96
Views
0
CrossRef citations to date
0
Altmetric
Special Report

Exploring the Roles of Protein Kinases Using Chemical Genetics

, , , , , & show all
Pages 1233-1241 | Published online: 21 Oct 2009

Bibliography

  • Cohen P . Protein kinases – the major drug targets of the twenty-first century?Nat. Rev. Drug Discov.1, 309–315 (2002).
  • Davies SP , ReddyH, CaivanoM, CohenP. Specificity and mechanism of action of some commonly used protein kinase inhibitors.Biochem. J.351, 95–105 (2000).
  • Senderowicz AM . Small-molecule cyclin-dependent kinase modulators.Oncogene22, 6609–6620 (2003).
  • Zhang J , YangPL, GrayNS. Targeting cancer with small molecule kinase inhibitors.Nat. Rev. Cancer9, 28–39 (2009).
  • Fabian MA , BiggsWH, TreiberDKet al. A small molecule-kinase interaction map for clinical kinase inhibitors. Nat. Biotechnol. 23, 329–336 (2005).
  • Karaman MW , HerrgardS, TreiberDKet al. A quantitative analysis of kinase inhibitor selectivity. Nat. Biotechnol. 26, 127–132 (2008).
  • Smukste I , StockwellBR. Advances in chemical genetics.Annu. Rev. Genomics Hum. Genet.6, 261–286 (2005).
  • Specht KM , ShokatKM. The emerging power of chemical genetics.Curr. Opin. Cell Biol.14, 155–159 (2002).
  • Xu W , DoshiA, LeiM, EckMJ, HarrisonSC. Crystal structures of c-Src reveal features of its autoinhibitory mechanism.Mol. Cell3, 629–638 (1999).
  • Shah K , ShokatKM. A chemical genetic screen for direct v-Src substrates reveals ordered assembly of a retrograde signaling pathway.Chem. Biol.9, 35–47 (2002).
  • Elphick LM , LeeSE, GouverneurV, MannDJ. Using chemical genetics and ATP analogues to dissect protein kinase function.ACS Chem. Biol.2, 299–314 (2007).
  • Randall CL , BurkardME, JallepalliPV. Polo kinase and cytokinesis initiation in mammalian cells: harnessing the awesome power of chemical genetics.Cell Cycle6, 1713–1717 (2007).
  • Hochegger H , DejsuphongD, SonodaEet al. An essential role for Cdk1 in S phase control is revealed via chemical genetics in vertebrate cells. J. Cell Biol. 178, 257–268 (2007).
  • Wang H , ShimizuE, TangYPet al. Inducible protein knockout reveals temporal requirement of CaMKII reactivation for memory consolidation in the brain. Proc. Natl Acad. Sci. USA 100, 4287–4292 (2003).
  • O‘Keefe SJ , MudgettJS, CupoSet al. Chemical genetics define the roles of p38α and p38β in acute and chronic inflammation. J. Biol. Chem. 282, 34663–34671 (2007).
  • Kim JS , LilleyBN, ZhangC, ShokatKM, SanesJR, ZhenM. A chemical-genetic strategy reveals distinct temporal requirements for SAD-1 kinase in neuronal polarization and synapse formation.Neural Develop.3, 23 (2008).
  • Qi ZH , SongM, WallaceMJet al. Protein kinase C ε regulates γ-aminobutyrate type A receptor sensitivity to ethanol and benzodiazepines through phosphorylation of γ2 subunits. J. Biol. Chem. 282, 33052–33063 (2007).
  • Liu Y , BishopA, WituckiLet al. Structural basis for selective inhibition of Src family kinases by PP1. Chem. Biol. 6, 671–678 (1999).
  • Miller AL , ZhangC, ShokatKM, LowellCA. Generation of a novel system for studying spleen tyrosine kinase function in macrophages and B cells.J. Immunol.182, 988–998 (2009).
  • Tatton L , MorleyGM, ChopraR, KhwajaA. The Src-selective kinase inhibitor PP1 also inhibits Kit and Bcr-Abl tyrosine kinases.J. Biol. Chem.278, 4847–4853 (2003).
  • Fan QW , ZhangC, ShokatKM, WeissWA. Chemical genetic blockade of transformation reveals dependence on aberrant oncogenic signaling.Curr. Biol.12, 1386–1394 (2002).
  • Kraybill BC , ElkinLL, BlethrowJD, MorganDO, ShokatKM. Inhibitor scaffolds as new allele specific kinase substrates.J. Am. Chem. Soc.124, 12118–12128 (2002).
  • Morgan DJ , WeisenhausM, ShumSet al. Tissue-specific PKA inhibition using a chemical genetic approach and its application to studies on sperm capacitation. Proc. Natl Acad. Sci. USA 105, 20740–20745 (2008).
  • Kenski DM , ZhangC, von Zastrow M, Shokat KM. Chemical genetic engineering of G protein-coupled receptor kinase 2. J. Biol. Chem.280, 35051–35061 (2005).
  • Papa FR , ZhangC, ShokatK, WalterP. Bypassing a kinase activity with an ATP-competitive drug.Science302, 1533–1537 (2003).
  • Hanke JH , GardnerJP, DowRLet al. Discovery of a novel, potent, and Src family-selective tyrosine kinase inhibitor. Study of Lck- and FynT-dependent T cell activation. J. Biol. Chem. 271, 695–701 (1996).
  • Gregan J , ZhangC, RumpfCet al. Construction of conditional analog-sensitive kinase alleles in the fission yeast Schizosaccharomyces pombe. Nat. Protoc. 2, 2996–3000 (2007).
  • Bishop AC , Kung C-Y, Shah K, Witucki L, Shokat KM, Liu Y. Generation of monospecific nanomolar tyrosine kinase inhibitors via a chemical genetic approach. J. Am. Chem. Soc.121, 627–631 (1999).
  • Bishop AC , ShahK, LiuY, WituckiL, KungC, ShokatKM. Design of allele-specific inhibitors to probe protein kinase signaling.Curr. Biol.8, 257–266 (1998).
  • Cohen MS , ZhangC, ShokatKM, TauntonJ. Structural bioinformatics-based design of selective, irreversible kinase inhibitors.Science308, 1318–1321 (2005).
  • Blair JA , RauhD, KungCet al. Structure-guided development of affinity probes for tyrosine kinases using chemical genetics. Nat. Chem. Biol. 3, 229–238 (2007).
  • Snead JL , SullivanM, LoweryDMet al. A coupled chemical-genetic and bioinformatic approach to Polo-like kinase pathway exploration. Chem. Biol. 14, 1261–1272 (2007).
  • Shah K , LiuY, DeirmengianC, ShokatKM. Engineering unnatural nucleotide specificity for Rous sarcoma virus tyrosine kinase to uniquely label its direct substrates.Proc. Natl Acad. Sci. USA94, 3565–3570 (1997).
  • Apsel B , BlairJA, GonzalezBet al. Targeted polypharmacology: discovery of dual inhibitors of tyrosine and phosphoinositide kinases. Nat. Chem. Biol. 4, 691–699 (2008).
  • Resnik JL , ReichartDB, HueyK, WebsterNJ, SeelyBL. Elevated insulin-like growth factor I receptor autophosphorylation and kinase activity in human breast cancer.Cancer Res.58, 1159–1164 (1998).
  • Graff JR , KonicekBW, McNultyAMet al. Increased AKT activity contributes to prostate cancer progression by dramatically accelerating prostate tumor growth and diminishing p27Kip1 expression. J. Biol. Chem. 275, 24500–24505 (2000).
  • Brognard J , ClarkAS, NiY, DennisPA. Akt/protein kinase B is constitutively active in non-small cell lung cancer cells and promotes cellular survival and resistance to chemotherapy and radiation.Cancer Res.61, 3986–3997 (2001).
  • Gorre ME , MohammedM, EllwoodKet al. Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science 293, 876–880 (2001).
  • Chu SH , SmallD. Mechanisms of resistance to FLT3 inhibitors.Drug Resist. Updat.12(1–2), 8–16 (2009).
  • Bikker JA , BrooijmansN, WissnerA, MansourTS. Kinase domain mutations in cancer: implications for small molecule drug design strategies.J. Med. Chem.52, 1493–1509 (2009).
  • Zunder ER , KnightZA, HousemanBT, ApselB, ShokatKM. Discovery of drug-resistant and drug-sensitizing mutations in the oncogenic PI3K isoform p110α.Cancer Cell14, 180–192 (2008).
  • Cheng AM , RowleyB, PaoW, HaydayA, BolenJB, PawsonT. Syk tyrosine kinase required for mouse viability and B-cell development.Nature378, 303–306 (1995).
  • Levin SE , ZhangC, KadlecekTA, ShokatKM, WeissA. Inhibition of ZAP-70 kinase activity via an analog-sensitive allele blocks T cell receptor and CD28 superagonist signaling.J. Biol. Chem.283, 15419–15430 (2008).
  • Negishi I , MotoyamaN, NakayamaKet al. Essential role for ZAP-70 in both positive and negative selection of thymocytes. Nature 376, 435–438 (1995).
  • Bashir T , PaganoM. Cdk1: the dominant sibling of Cdk2.Nat. Cell Biol.7, 779–781 (2005).
  • Larochelle S , MerrickKA, TerretMEet al. Requirements for Cdk7 in the assembly of Cdk1/cyclin B and activation of Cdk2 revealed by chemical genetics in human cells. Mol. Cell 25, 839–850 (2007).
  • Sabapathy K , HochedlingerK, NamSY, BauerA, KarinM, WagnerEF. Distinct roles for JNK1 and JNK2 in regulating JNK activity and c-Jun-dependent cell proliferation.Mol. Cell15, 713–725 (2004).
  • Tournier C , HessP, YangDDet al. Requirement of JNK for stress-induced activation of the cytochrome C-mediated death pathway. Science 288, 870–874 (2000).
  • Jaeschke A , KarasaridesM, VenturaJJet al. JNK2 is a positive regulator of the cJun transcription factor. Mol. Cell 23, 899–911 (2006).
  • Shirra MK , McCartneyRR, ZhangC, ShokatKM, SchmidtMC, ArndtKM. A chemical genomics study identifies Snf1 as a repressor of GCN4 translation.J. Biol. Chem.283, 35889–35898 (2008).
  • Das M , JiangF, SlussHKet al. Suppression of p53-dependent senescence by the JNK signal transduction pathway. Proc. Natl Acad. Sci. USA 104, 15759–15764 (2007).
  • Allen JJ , LazerwithSE, ShokatKM. Bio-orthogonal affinity purification of direct kinase substrates.J. Am. Chem. Soc.127, 5288–5289 (2005).
  • Allen JJ , LiM, BrinkworthCSet al. A semisynthetic epitope for kinase substrates. Nat. Methods 4, 511–516 (2007).
  • Blethrow JD , GlavyJS, MorganDO, ShokatKM. Covalent capture of kinase-specific phosphopeptides reveals Cdk1-cyclin B substrates.Proc. Natl Acad. Sci. USA105, 1442–1447 (2008).
  • Chi Y , WelckerM, HizliAA, PosakonyJJ, AebersoldR, ClurmanBE. Identification of CDK2 substrates in human cell lysates.Genome Biol.9, R149 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.