and is associated with macrophage accumulation in atherosclerotic lesions. Basic Res. Cardiol. 102(4), 298–307 (2007).
  • Graf K , DietrichT, TachezyMet al. Monitoring therapeutical intervention with ezetimibe using targeted near-infrared fluorescence imaging in experimental atherosclerosis. Mol. Imaging 7(2), 68–76 (2008).
  • Sandanaraj BS , GremlichHU, KneuerR, DawsonJ, WachaS. Fluorescent nanoprobes as a biomarker for increased vascular permeability: implications in diagnosis and treatment of cancer and inflammation.Bioconjug. Chem.21(1), 93–101 (2010).
  • Leggett J , CrozierS, BowtellRW. Actively shielded multi-layer gradient coil designs with improved cooling properties.J. Magn. Reson.165(2), 196–207 (2003).
  • Bilgen M . Inductively-overcoupled coil design for high resolution magnetic resonance imaging.Biomed. Eng. Online5 (2006).
  • Poirier-Quinot M , Ginefri J-C, Girard O, Robert P, Darrasse L. Performance of a miniature high-temperature superconducting (HTS) surface coil for in vivo microimaging of the mouse in a standard 1.5T clinical whole-body scanner. Magn. Reson. Med.60(4), 917–927 (2008).
  • Ratering D , BaltesC, Nordmeyer-MassnerJ, MarekD, RudinM. Performance of a 200-MHz cryogenic RF probe designed for MRI and MRS of the murine brain.Magn. Reson. Med.59(6), 1440–1447 (2008).
  • Brau ACS , HedlundLW, JohnsonGA. Cine magnetic resonance microscopy of the rat heart using cardiorespiratory-synchronous projection reconstruction.J. Magn. Reson. Imaging20(1), 31–38 (2004).
  • Tengowski MW , KotykJJ. Risk identification and management: MRI as a research tool in toxicology studies of new chemical entities.Prog. Drug Res.62, 257–278 (2005).
  • Srinivasan S , PogueBW, JiangSet al. In vivo hemoglobin and water concentrations, oxygen saturation, and scattering estimates from near-infrared breast tomography using spectral reconstruction. Acad. Radiol.13(2), 195–202 (2006).
  • Intes X , RipollJ, ChenY, NiokaS, YodhAG, ChanceB. In vivo continuous-wave optical breast imaging enhanced with Indocyanine Green. Med. Phys.30(6), 1039–1047 (2003).
  • Ntziachristos V , YodhAG, SchnallM, ChanceB. Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement.Proc. Natl Acad. Sci. USA97(6), 2767–2772 (2000).
  • Scheel AK , BackhausM, KloseADet al. First clinical evaluation of sagittal laser optical tomography for detection of synovitis in arthritic finger joints. Ann. Rheum. Dis. A 64(2), 239–245 (2005).
  • Benaron DA , HintzSR, VillringerAet al. Noninvasive functional imaging of human brain using light. J. Cereb. Blood Flow Metab. 20(3), 469–477 (2000)
  • Hillman EMC , HebdenJC, SchweigerMet al. Time resolved optical tomography of the human forearm. Phys. Med. Biol.y 46(4), 1117–1130 (2001).
  • Ntziachristos V , RipollJ, WeisslederR. Would near-infrared fluorescence signals propagate through large human organs for clinical studies?Opt. Lett.27(5), 333–335 (2002)
  • Ale A , SarantopoulosA, FreyerM, SoehngenE, ZientkowskaM, NtziachristosV. Hybrid system for simultaneous fluorescence and x-ray computed tomography.IEEE Trans. Med. Imaging29(2), 465–473 (2010).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.