294
Views
0
CrossRef citations to date
0
Altmetric
Review

New Approaches to Targeting the Actin Cytoskeleton for Chemotherapy

, &
Pages 1311-1331 | Published online: 21 Oct 2009

Bibliography

  • Abbenante G , ReidRC, FairlieDP. ‘Clean’ or ‘dirty‘– just how selective do drugs need to be?Aus. J. Chem.61(9), 654–660 (2008).
  • Hambley TW , HaitWN. Is anticancer drug development heading in the right direction?Cancer Res.69(4), 1259–1262 (2009).
  • Zhou J , GiannakakouP. Targeting microtubules for cancer chemotherapy.Curr. Med. Chem. Anticancer Agents5(1), 65–71 (2005).
  • Khaitlina SY . Functional specificity of actin isoforms. In: International Review of Cytology. Jeon KW, Jarvik J (Eds). Academic Press, Oxford, UK (2001).
  • Sporn MB . The war on cancer.Lancet347(9012), 1377–1381 (1996).
  • Hayot C , FarinelleS, De Decker R et al.In vitro pharmacological characterizations of the anti-angiogenic and anti-tumor cell migration properties mediated by microtubule-affecting drugs, with special emphasis on the organization of the actin cytoskeleton. Int. J. Oncol.21(2), 417–425 (2002).
  • Bijman MNA , van Berkel MPA, van Nieuw Amerongen GP, Boven E. Interference with actin dynamics is superior to disturbance of microtubule function in the inhibition of human ovarian cancer cell motility. Biochem. Pharm.76(6), 707–716 (2008).
  • Gunning P , O‘NeillG, HardemanE. Tropomyosin-based regulation of the actin cytoskeleton in time and space.Physiol. Rev.88(1), 1–35 (2008).
  • Herman IM . Actin isoforms.Curr. Opin. Cell Biol.5(1), 48–55 (1993).
  • Schoenenberger CA , SteinmetzMO, StofflerD, MandinovaA, AebiU. Structure, assembly, and dynamics of actin filaments in situ and In vitro. Microsc. Res. Tech.47(1), 38–50 (1999).
  • Tobacman LS . Thin filament-mediated regulation of cardiac contraction.Annu. Rev. Physiol.58, 447–481 (1996).
  • Schevzov G , LloydC, GunningP. High level expression of transfected β- and γ-actin genes differentially impacts on myoblast cytoarchitecture.J. Cell Biol.117(4), 775–785 (1992).
  • von Arx P , BantleS, SoldatiT, PerriardJC. Dominant negative effect of cytoplasmic actin isoproteins on cardiomyocyte cytoarchitecture and function.J. Cell Biol.131(6), 1759–1773 (1995).
  • Pollard TD , BorisyGG. Cellular motility driven by assembly and disassembly of actin filaments.Cell112(4), 453–465 (2003).
  • Giganti A , FriederichE. The actin cytoskeleton as a therapeutic target: state of the art and future directions.Prog. Cell Cycle Res.5, 511–525 (2003).
  • Jordan MA , WilsonL. Microtubules and actin filaments: dynamic targets for cancer chemotherapy.Curr. Opin. Cell Biol.10(1), 123–130 (1998).
  • Fenteany G , ZhuS. Small-molecule inhibitors of actin dynamics and cell motility.Curr. Top. Med. Chem.3(6), 593–616 (2003).
  • Stracke ML , SoroushM, LiottaLA, SchiffmannE. Cytoskeletal agents inhibit motility and adherence of human tumor cells.Kidney Int.43(1), 151–157 (1993).
  • Bousquet PF , PaulsenLA, FondyCet al. Effects of cytochalasin B in culture and in vivo on murine Madison 109 lung carcinoma and on B16 melanoma. Cancer Res. 50(5), 1431–1439 (1990).
  • Stingl J , AndersenRJ, EmermanJT. In vitro screening of crude extracts and pure metabolites obtained from marine invertebrates for the treatment of breast cancer. Cancer Chemother. Pharmacol.30(5), 401–406 (1992).
  • Senderowicz AM , KaurG, SainzEet al. Jasplakinolide’s inhibition of the growth of prostate carcinoma cells In vitro with disruption of the actin cytoskeleton. J. Natl Cancer Inst. 87(1), 46–51 (1995).
  • Hayot C , DebeirO, Van Ham P et al. Characterization of the activities of actin-affecting drugs on tumor cell migration. Toxicol. App. Pharm.211(1), 30–40 (2006).
  • Bai R , Verdier-PinardP, GangwarSet al. Dolastatin 11, a marine depsipeptide, arrests cells at cytokinesis and induces hyperpolymerization of purified actin. Mol. Pharmacol. 59(3), 462–469 (2001).
  • Lamalice L , Le Boeuf F, Huot J. Endothelial cell migration during angiogenesis. Circ. Res.100(6), 782–794 (2007).
  • Yamaguchi H , CondeelisJ. Regulation of the actin cytoskeleton in cancer cell migration and invasion.Biochim. Biophys. Acta1773(5), 642–652 (2007).
  • Le Clainche C , CarlierMF. Regulation of actin assembly associated with protrusion and adhesion in cell migration.Physiol. Rev.88(2), 489–513 (2008).
  • Ponti A , MachacekM, GuptonSL, Waterman-StorerCM, DanuserG. Two distinct actin networks drive the protrusion of migrating cells.Science305(5691), 1782–1786 (2004).
  • Small JV , StradalT, VignalE, RottnerK. The lamellipodium: where motility begins.Trends Cell Biol.12(3), 112–120 (2002).
  • Chhabra ES , HiggsHN. The many faces of actin: matching assembly factors with cellular structures.Nat. Cell Biol.9(10), 1110–1121 (2007).
  • Mattila PK , LappalainenP. Filopodia: molecular architecture and cellular functions.Nat. Rev. Mol. Cell Biol.9(6), 446–454 (2008).
  • Linder S . The matrix corroded: podosomes and invadopodia in extracellular matrix degradation.Trends Cell Biol.17(3), 107–117 (2007).
  • Yamaguchi H , PixleyF, CondeelisJ. Invadopodia and podosomes in tumor invasion.Eur. J. Cell Biol.85(3–4), 213–218 (2006).
  • Buccione R , OrthJD, McNivenMA. Foot and mouth: podosomes, invadopodia and circular dorsal ruffles.Nat. Rev. Mol. Cell Biol.5(8), 647–657 (2004).
  • Condeelis J , SegallJE. Intravital imaging of cell movement in tumours.Nat. Rev. Cancer3(12), 921–930 (2003).
  • Hotulainen P , LappalainenP. Stress fibers are generated by two distinct actin assembly mechanisms in motile cells.J. Cell Biol.173(3), 383–394 (2006).
  • Small JV , ReschGP. The comings and goings of actin: coupling protrusion and retraction in cell motility.Curr. Opin. Cell Biol.17(5), 517–523 (2005).
  • Naumanen P , LappalainenP, HotulainenP. Mechanisms of actin stress fibre assembly.J. Micro.231(3), 446–454 (2008).
  • Pellegrin S , MellorH. Actin stress fibres.J. Cell Sci.120(20), 3491–3499 (2007).
  • Hall A , NobesCD. Rho GTPases: molecular switches that control the organization and dynamics of the actin cytoskeleton.Philos. Trans. R. Soc. Lond. B Biol. Sci.355(1399), 965–970 (2000).
  • Aznar S , Fernández-ValerónP, EspinaC, LacalJC. Rho GTPases: potential candidates for anticancer therapy.Cancer Lett.206(2), 181–191 (2004).
  • Narumiya S , TanjiM, IshizakiT. Rho signaling, ROCK and mDia1, in transformation, metastasis and invasion.Cancer Metastasis Rev.28(1–2), 65–76 (2009).
  • Fritz G , KainaB. Rho GTPases: promising cellular targets for novel anticancer drugs.Curr. Cancer Drug Targets6(1), 1–14 (2006).
  • Zohrabian VM , ForzaniB, ChauZ, MuraliR, Jhanwar-UniyalM. Rho/ROCK and MAPK signaling pathways are involved in glioblastoma cell migration and proliferation.Anticancer Res.29(1), 119–123 (2009).
  • Xue F , TakaharaT, SugiyamaY. Blockade of Rho/Rho-associated coiled coil-forming kinase signaling can prevent progression of hepatocellular carcinoma in matrix metalloproteinase-dependent manner.Hepatol. Res.38(8), 810–817 (2008).
  • Ono S , MinamiN, AbeH, ObinataT. Characterization of a novel cofilin isoform that is predominantly expressed in mammalian skeletal muscle.J. Biol. Chem.269(21), 15280–15286 (1994).
  • Vartiainen MK , MustonenT, MattilaPKet al. The three mouse actin-depolymerizing factor/cofilins evolved to fulfill cell-type-specific requirements for actin dynamics. Mol. Biol. Cell 13(1), 183–194 (2002).
  • Gurniak CB , PerlasE, WitkeW. The actin depolymerizing factor n-cofilin is essential for neural tube morphogenesis and neural crest cell migration.Dev. Biol.278(1), 231–241 (2005).
  • Ikeda S , CunninghamLA, BoggessDet al. Aberrant actin cytoskeleton leads to accelerated proliferation of corneal epithelial cells in mice deficient for destrin (actin depolymerizing factor). Hum. Mol. Genet. 12(9), 1029–1037 (2003).
  • Ichetovkin I , GrantW, CondeelisJ. Cofilin produces newly polymerized actin filaments that are preferred for dendritic nucleation by the Arp2/3 complex.Curr. Biol.12(1), 79–84 (2002).
  • Andrianantoandro E , PollardTD. Mechanism of actin filament turnover by severing and nucleation at different concentrations of ADF/cofilin.Mol. Cell24(1), 13–23 (2006).
  • Bamburg JR . Proteins of the ADF/cofilin family: essential regulators of actin dynamics.Annu. Rev. Cell Dev. Biol.15, 185–230 (1999).
  • Ghosh M , SongX, MouneimneGet al. Cofilin promotes actin polymerization and defines the direction of cell motility. Science 304(5671), 743–746 (2004).
  • Van Troys M , HuyckL, LeymanSet al. Ins and outs of ADF/cofilin activity and regulation. Eur. J. Cell Biol. 87(8–9), 649–667 (2008).
  • Song X , ChenX, YamaguchiHet al. Initiation of cofilin activity in response to EGF is uncoupled from cofilin phosphorylation and dephosphorylation in carcinoma cells. J. Cell Sci. 119(14), 2871–2881 (2006).
  • van Rheenen J , CondeelisJ, GlogauerM. A common cofilin activity cycle in invasive tumor cells and inflammatory cells.J. Cell Sci.122(3), 305–311 (2009).
  • Mouneimne G , SoonL, DesMaraisVet al. Phospholipase C and cofilin are required for carcinoma cell directionality in response to EGF stimulation. J. Cell Biol. 166(5), 697–708 (2004).
  • Mouneimne G , DesMaraisV, SidaniMet al. Spatial and temporal control of cofilin activity is required for directional sensing during chemotaxis. Curr. Biol. 16(22), 2193–2205 (2006).
  • Gunnersen JM , SpirkoskaV, SmithPE, DanksRA, TanSS. Growth and migration markers of rat C6 glioma cells identified by serial analysis of gene expression.Glia32(2), 146–154 (2000).
  • Keshamouni VG , MichailidisG, GrassoCSet al. Differential protein expression profiling by iTRAQ-2DLC-MS/MS of lung cancer cells undergoing epithelial-mesenchymal transition reveals a migratory/invasive phenotype. J. Proteome Res. 5(5), 1143–1154 (2006).
  • Martoglio AM , TomBD, Starkey Met al. Changes in tumorigenesis- and angiogenesis-related gene transcript abundance profiles in ovarian cancer detected by tailored high density cDNA arrays. Mol. Med.6(9), 750–765 (2000).
  • Turhani D , KrapfenbauerK, ThurnherD, LangenH, FountoulakisM. Identification of differentially expressed, tumor-associated proteins in oral squamous cell carcinoma by proteomic analysis.Electrophoresis27(7), 1417–1423 (2006).
  • Ding SJ , LiY, ShaoXXet al. Proteome analysis of hepatocellular carcinoma cell strains, MHCC97-H and MHCC97-L, with different metastasis potentials. Proteomics 4(4), 982–994 (2004).
  • Davila M , FrostAR, GrizzleWE, ChakrabartiR. LIM kinase 1 is essential for the invasive growth of prostate epithelial cells: implications in prostate cancer.J. Biol. Chem.278(38), 36868–36875 (2003).
  • Yoshioka K , FolettaV, BernardO, ItohK. A role for LIM kinase in cancer invasion.Proc. Natl Acad. Sci. USA100(12), 7247–7252 (2003).
  • Wang W , GoswamiS, LapidusKet al. Identification and testing of a gene expression signature of invasive carcinoma cells within primary mammary tumors. Cancer Res. 64(23), 8585–8594 (2004).
  • Zebda N , BernardO, BaillyMet al. Phosphorylation of ADF/cofilin abolishes EGF-induced actin nucleation at the leading edge and subsequent lamellipod extension. J. Cell Biol. 151(5), 1119–1128 (2000).
  • Meyer G , KimB, van Golen C, Feldman EL. Cofilin activity during insulin-like growth factor I-stimulated neuroblastoma cell motility. Cell Mol. Life Sci.62(4), 461–470 (2005).
  • Wang W , EddyR, CondeelisJ. The cofilin pathway in breast cancer invasion and metastasis.Nat. Rev. Cancer7(6), 429–440 (2007).
  • Ross-Macdonald P , de SilvaH, GuoQet al. Identification of a nonkinase target mediating cytotoxicity of novel kinase inhibitors. Mol. Cancer Ther.7(11), 3490–3498 (2008).
  • Mohri K , Takano-OhmuroH, NakashimaHet al. Expression of cofilin isoforms during development of mouse striated muscles. J. Muscle Res. Cell Motil. 21(1), 49–57 (2000).
  • Nakashima K , SatoN, NakagakiTet al. Two mouse cofilin isoforms, muscle-type (MCF) and non-muscle type (NMCF), interact with f-actin with different efficiencies. J. Biochem. 138(4), 519–526 (2005).
  • Silacci P , MazzolaiL, GauciCet al. Gelsolin superfamily proteins: key regulators of cellular functions. Cell Mol. Life Sci. 61(19), 2614–2623 (2004).
  • Robinson RC , MejillanoM, LeVPet al. Domain movement in gelsolin: a calcium-activated switch. Science 286(5446), 1939–1942 (1999).
  • Selden LA , KinosianHJ, NewmanJet al. Severing of F-actin by the amino-terminal half of gelsolin suggests internal cooperativity in gelsolin. Biophys. J. 75(6), 3092–3100 (1998).
  • Gremm D , WegnerA. Gelsolin as a calcium-regulated actin filament-capping protein.Eur J. Biochem.267(14), 4339–4345 (2000).
  • Azuma T , WitkeW, StosselTP, HartwigJH, KwiatkowskiDJ. Gelsolin is a downstream effector of rac for fibroblast motility.EMBO J.17(5), 1362–1370 (1998).
  • De Corte V , BruyneelE, BoucherieCet al. Gelsolin-induced epithelial cell invasion is dependent on Ras-Rac signaling. EMBO J. 21(24), 6781–6790 (2002).
  • Witke W , SharpeAH, HartwigJHet al. Hemostatic, inflammatory, and fibroblast responses are blunted in mice lacking gelsolin. Cell 81(1), 41–51 (1995).
  • Lu M , WitkeW, KwiatkowskiDJ, KosikKS. Delayed retraction of filopodia in gelsolin null mice.J. Cell Biol.138(6), 1279–1287 (1997).
  • Chellaiah M , KizerN, SilvaMet al. Gelsolin deficiency blocks podosome assembly and produces increased bone mass and strength. J. Cell Biol. 148(4), 665–678 (2000).
  • Kothakota S , AzumaT, ReinhardCet al. Caspase-3-generated fragment of gelsolin: effector of morphological change in apoptosis. Science 278(5336), 294–298 (1997).
  • Tanaka M , MullauerL, OgisoYet al. Gelsolin: a candidate for suppressor of human bladder cancer. Cancer Res. 55(15), 3228–3232 (1995).
  • Ohtsu M , SakaiN, FujitaHet al. Inhibition of apoptosis by the actin-regulatory protein gelsolin. EMBO J. 16(15), 4650–4656 (1997).
  • Asch HL , HeadK, DongYet al. Widespread loss of gelsolin in breast cancers of humans, mice, and rats. Cancer Res. 56(21), 4841–4845 (1996).
  • Lee HK , DriscollD, AschH, AschB, ZhangPJ. Downregulated gelsolin expression in hyperplastic and neoplastic lesions of the prostate.Prostate40(1), 14–19 (1999).
  • Thompson CC , AshcroftFJ, PatelSet al. Pancreatic cancer cells overexpress gelsolin family-capping proteins, which contribute to their cell motility. Gut 56(1), 95–106 (2007).
  • Thor AD , EdgertonSM, LiuS, MooreDH 2nd, Kwiatkowski DJ. Gelsolin as a negative prognostic factor and effector of motility in erbB-2-positive epidermal growth factor receptor-positive breast cancers. Clin. Cancer Res.7(8), 2415–2424 (2001).
  • Uchida K , MasumoriN, TakahashiAet al. Murine androgen-independent neuroendocrine carcinoma promotes metastasis of human prostate cancer cell line LNCaP. Prostate 66(5), 536–545 (2006).
  • Van den Abbeele A , De CorteV, Van ImpeKet al. Downregulation of gelsolin family proteins counteracts cancer cell invasion In vitro. Cancer Lett.255(1), 57–70 (2007).
  • Yang J , TanD, AschHLet al. Prognostic significance of gelsolin expression level and variability in nonsmall cell lung cancer. Lung Cancer 46(1), 29–42 (2004).
  • Rao J , SeligsonD, VisapaaHet al. Tissue microarray analysis of cytoskeletal actin-associated biomarkers gelsolin and E-cadherin in urothelial carcinoma. Cancer 95(6), 1247–1257 (2002).
  • Shieh D -B, Chen IW, Wei T-Y et al. Tissue expression of gelsolin in oral carcinogenesis progression and its clinicopathological implications. Oral Oncol.42(6), 599–606 (2006).
  • Arai M , KwiatkowskiD. Differential developmentally regulated expression of gelsolin family members in the mouse.Dev. Dyn.215(4), 297–307 (1999).
  • Amann KJ , PollardTD. The Arp2/3 complex nucleates actin filament branches from the sides of pre-existing filaments.Nat. Cell Biol.3(3), 306–310 (2001).
  • Blanchoin L , AmannKJ, HiggsHNet al. Direct observation of dendritic actin filament networks nucleated by Arp2/3 complex and WASP/Scar proteins. Nature 404(6781), 1007–1011 (2000).
  • Mullins RD , HeuserJA, PollardTD. The interaction of Arp2/3 complex with actin: nucleation, high affinity pointed end capping, and formation of branching networks of filaments.Proc. Natl Acad. Sci. USA95(11), 6181–6186 (1998).
  • Millard TH , SharpSJ, MacheskyLM. Signalling to actin assembly via the WASP (Wiskott–Aldrich syndrome protein)-family proteins and the Arp2/3 complex.Biochem. J.380(1), 1–17 (2004).
  • Stradal TE , RottnerK, DisanzaAet al. Regulation of actin dynamics by WASP and WAVE family proteins. Trends Cell Biol. 14(6), 303–311 (2004).
  • Higgs HN , PollardTD. Activation by Cdc42 and PIP2 of Wiskott–Aldrich syndrome protein (WASp) stimulates actin nucleation by Arp2/3 complex. J. Cell Biol.150(6), 1311–1320 (2000).
  • Rohatgi R , HoHY, KirschnerMW. Mechanism of N-WASP activation by CDC42 and phosphatidylinositol 4, 5-bisphosphate.J. Cell Biol.150(6), 1299–1310 (2000).
  • Svitkina TM , BorisyGG. Arp2/3 complex and actin depolymerizing factor/cofilin in dendritic organization and treadmilling of actin filament array in lamellipodia.J. Cell Biol.145(5), 1009–1026 (1999).
  • Bailly M , IchetovkinI, GrantWet al. The F-actin side binding activity of the Arp2/3 complex is essential for actin nucleation and lamellipod extension. Curr. Biol. 11(8), 620–625 (2001).
  • Steffen A , FaixJ, ReschGPet al. Filopodia formation in the absence of functional WAVE- and Arp2/3-complexes. Mol. Biol. Cell 17(6), 2581–2591 (2006).
  • Sarmiento C , WangW, DovasAet al. WASP family members and formin proteins coordinate regulation of cell protrusions in carcinoma cells. J. Cell Biol. 180(6), 1245–1260 (2008).
  • Miki H , SasakiT, TakaiY, TakenawaT. Induction of filopodium formation by a WASP-related actin-depolymerizing protein N-WASP.Nature391(6662), 93–96 (1998).
  • Svitkina TM , BulanovaEA, ChagaOYet al. Mechanism of filopodia initiation by reorganization of a dendritic network. J. Cell Biol. 160(3), 409–421 (2003).
  • Korobova F , SvitkinaT. Arp2/3 complex is important for filopodia formation, growth cone motility, and neuritogenesis in neuronal cells.Mol. Biol. Cell19(4), 1561–1574 (2008).
  • Snapper SB , TakeshimaF, AntonIet al. N-WASP deficiency reveals distinct pathways for cell surface projections and microbial actin-based motility. Nat. Cell Biol. 3(10), 897–904 (2001).
  • Pellegrin S , MellorH. The Rho family GTPase Rif induces filopodia through mDia2.Curr. Biol.15(2), 129–133 (2005).
  • Goode BL , EckMJ. Mechanism and function of formins in the control of actin assembly.Annu. Rev. Biochem.76, 593–627 (2007).
  • Yang C , CzechL, GerbothSet al. Novel roles of formin mDia2 in lamellipodia and filopodia formation in motile cells. PLoS Biol. 5(11), e317 (2007).
  • Linder S , NelsonD, WeissM, AepfelbacherM. Wiskott-Aldrich syndrome protein regulates podosomes in primary human macrophages.Proc. Natl Acad. Sci. USA96(17), 9648–9653 (1999).
  • Mizutani K , MikiH, HeH, MarutaH, TakenawaT. Essential role of neural Wiskott-Aldrich syndrome protein in podosome formation and degradation of extracellular matrix in src-transformed fibroblasts.Cancer Res.62(3), 669–674 (2002).
  • Kaverina I , StradalTE, GimonaM. Podosome formation in cultured A7r5 vascular smooth muscle cells requires Arp2/3-dependent de novo actin polymerization at discrete microdomains. J. Cell Sci.116(Pt 24), 4915–4924 (2003).
  • Yamaguchi H , LorenzM, KempiakSet al. Molecular mechanisms of invadopodium formation: the role of the N-WASP-Arp2/3 complex pathway and cofilin. J. Cell Biol. 168(3), 441–452 (2005).
  • Lorenz M , YamaguchiH, WangY, SingerRH, CondeelisJ. Imaging sites of N-wasp activity in lamellipodia and invadopodia of carcinoma cells.Curr. Biol.14(8), 697–703 (2004).
  • Laurila E , SavinainenK, KuuseloR, KarhuR, KallioniemiA. Characterization of the 7q21-q22 amplicon identifies ARPC1A, a subunit of the Arp2/3 complex, as a regulator of cell migration and invasion in pancreatic cancer.Genes Chromosomes Cancer48(4), 330–339 (2009).
  • Semba S , IwayaK, MatsubayashiJet al. Coexpression of actin-related protein 2 and Wiskott–Aldrich syndrome family verproline-homologous protein 2 in adenocarcinoma of the lung. Clin. Cancer Res. 12(8), 2449–2454 (2006).
  • Iwaya K , OikawaK, SembaSet al. Correlation between liver metastasis of the colocalization of actin-related protein 2 and 3 complex and WAVE2 in colorectal carcinoma. Cancer Sci. 98(7), 992–999 (2007).
  • Yang L -Y, Tao Y-M, Ou D-P et al. Increased expression of Wiskott-Aldrich Syndrome protein family verprolin-homologous protein 2 correlated with poor prognosis of hepatocellular carcinoma. Clin. Cancer Res.12(19), 5673–5679 (2006).
  • Fernando HS , DaviesSR, ChhabraAet al. Expression of the WASP verprolin-homologues (WAVE members) in human breast cancer. Oncology 73(5–6), 376–383 (2007).
  • Nolen BJ , TomasevicN, RussellAet al. Characterization of two classes of small molecule inhibitors of Arp2/3 complex. Nature 460(7258), 1031–1034 (2009).
  • Peterson JR , BickfordLC, MorganDet al. Chemical inhibition of N-WASP by stabilization of a native autoinhibited conformation. Nat. Struct. Mol. Biol. 11(8), 747–755 (2004).
  • Yanagawa R , FurukawaY, TsunodaTet al. Genome-wide screening of genes showing altered expression in liver metastases of human colorectal cancers by cDNA microarray. Neoplasia 3(5), 395–401 (2001).
  • Martin T , PereiraG, WatkinsG, ManselR, JiangW. N-WASP is a putative tumour suppressor in breast cancer cells, In vitro and in vivo, and is associated with clinical outcome in patients with breast cancer. Clin. Exp. Metastasis25(2), 97–108 (2008).
  • Weaver AM , KarginovAV, KinleyAWet al. Cortactin promotes and stabilizes Arp2/3-induced actin filament network formation. Curr. Biol. 11(5), 370–374 (2001).
  • Uruno T , LiuJ, ZhangPet al. Activation of Arp2/3 complex-mediated actin polymerization by cortactin. Nat. Cell Biol. 3(3), 259–266 (2001).
  • Martinez-Quiles N , HoHY, KirschnerMW, RameshN, GehaRS. Erk/Src phosphorylation of cortactin acts as a switch on-switch off mechanism that controls its ability to activate N-WASP.Mol. Cell Biol.24(12), 5269–5280 (2004).
  • Gatesman Ammer A , WeedSA. Cortactin branches out: roles in regulating protrusive actin dynamics.Cell Motil. Cytoskeleton65(9), 687–707 (2008).
  • Weaver AM . Cortactin in tumor invasiveness.Cancer Lett.265(2), 157–166 (2008).
  • Bryce NS , ClarkES, LeysathJLet al. Cortactin promotes cell motility by enhancing lamellipodial persistence. Curr. Biol. 15(14), 1276–1285 (2005).
  • Patel AS , SchechterGL, WasilenkoWJ, SomersKD. Overexpression of EMS1/cortactin in NIH3T3 fibroblasts causes increased cell motility and invasion In vitro. Oncogene16(25), 3227–3232 (1998).
  • Webb BA , JiaL, EvesR, MakAS. Dissecting the functional domain requirements of cortactin in invadopodia formation.Eur. J. Cell Biol.86(4), 189–206 (2007).
  • Tehrani S , FaccioR, ChandrasekarI, RossFP, CooperJA. Cortactin has an essential and specific role in osteoclast actin assembly.Mol. Biol. Cell17(7), 2882–2895 (2006).
  • Artym VV , ZhangY, Seillier-MoiseiwitschF, YamadaKM, MuellerSC. Dynamic interactions of cortactin and membrane type 1 matrix metalloproteinase at invadopodia: defining the stages of invadopodia formation and function.Cancer Res.66(6), 3034–3043 (2006).
  • Timpson P , LynchDK, SchramekD, WalkerF, DalyRJ. Cortactin overexpression inhibits ligand-induced down-regulation of the epidermal growth factor receptor.Cancer Res.65(8), 3273–3280 (2005).
  • Cao H , WellerS, OrthJDet al. Actin and Arf1-dependent recruitment of a cortactin–dynamin complex to the Golgi regulates post-Golgi transport. Nat. Cell Biol. 7(5), 483–492 (2005).
  • Clark ES , BrownB, WhighamASet al. Aggressiveness of HNSCC tumors depends on expression levels of cortactin, a gene in the 11q13 amplicon. Oncogene 28(3), 431–444 (2009).
  • Clark ES , WhighamAS, YarbroughWG, WeaverAM. Cortactin is an essential regulator of matrix metalloproteinase secretion and extracellular matrix degradation in invadopodia.Cancer Res.7(9), 4227–4235 (2007).
  • Fisher JF , MobasheryS. Recent advances in MMP inhibitor design.Cancer Metastasis Rev.25(1), 115–136 (2006).
  • van Rossum AG , van BragtMP, Schuuring-ScholtesEet al. Transgenic mice with mammary gland targeted expression of human cortactin do not develop (pre-malignant) breast tumors: studies in MMTV-cortactin and MMTV-cortactin/-cyclin D1 bitransgenic mice. BMC Cancer6, 58 (2006).
  • Li Y , TondraviM, LiuJet al. Cortactin potentiates bone metastasis of breast cancer cells. Cancer Res. 61(18), 6906–6911 (2001).
  • Chuma M , SakamotoM, YasudaJet al. Overexpression of cortactin is involved in motility and metastasis of hepatocellular carcinoma. J. Hepatol. 41(4), 629–636 (2004).
  • Luo ML , ShenXM, ZhangYet al. Amplification and overexpression of CTTN (EMS1) contribute to the metastasis of esophageal squamous cell carcinoma by promoting cell migration and anoikis resistance. Cancer Res. 66(24), 11690–11699 (2006).
  • Conti MA , AdelsteinRS. Nonmuscle myosin II moves in new directions.J. Cell Sci.121(Pt 1), 11–18 (2008).
  • Bao J , MaX, LiuC, AdelsteinRS. Replacement of nonmuscle myosin II-B with II-A rescues brain but not cardiac defects in mice.J. Biol. Chem.282(30), 22102–22111 (2007).
  • Conti MA , Even-RamS, LiuC, YamadaKM, AdelsteinRS. Defects in cell adhesion and the visceral endoderm following ablation of nonmuscle myosin heavy chain II-A in mice.J. Biol. Chem.279(40), 41263–41266 (2004).
  • Tullio AN , AcciliD, FerransVJet al. Nonmuscle myosin II-B is required for normal development of the mouse heart. Proc. Natl Acad. Sci. USA 94(23), 12407–12412 (1997).
  • Clark K , LangeslagM, FigdorCG, van Leeuwen FN. Myosin II and mechanotransduction: a balancing act. Trends Cell Biol.17(4), 178–186 (2007).
  • Gupton SL , Waterman-StorerCM. Spatiotemporal feedback between actomyosin and focal-adhesion systems optimizes rapid cell migration.Cell125(7), 1361–1374 (2006).
  • Sandquist JC , SwensonKI, DemaliKA, BurridgeK, MeansAR. Rho kinase differentially regulates phosphorylation of nonmuscle myosin II isoforms A and B during cell rounding and migration.J. Biol. Chem.281(47), 35873–35883 (2006).
  • Babbin BA , KochS, BacharMet al. Non-muscle myosin IIA differentially regulates intestinal epithelial cell restitution and matrix invasion. Am. J. Pathol. 174(2), 436–448 (2009).
  • Even-Ram S , DoyleAD, ContiMAet al. Myosin IIA regulates cell motility and actomyosin-microtubule crosstalk. Nat. Cell Biol. 9(3), 299–309 (2007).
  • Vicente-Manzanares M , KoachMA, WhitmoreL, LamersML, HorwitzAF. Segregation and activation of myosin IIB creates a rear in migrating cells.J. Cell Biol.183(3), 543–554 (2008).
  • Totsukawa G , WuY, SasakiYet al. Distinct roles of MLCK and ROCK in the regulation of membrane protrusions and focal adhesion dynamics during cell migration of fibroblasts. J. Cell Biol. 164(3), 427–439 (2004).
  • Beadle C , AssanahMC, MonzoPet al. The role of myosin II in glioma invasion of the brain. Mol. Biol. Cell 19(8), 3357–3368 (2008).
  • Duxbury MS , AshleySW, WhangEE. Inhibition of pancreatic adenocarcinoma cellular invasiveness by blebbistatin: a novel myosin II inhibitor.Biochem. Biophys. Res. Commun.313(4), 992–997 (2004).
  • Salhia B , HwangJH, SmithCAet al. Role of myosin II activity and the regulation of myosin light chain phosphorylation in astrocytomas. Cell Motil. Cytoskeleton 65(1), 12–24 (2008).
  • Dou Y , ArlockP, ArnerA. Blebbistatin specifically inhibits actin-myosin interaction in mouse cardiac muscle.Am. J. Physiol. Cell Physiol.293(3), C1148–1153 (2007).
  • Takeda K , YuZX, QianSet al. Nonmuscle myosin II localizes to the Z-lines and intercalated discs of cardiac muscle and to the Z-lines of skeletal muscle. Cell Motil. Cytoskeleton 46(1), 59–68 (2000).
  • Uren D , HwangHK, HaraYet al. Gene dosage affects the cardiac and brain phenotype in nonmuscle myosin II-B-depleted mice. J. Clin. Invest. 105(5), 663–671 (2000).
  • Tohtong R , PhattarasakulK, JiraviriyakulA, SutthiphongchaiT. Dependence of metastatic cancer cell invasion on MLCK-catalyzed phosphorylation of myosin regulatory light chain.Prostate Cancer Prostatic. Dis.6(3), 212–216 (2003).
  • Zhou X , LiuY, YouJet al. Myosin light-chain kinase contributes to the proliferation and migration of breast cancer cells through cross-talk with activated ERK1/2. Cancer Lett. 270(2), 312–327 (2008).
  • Connell LE , HelfmanDM. Myosin light chain kinase plays a role in the regulation of epithelial cell survival.J. Cell Sci.119(11), 2269–2281 (2006).
  • Gu LZ , HuWY, AnticNet al. Inhibiting myosin light chain kinase retards the growth of mammary and prostate cancer cells. Eur. J. Cancer 42(7), 948–957 (2006).
  • Gunning PW , SchevzovG, KeeAJ, HardemanEC. Tropomyosin isoforms: divining rods for actin cytoskeleton function.Trends Cell Biol.15(6), 333–341 (2005).
  • Matsumura F , Yamashiro-MatsumuraS. Purification and characterization of multiple isoforms of tropomyosin from rat cultured cells.J. Biol. Chem.260(25), 13851–13859 (1985).
  • Cooper JA . Actin dynamics: tropomyosin provides stability.Curr. Biol.12(15), R523–R525 (2002).
  • Lehman W , HatchV, KormanVet al. Tropomyosin and actin isoforms modulate the localization of tropomyosin strands on actin filaments. J. Mol. Biol. 302(3), 593–606 (2000).
  • Ishikawa R , YamashiroS, MatsumuraF. Differential modulation of actin-severing activity of gelsolin by multiple isoforms of cultured rat cell tropomyosin. Potentiation of protective ability of tropomyosins by 83-kDa nonmuscle caldesmon.J. Biol. Chem.264(13), 7490–7497 (1989).
  • Blanchoin L , PollardTD, Hitchcock-DeGregoriSE. Inhibition of the Arp2/3 complex-nucleated actin polymerization and branch formation by tropomyosin.Curr. Biol.11(16), 1300–1304 (2001).
  • Wawro B , GreenfieldNJ, WearMAet al. Tropomyosin regulates elongation by formin at the fast-growing end of the actin filament. Biochemistry 46(27), 8146–8155 (2007).
  • Bryce NS , SchevzovG, FergusonVet al. Specification of actin filament function and molecular composition by tropomyosin isoforms. Mol. Biol. Cell 14(3), 1002–1016 (2003).
  • Gupton SL , AndersonKL, KoleTPet al. Cell migration without a lamellipodium: translation of actin dynamics into cell movement mediated by tropomyosin. J. Cell Biol. 168(4), 619–631 (2005).
  • Gunning P , HardemanE, JeffreyP, WeinbergerR. Creating intracellular structural domains: spatial segregation of actin and tropomyosin isoforms in neurons.Bioessays20(11), 892–900 (1998).
  • Weinberger R , SchevzovG, JeffreyPet al. The molecular composition of neuronal microfilaments is spatially and temporally regulated. J. Neurosci. 16(1), 238–252 (1996).
  • Schevzov G , GunningP, JeffreyPLet al. Tropomyosin localization reveals distinct populations of microfilaments in neurites and growth cones. Mol. Cell Neurosci. 8(6), 439–454 (1997).
  • Wieczorek DF , SmithCW, Nadal-GinardB. The rat α-tropomyosin gene generates a minimum of six different mRNAs coding for striated, smooth, and nonmuscle isoforms by alternative splicing.Mol. Cell Biol.8(2), 679–694 (1988).
  • Stehn JR , SchevzovG, O‘NeillGM, GunningPW. Specialisation of the tropomyosin composition of actin filaments provides new potential targets for chemotherapy.Curr. Cancer Drug Targets6(3), 245–256 (2006).
  • Hendricks M , WeintraubH. Tropomyosin is decreased in transformed cells.Proc. Natl Acad. Sci. USA78(9), 5633–5637 (1981).
  • Lin JJ , HelfmanDM, HughesSH, ChouCS. Tropomyosin isoforms in chicken embryo fibroblasts: purification, characterization, and changes in Rous sarcoma virus-transformed cells.J. Cell Biol.100(3), 692–703 (1985).
  • O‘Neill GM , StehnJ, GunningPW. Tropomyosins as interpreters of the signalling environment to regulate the local cytoskeleton.Semin. Cancer Biol.18(1), 35–44 (2008).
  • Boyd J , RisingerJI, WisemanRWet al. Regulation of microfilament organization and anchorage-independent growth by tropomyosin 1. Proc. Natl Acad. Sci. USA 92(25), 11534–11538 (1995).
  • Mahadev K , RavalG, BharadwajSet al. Suppression of the transformed phenotype of breast cancer by tropomyosin-1. Exp. Cell Res. 279(1), 40–51 (2002).
  • Hillberg L , Zhao RathjeLS, Nyakern-MeazzaMet al. Tropomyosins are present in lamellipodia of motile cells. Eur J. Cell Biol.85(5), 399–409 (2006).
  • Gimona M , KazzazJA, HelfmanDM. Forced expression of tropomyosin 2 or 3 in v-Ki-ras-transformed fibroblasts results in distinct phenotypic effects.Proc. Natl Acad. Sci. USA93(18), 9618–9623 (1996).
  • Qiao Zheng ASAVB . Role of high-molecular weight tropomyosins in TGF-β-mediated control of cell motility.Int. J. Cancer122(1), 78–90 (2008).
  • Miyado K , KimuraM, TaniguchiS. Decreased expression of a single tropomyosin isoform, TM5/TM30nm, results in reduction in motility of highly metastatic B16-F10 mouse melanoma cells.Biochem. Biophys. Res. Commun.225(2), 427–435 (1996).
  • McMichael BK , LeeBS. Tropomyosin 4 regulates adhesion structures and resorptive capacity in osteoclasts.Exp. Cell Res.314(3), 564–573 (2008).
  • Creed SJ , BryceN, NaumanenPet al. Tropomyosin isoforms define distinct microfilament populations with different drug susceptibility. Eur. J. Cell Biol. 87(8–9), 709–720 (2008).
  • Allingham JS , KlenchinVA, RaymentI. Actin-targeting natural products: structures, properties and mechanisms of action.Cell Mol. Life Sci.63(18), 2119–2134 (2006).
  • Rao J , LiN. Microfilament actin remodeling as a potential target for cancer drug development.Curr. Cancer Drug Targets4(4), 345–354 (2004).
  • Kumar R , GururajAE, BarnesCJ. P21-activated kinases in cancer.Nat. Rev. Cancer6(6), 459–471 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.