228
Views
3
CrossRef citations to date
0
Altmetric
Review

Insights into the Structure and Pharmacology of GABAA Receptors

, &
Pages 859-875 | Published online: 12 May 2010

Bibliography

  • Bloom FE , IversenLL. Localizing 3[H]-GABA in nerve terminals of rat cerebral cortex by electron microscopic autoradiography. Nature229(5287), 628–630 (1971).
  • Bowery NG , BettlerB, FroestlWet al. International union of pharmacology. XXXIII. Mammalian γ-aminobutyric acid(B) receptors: structure and function. Pharmacol. Rev. 54(2), 247–264 (2002).
  • Unwin N . Refined structure of the nicotinic acetylcholine receptor at 4Å resolution.J. Mol. Biol.346(4), 967–989 (2005).
  • Simon J , WakimotoH, FujitaN, LalandeM, BarnardEA. Analysis of the set of GABAA receptor genes in the human genome. J. Biol. Chem.279(40), 41422–41435 (2004).
  • Collingridge GL , OlsenRW, PetersJ, SpeddingM. A nomenclature for ligand-gated ion channels.Neuropharmacology56(1), 2–5 (2009).
  • Olsen RW , SieghartW. International union of pharmacology. LXX. Subtypes of γ-aminobutyric acid A receptors: classification on the basis of subunit composition, pharmacology, and function. Update.Pharmacol. Rev.60(3), 243–260 (2008).
  • Farrant M , NusserZ. Variations on an inhibitory theme: phasic and tonic activation of GABAA receptors. Nat. Rev. Neurosci.6(3), 215–229 (2005).
  • Macdonald RL , OlsenRW. GABAA receptor channels. Annu. Rev. Neurosci.17, 569–602 (1994).
  • Sieghart W , SperkG. Subunit composition, distribution and function of GABAA receptor subtypes. Curr. Top. Med. Chem.2(8), 795–816 (2002).
  • Pirker S , SchwarzerC, WieselthalerA, SieghartW, SperkG. GABAA receptors: immunocytochemical distribution of 13 subunits in the adult rat brain. Neuroscience101(4), 815–850 (2000).
  • Nusser Z , HajosN, SomogyiP, ModyI. Increased number of synaptic GABAA receptors underlies potentiation at hippocampal inhibitory synapses. Nature395(6698), 172–177 (1998).
  • Brickley SG , Cull-CandySG, FarrantM. Single-channel properties of synaptic and extrasynaptic GABAA receptors suggest differential targeting of receptor subtypes. J. Neurosci.19(8), 2960–2973 (1999).
  • Staley K , HellierJL, DudekFE. Do interictal spikes drive epileptogenesis?Neuroscientist11(4), 272–276 (2005).
  • Baer K , WaldvogelHJ, FaullRL, ReesMI. Localization of glycine receptors in the human forebrain, brainstem, and cervical spinal cord: an immunohistochemical review.Front. Mol. Neurosci.2, 25 (2009).
  • Kirsch J , LangoschD, PriorP, LittauerUZ, SchmittB, BetzH. The 93-KDa glycine receptor-associated protein binds to tubulin.J. Biol. Chem.266(33), 22242–22245 (1991).
  • Kirsch J . Assembly of signaling machinery at the postsynaptic membrane.Curr. Opin. Neurobiol.9(3), 329–335 (1999).
  • Levi S , LoganSM, TovarKR, CraigAM. Gephyrin is critical for glycine receptor clustering but not for the formation of functional GABAergic synapses in hippocampal neurons.J. Neurosci.24(1), 207–217 (2004).
  • Yu W , JiangM, MirallesCP, LiRW, ChenG, De Blas AL. Gephyrin clustering is required for the stability of GABAergic synapses. Mol. Cell. Neurosci.36(4), 484–500 (2007).
  • Alldred MJ , Mulder-RosiJ, LingenfelterSE, ChenG, LuscherB. Distinct γ2 subunit domains mediate clustering and synaptic function of postsynaptic GABAA receptors and gephyrin. J. Neurosci.25(3), 594–603 (2005).
  • Kanematsu T , MizokamiA, WatanabeK, HirataM. Regulation of GABAA -receptor surface expression with special reference to the involvement of gabarap (GABAA receptor-associated protein) and prip (phospholipase c-related, but catalytically inactive protein). J. Pharmacol. Sci.104(4), 285–292 (2007).
  • Unwin N . Acetylcholine receptor channel imaged in the open state.Nature373(6509), 37–43 (1995).
  • Brejc K , Van DijkWJ, KlaassenRVet al. Crystal structure of an ACh-binding protein reveals the ligand-binding domain of nicotinic receptors. Nature411(6835), 269–276 (2001).
  • Changeux J , EdelsteinSJ. Allosteric mechanisms in normal and pathological nicotinic acetylcholine receptors.Curr. Opin. Neurobiol.11(3), 369–377 (2001).
  • Grutter T , ChangeuxJP. Nicotinic receptors in wonderland.Trends Biochem. Sci.26(8), 459–463 (2001).
  • Karlin A . Emerging structure of the nicotinic acetylcholine receptors.Nat. Rev. Neurosci.3(2), 102–114 (2002).
  • Corringer PJ , Le Novere N, Changeux JP. Nicotinic receptors at the amino acid level. Annu. Rev. Pharmacol. Toxicol.40, 431–458 (2000).
  • Baumann SW , BaurR, SigelE. Forced subunit assembly in α1β2γ2 GABAA receptors. Insight into the absolute arrangement. J. Biol. Chem.277(48), 46020–46025 (2002).
  • Olsen RW , ChangCS, LiG, HancharHJ, WallnerM. Fishing for allosteric sites on GABAA receptors. Biochem. Pharmacol.68(8), 1675–1684 (2004).
  • Sigel E , BuhrA. The benzodiazepine binding site of GABAA receptors. Trends Pharmacol. Sci.18(11), 425–429 (1997).
  • Bocquet N , NuryH, BaadenMet al. X-ray structure of a pentameric ligand-gated ion channel in an apparently open conformation. Nature 457(7225), 111–114 (2009).
  • Hilf RJ , DutzlerR. X-ray structure of a prokaryotic pentameric ligand-gated ion channel.Nature452(7185), 375–379 (2008).
  • Hilf RJ , DutzlerR. Structure of a potentially open state of a proton-activated pentameric ligand-gated ion channel.Nature457(7225), 115–118 (2009).
  • Hilf RJ , DutzlerR. A prokaryotic perspective on pentameric ligand-gated ion channel structure.Curr. Opin. Struct. Biol.19(4), 418–424 (2009).
  • Unwin N , MiyazawaA, LiJ, FujiyoshiY. Activation of the nicotinic acetylcholine receptor involves a switch in conformation of the a subunits.J. Mol. Biol.319(5), 1165–1176 (2002).
  • Mokrab Y , BavroVN, MizuguchiKet al. Exploring ligand recognition and ion flow in comparative models of the human GABA type A receptor. J. Mol. Graph. Model 26(4), 760–774 (2007).
  • Kelley SP , DunlopJI, KirknessEF, LambertJJ, PetersJA. A cytoplasmic region determines single-channel conductance in 5-HT3 receptors.Nature424(6946), 321–324 (2003).
  • Carland JE , CooperMA, SugihartoSet al. Characterization of the effects of charged residues in the intracellular loop on ion permeation in α1 glycine receptor channels. J. Biol. Chem. 284(4), 2023–2030 (2009).
  • Jansen M , BaliM, AkabasMH. Modular design of cys-loop ligand-gated ion channels. functional 5-HT3 and GABA Rho1 receptors lacking the large cytoplasmic M3M4 loop. J. Gen. Physiol.131(2), 137–146 (2008).
  • Hansen SB , SulzenbacherG, HuxfordT, MarchotP, TaylorP, BourneY. Structures of aplysia AChBP complexes with nicotinic agonists and antagonists reveal distinctive binding interfaces and conformations.EMBO J.24(20), 3635–3646 (2005).
  • Lee WY , SineSM. Principal pathway coupling agonist binding to channel gating in nicotinic receptors.Nature438(7065), 243–247 (2005).
  • Mukhtasimova N , LeeWY, WangHL, SineSM. Detection and trapping of intermediate states priming nicotinic receptor channel opening.Nature459(7245), 451–454 (2009).
  • Madden DR . The structure and function of glutamate receptor ion channels.Nat. Rev. Neurosci.3(2), 91–101 (2002).
  • Mercado J , CzajkowskiC. Charged residues in the α1 and β2 pre-m1 regions involved in GABAA receptor activation. J. Neurosci.26(7), 2031–2040 (2006).
  • Lynch JW , RajendraS, PierceKD, HandfordCA, BarryPH, SchofieldPR. Identification of intracellular and extracellular domains mediating signal transduction in the inhibitory glycine receptor chloride channel.EMBO J.16(1), 110–120 (1997).
  • Lummis SC , BeeneDL, LeeLW, LesterHA, BroadhurstRW, DoughertyDA. Cis -trans isomerization at a proline opens the pore of a neurotransmitter-gated ion channel. Nature438(7065), 248–252 (2005).
  • Paulsen IM , MartinIL, Dunn,S MJ. Isomerization of the proline in the M2M3 linker is not required for activation of the human 5-HT3A receptor. J. Neurochem.110(3), 870–878 (2009).
  • Sieghart W . Structure and pharmacology of γ-aminobutyric acid A receptor subtypes.Pharmacol. Rev.47(2), 181–234 (1995).
  • Fregosi RF , LuoZ, IizukaM. GABAA receptors mediate postnatal depression of respiratory frequency by barbiturates. Respir. Physiol. Neurobiol.140(3), 219–230 (2004).
  • Evans RH . Potentiation of the effects of GABA by pentobarbitone.Brain Res.171(1), 113–120 (1979).
  • Study RE , BarkerJL. Diazepam and (-)-pentobarbital: fluctuation analysis reveals different mechanisms for potentiation of γ-aminobutyric acid responses in cultured central neurons.Proc. Natl Acad. Sci. USA78(11), 7180–7184 (1981).
  • Akaike N , HattoriK, InomataN, OomuraY. γ-Aminobutyric-acid- and pentobarbitone-gated chloride currents in internally perfused frog sensory neurones.J. Physiol.360, 367–386 (1985).
  • Akaike N , HattoriK, OomuraY, CarpenterDO. Bicuculline and picrotoxin block γ-aminobutyric acid-gated Cl- conductance by different mechanisms. Experientia41(1), 70–71 (1985).
  • Schwartz RD , SuzdakPD, PaulSM. γ-aminobutyric acid (GABA)- and barbiturate-mediated 36Cl-- uptake in rat brain synaptoneurosomes. Evidence for rapid desensitization of the gaba receptor-coupled chloride ion channel. Mol. Pharmacol.30(5), 419–426 (1986).
  • Peters JA , KirknessEF, CallachanH, LambertJJ, TurnerAJ. Modulation of the GABAA receptor by depressant barbiturates and pregnane steroids. Br. J. Pharmacol.94(4), 1257–1269 (1988).
  • Rho JM , DonevanSD, RogawskiMA. Direct activation of GABAA receptors by barbiturates in cultured rat hippocampal neurons. J. Physiol.497(Pt 2), 509–522 (1996).
  • Thompson SA , WhitingPJ, WaffordKA. Barbiturate interactions at the human GABAA receptor: dependence on receptor subunit combination. Br. J. Pharmacol.117(3), 521–527 (1996).
  • Drafts BC , FisherJL. Identification of structures within GABAA receptor α subunits that regulate the agonist action of pentobarbital. J. Pharmacol. Exp. Ther.318(3), 1094–1101 (2006).
  • Mercado J , CzajkowskiC. γ-aminobutyric acid (GABA) and pentobarbital induce different conformational rearrangements in the GABAA receptor α1 and β2 pre-m1 regions. J. Biol. Chem.283(22), 15250–15257 (2008).
  • Carlson BX , EngblomAC, KristiansenU, SchousboeA, OlsenRW. A single glycine residue at the entrance to the first membrane-spanning domain of the γ-aminobutyric acid type A receptor β(2) subunit affects allosteric sensitivity to GABA and anesthetics.Mol. Pharmacol.57(3), 474–484 (2000).
  • Belelli D , PauD, CabrasG, PetersJA, LambertJJ. A single amino acid confers barbiturate sensitivity upon the GABA rho 1 receptor.Br. J. Pharmacol.127(3), 601–604 (1999).
  • Amin J . A single hydrophobic residue confers barbiturate sensitivity to γ-aminobutyric acid type C receptor.Mol. Pharmacol.55(3), 411–423 (1999).
  • Muroi Y , TheuschCM, CzajkowskiC, JacksonMB. Distinct structural changes in the GABAA receptor elicited by pentobarbital and gaba. Biophys. J.96(2), 499–509 (2009).
  • Jackson MB , LecarH, MathersDA, BarkerJL. Single channel currents activated by γ-aminobutyric acid, muscimol, and (-)-pentobarbital in cultured mouse spinal neurons.J. Neurosci.2(7), 889–894 (1982).
  • Eghbali M , GagePW, BirnirB. Pentobarbital modulates γ -aminobutyric acid-activated single-channel conductance in rat cultured hippocampal neurons.Mol. Pharmacol.58(3), 463–469 (2000).
  • Everitt AB , LuuT, CromerBet al. Conductance of recombinant GABA channels is increased in cells co-expressing GABAA receptor-associated protein. J. Biol. Chem. 279(21), 21701–21706 (2004).
  • Wan X , MathersDA, PuilE. Pentobarbital modulates intrinsic and GABA-receptor conductances in thalamocortical inhibition.Neuroscience121(4), 947–958 (2003).
  • Steinbach JH , AkkG. Modulation of GABAA receptor channel gating by pentobarbital. J. Physiol.537(Pt 3), 715–733 (2001).
  • Sternbach LH . The benzodiazepine story.J. Med. Chem.22(1), 1–7 (1979).
  • Dray A , StraughanDW. Benzodiazepines: GABA and glycine receptors on single neurons in the rat medulla.J. Pharm. Pharmacol.28(4), 314–315 (1976).
  • Mohler H , OkadaT. Benzodiazepine receptor. demonstration in the central nervous system.Science198(4319), 849–851 (1977).
  • Squires RF , BrastrupC. Benzodiazepine receptors in rat brain.Nature266(5604), 732–734 (1977).
  • Haefely W . Involvement of GABA in the actions of neuropsychotropic drugs.Int. J. Neurol.13(1–4), 53–66 (1979).
  • Costa E , GuidottiA. Recent studies on the mechanism whereby benzodiazepines facilitate GABA-ergic transmission.Adv. Exp. Med. Biol.123, 371–378 (1979).
  • Mathers DA , YoshidaH. The benzodiazepine triazolam. direct and GABA depressant effects on cultured mouse spinal cord neurons.Eur J. Pharmacol.139(1), 53–60 (1987).
  • Obata T , YamamuraHI. The effect of benzodiazepines and β-carbolines on GABA-stimulated chloride influx by membrane vesicles from the rat cerebral cortex.Biochem. Biophys. Res. Commun.141(1), 1–6 (1986).
  • Yang JS , OlsenRW.γ-aminobutyric acid receptor-regulated 36Cl- flux in mouse cortical slices. J. Pharmacol. Exp. Ther.241(2), 677–685 (1987).
  • Study RE , BarkerJL. Diazepam and (--)-pentobarbital. fluctuation analysis reveals different mechanisms for potentiation of γ-aminobutyric acid responses in cultured central neurons.Proc. Natl Acad. Sci. USA78(11), 7180–7184 (1981).
  • Rogers CJ , TwymanRE, MacdonaldRL. Benzodiazepine and β-carboline regulation of single GABAA receptor channels of mouse spinal neurones in culture. J. Physiol.475(1), 69–82 (1994).
  • Twyman RE , RogersCJ, MacdonaldRL. Differential regulation of γ-aminobutyric acid receptor channels by diazepam and phenobarbital.Ann. Neurol.25(3), 213–220 (1989).
  • Jones MV , WestbrookGL. The impact of receptor desensitization on fast synaptic transmission.Trends Neurosci.19(3), 96–101 (1996).
  • Bianchi MT , BotzolakisEJ, LagrangeAH, MacdonaldRL. Benzodiazepine modulation of GABAA receptor opening frequency depends on activation context: a patch clamp and simulation study. Epilepsy Res.85(2–3), 212–220 (2009).
  • Seger DL . Flumazenil – treatment or toxin.J. Toxicol. Clin. Toxicol.42(2), 209–216 (2004).
  • Ernst M , BrauchartD, BoreschS, SieghartW. Comparative modeling of GABAA receptors: limits, insights, future developments. Neuroscience119(4), 933–943 (2003).
  • Hevers W , LuddensH. The diversity of GABAA receptors. Pharmacological and electrophysiological properties of GABAA channel subtypes. Mol. Neurobiol.18(1), 35–86 (1998).
  • Wieland HA , LuddensH, SeeburgPH. A single histidine in GABAA receptors is essential for benzodiazepine agonist binding. J. Biol. Chem.267(3), 1426–1429 (1992).
  • Rudolph U , CrestaniF, BenkeDet al. Benzodiazepine actions mediated by specific γ-aminobutyric acida receptor subtypes. Nature 401(6755), 796–800 (1999).
  • Mckernan RM , RosahlTW, ReynoldsDSet al. Sedative but not anxiolytic properties of benzodiazepines are mediated by the GABAA receptor α1 subtype. Nat. Neurosci. 3(6), 587–592 (2000).
  • Low K , CrestaniF, KeistRet al. Molecular and neuronal substrate for the selective attenuation of anxiety. Science 290(5489), 131–134 (2000).
  • Dias R , SheppardW FA, Fradley RL et al. Evidence for a significant role of a 3-containing gabaa receptors in mediating the anxiolytic effects of benzodiazepines. J. Neurosci.25(46), 10682–10688 (2005).
  • Crestani F , LowK, KeistR, Mandelli M-J, Mohler H, Rudolph U. Molecular targets for the myorelaxant action of diazepam. Mol. Pharmacol.59(3), 442–445 (2001).
  • Sohal VS , KeistR, RudolphU, HuguenardJR. Dynamic GABAA receptor subtype-specific modulation of the synchrony and duration of thalamic oscillations. J. Neurosci.23(9), 3649–3657 (2003).
  • Yee BK , KeistR, Von Boehmer L et al. A schizophrenia-related sensorimotor deficit links α 3-containing GABAA receptors to a dopamine hyperfunction. Proc. Natl Acad. Sci. USA102(47), 17154–17159 (2005).
  • Fritschy JM , MohlerH. GABAA receptor heterogeneity in the adult rat brain. differential regional and cellular distribution of seven major subunits. J. Comp. Neurol.359(1), 154–194 (1995).
  • Delini-Stula A , Berdah-TordjmanD. Antipsychotic effects of bretazenil, a partial benzodiazepine agonist in acute schizophrenia. A study group report.J. Psych. Res.30(4), 239–250 (1996).
  • Crestani F , KeistR, FritschyJMet al. Trace fear conditioning involves hippocampal α5 GABAA receptors. Proc. Natl Acad. Sci. USA 99(13), 8980–8985 (2002).
  • Sternfeld F , CarlingRW, JelleyRAet al. Selective, orally active γ-aminobutyric acid A α5 receptor inverse agonists as cognition enhancers. J. Med. Chem. 47(9), 2176–2179 (2004).
  • Iversen L . GABA pharmacology. what prospects for the future?Biochem. Pharmacol.68(8), 1537–1540 (2004).
  • Tricklebank MD , HonoreT, IversenSDet al. The pharmacological properties of the imidazobenzodiazepine, FG 8205, a novel partial agonist at the benzodiazepine receptor. Br. J. Pharmacol. 101(3), 753–761 (1990).
  • Mohler H , FritschyJM, RudolphU. A new benzodiazepine pharmacology.J. Pharmacol. Exp. Ther.300(1), 2–8 (2002).
  • Knabl J , WitschiR, HoslKet al. Reversal of pathological pain through specific spinal GABAA receptor subtypes. Nature 451(7176), 330–334 (2008).
  • Atack JR , WaffordKA, TyeSJet al. Tpa023 [7-(1,1-dimethylethyl)-6-(2-ethyl-2h-1,2,4-triazol-3-ylmethoxy)-3-(2-fluor ophenyl)-1,2,4-triazolo[4,3-b]pyridazine], an agonist selective for α 2- and α 3-containing GABAA receptors, is a nonsedating anxiolytic in rodents and primates. J. Pharmacol. Exp. Ther. 316(1), 410–422 (2006).
  • Ator NA , AtackJR, HargreavesRJ, BurnsHD, DawsonGR. Reducing abuse liability of GABAA /benzodiazepine ligands via selective partial agonist efficacy at α1 and α2/3 subtypes. J. Pharmacol. Exp. Ther.332(1), 4–16 (2010).
  • Atack J , WaffordKA, StreetLJet al. Mrk-409 (MK-0343), a GABAA receptor subtype-selective partial agonist, is a non-sedating anxiolytic in preclinical species but causes sedation in humans. J. Psychopharmacol. DOI 10.1177/0269881109354927 (2010) (Epub ahead of print).
  • de H aas SL, de Visser SJ, Van Der Post JP et al. Pharmacodynamic and pharmacokinetic effects of MK-0343, a GABAA α 2,3 subtype selective agonist, compared to lorazepam and placebo in healthy male volunteers. J. Psychopharmacol.22(1), 24–32 (2008).
  • Clayton T , ChenJL, ErnstMet al. An updated unified pharmacophore model of the benzodiazepine binding site on γ-aminobutyric acid(A) receptors. correlation with comparative models. Curr. Med. Chem. 14(26), 2755–2775 (2007).
  • Kahnberg P , HowardMH, LiljeforsTet al. The use of a pharmacophore model for identification of novel ligands for the benzodiazepine binding site of the GABAA receptor. J. Mol. Graph. Model 23(3), 253–261 (2004).
  • Taliani S , CosimelliB, Da Settimo F et al. Identification of anxiolytic/nonsedative agents among indol-3-ylglyoxylamides acting as functionally selective agonists at the γ-aminobutyric acid-A (GABAA) α2 benzodiazepine receptor. J. Med. Chem.52(12), 3723–3734 (2009).
  • Ramakrishnan K , ScheidDC. Treatment options for insomnia.Am. Fam. Physician76(4), 517–526 (2007).
  • Holbrook AM , CrowtherR, LotterA, ChengC, KingD. Meta-analysis of benzodiazepine use in the treatment of insomnia.CMAJ162(2), 225–233 (2000).
  • Fang SY , ChenCY, ChangIS, WuEC, ChangCM, LinKM. Predictors of the incidence and discontinuation of long-term use of benzodiazepines. A population-based study.Drug Alcohol Depend.104(1–2), 140–146 (2009).
  • Buscemi N , VandermeerB, FriesenCet al. Manifestations and management of chronic insomnia in adults. Evid. Rep. Technol. Assess. (Summ.) (125), 1–10 (2005).
  • Scharf MB , RothT, VogelGW, WalshJK. A multicenter, placebo-controlled study evaluating zolpidem in the treatment of chronic insomnia.J. Clin. Psychiatry55(5), 192–199 (1994).
  • George CF . Pyrazolopyrimidines.Lancet358(9293), 1623–1626 (2001).
  • Krogsgaard-Larsen P , FrolundB, LiljeforsT. Specific GABAA agonists and partial agonists. Chem. Rec.2(6), 419–430 (2002).
  • Stórustovu S Í, Ebert B. Gaboxadol: In vitro interaction studies with benzodiazepines and ethanol suggest functional selectivity. Eur. J. Pharmacol.467(1–3), 49–56 (2003).
  • Krogsgaard-Larsen P , FrolundB, LiljeforsT, EbertB. GABAA agonists and partial agonists: THIP (gaboxadol) as a non-opioid analgesic and a novel type of hypnotic. Biochem. Pharmacol.68(8), 1573–1580 (2004).
  • Marike L , AxelS. Sleep and its modulation by drugs that affect GABAA receptor function. Angew. Chem. Int. Ed. Engl.38(19), 2852–2864 (1999).
  • Ebert B . Discontinued drugs 2007: central and peripheral nervous system drugs.Expert Opin. Investig. Drugs18(2), 109–123 (2009).
  • Franks NP , LiebWR. Molecular and cellular mechanisms of general anaesthesia.Nature367(6464), 607–614 (1994).
  • Nakahiro M , YehJZ, BrunnerE, NarahashiT. General anesthetics modulate GABA receptor channel complex in rat dorsal root ganglion neurons.FASEB J.3(7), 1850–1854 (1989).
  • Uchida I , KamatchiG, BurtD, YangJ. Etomidate potentiation of GABAA receptor gated current depends on the subunit composition. Neurosci. Lett.185(3), 203–206 (1995).
  • Hales TG , LambertJJ. The actions of propofol on inhibitory amino acid receptors of bovine adrenomedullary chromaffin cells and rodent central neurones.Br. J. Pharmacol.104(3), 619–628 (1991).
  • Yeh J , QuandtFN, TanguyJ, NakahiroM, NarahashiT, BrunnerEA. General anesthetic action on γ-aminobutyric acid-activated channels.Ann. NY Acad. Sci.625, 155–173 (1991).
  • Bonin RP , OrserBA. GABAA receptor subtypes underlying general anesthesia. Pharm. Biochem. Behav.90(1), 105–112 (2008).
  • Mihic SJ , YeQ, WickMJet al. Sites of alcohol and volatile anaesthetic action on GABAA and glycine receptors. Nature 389(6649), 385–389 (1997).
  • Krasowski MD , KoltchineVV, RickCE, YeQ, FinnSE, HarrisonNL. Propofol and other intravenous anesthetics have sites of action on the γ-aminobutyric acid type A receptor distinct from that for isoflurane.Mol. Pharmacol.53(3), 530–538 (1998).
  • Nishikawa K , JenkinsA, ParaskevakisI, HarrisonNL. Volatile anesthetic actions on the GABAA receptors. contrasting effects of α 1(S270) and β 2(N265) point mutations. Neuropharmacology42(3), 337–345 (2002).
  • Koltchine VV , FinnSE, JenkinsA, NikolaevaN, LinA, HarrisonNL. Agonist gating and isoflurane potentiation in the human γ-aminobutyric acid type A receptor determined by the volume of a second transmembrane domain residue.Mol. Pharmacol.56(5), 1087–1093 (1999).
  • Sanna E , MurgiaA, CasulaA, BiggioG. Differential subunit dependence of the actions of the general anesthetics alphaxalone and etomidate at γ-aminobutyric acid type A receptors expressed in Xenopus laevis oocytes. Mol. Pharmacol.51(3), 484–490 (1997).
  • Hill-Venning C , BelelliD, PetersJA, LambertJJ. Subunit-dependent interaction of the general anaesthetic etomidate with the γ-aminobutyric acid type A receptor.Br. J. Pharmacol.120(5), 749–756 (1997).
  • Belelli D , LambertJJ, PetersJA, WaffordK, WhitingPJ. The interaction of the general anesthetic etomidate with the γ-aminobutyric acid type A receptor is influenced by a single amino acid.Proc. Natl Acad. Sci. USA94(20), 11031–11036 (1997).
  • Jurd R , ArrasM, LambertSet al. General anesthetic actions in vivo strongly attenuated by a point mutation in the GABAA receptor β3 subunit. FASEB J. 17(2), 250–252 (2003).
  • Reynolds DS , RosahlTW, CironeJet al. Sedation and anesthesia mediated by distinct GABAA receptor isoforms. J. Neurosci. 23(24), 8608–8617 (2003).
  • Bai D , ZhuG, PennefatherP, JacksonMF, MacdonaldJF, OrserBA. Distinct functional and pharmacological properties of tonic and quantal inhibitory postsynaptic currents mediated by γ-aminobutyric acida receptors in hippocampal neurons.Mol. Pharmacol.59(4), 814–824 (2001).
  • Cheng VY , MartinLJ, ElliottEMet al. A 5 GABAA receptors mediate the amnestic but not sedative-hypnotic effects of the general anesthetic etomidate. J. Neurosci. 26(14), 3713–3720 (2006).
  • Ramaiah R , LamAM. Postoperative cognitive dysfunction in the elderly.Anesthesiol. Clin.27(3), 485–496 (2009).
  • Sebel PS , BowdleTA, GhoneimMMet al. The incidence of awareness during anesthesia. a multicenter United States study. Anesth. Analg. 99(3), 833–839 (2004).
  • Callachan H , CottrellGA, HatherNY, LambertJJ, NooneyJM, PetersJA. Modulation of the GABAA receptor by progesterone metabolites. Proc. R. Soc. Lond. B. Biol. Sci.231(1264), 359–369 (1987).
  • Purdy RH , MorrowAL, MoorePH Jr, Paul SM. Stress-induced elevations of γ-aminobutyric acid type A receptor-active steroids in the rat brain. Proc. Natl Acad. Sci. USA88(10), 4553–4557 (1991).
  • Kumar S , FlemingRL, MorrowAL. Ethanol regulation of γ-aminobutyric acid A receptors. genomic and nongenomic mechanisms.Pharmacol. Therapeut.101(3), 211–226 (2004).
  • Concas A , FollesaP, BarbacciaML, PurdyRH, BiggioG. Physiological modulation of GABAA receptor plasticity by progesterone metabolites. Eur. J. Pharmacol.375(1–3), 225–235 (1999).
  • Koksma JJ , Van KesterenRE, RosahlTWet al. Oxytocin regulates neurosteroid modulation of GABAA receptors in supraoptic nucleus around parturition. J. Neurosci.23(3), 788–797 (2003).
  • Brambilla F , BiggioG, PisuMGet al. Neurosteroid secretion in panic disorder. Psychiatry Res. 118(2), 107–116 (2003).
  • Backstrom T , AnderssonA, AndreeLet al. Pathogenesis in menstrual cycle-linked CNS disorders. Ann. NY Acad. Sci. 1007, 42–53 (2003).
  • Uzunova V , SampsonL, UzunovDP. Relevance of endogenous 3 α-reduced neurosteroids to depression and antidepressant action.Psychopharmacology (Berl.)186(3), 351–361 (2006).
  • Marx CE , StevensRD, ShampineLJet al. Neuroactive steroids are altered in schizophrenia and bipolar disorder. relevance to pathophysiology and therapeutics. Neuropsychopharmacology 31(6), 1249–1263 (2006).
  • Puia G , SantiMR, ViciniSet al. Neurosteroids act on recombinant human GABAA receptors. Neuron 4(5), 759–765 (1990).
  • Brown N , KerbyJ, BonnertTP, WhitingPJ, WaffordKA. Pharmacological characterization of a novel cell line expressing human α4β3δ GABAA receptors. Br. J. Pharmacol.136(7), 965–974 (2002).
  • Rahman M , LindbladC, JohanssonIM, BackstromT, WangMD. Neurosteroid modulation of recombinant rat α5β2γ2L and α1β 2γ2L GABAA receptors in xenopus oocyte. Eur J. Pharmacol.547(1–3), 37–44 (2006).
  • Bianchi MT , MacdonaldRL. Neurosteroids shift partial agonist activation of GABAA receptor channels from low- to high-efficacy gating patterns. J. Neurosci.23(34), 10934–10943 (2003).
  • Herd MB , BelelliD, LambertJJ. Neurosteroid modulation of synaptic and extrasynaptic GABAA receptors. Pharmacol. Ther.116(1), 20–34 (2007).
  • Rick CE , YeQ, FinnSE, HarrisonNL. Neurosteroids act on the GABAA receptor at sites on the n-terminal side of the middle of tm2. Neuroreport9(3), 379–383 (1998).
  • Ueno S , TsutsuiM, ToyohiraY, MinamiK, YanagiharaN. Sites of positive allosteric modulation by neurosteroids on ionotropic γ-aminobutyric acid receptor subunits.FEBS Lett.566(1–3), 213–217 (2004).
  • Hosie AM , WilkinsME, Da Silva HM, Smart TG. Endogenous neurosteroids regulate GABAA receptors through two discrete transmembrane sites. Nature444(7118), 486–489 (2006).
  • Hosie AM , WilkinsME, SmartTG. Neurosteroid binding sites on GABAA receptors. Pharmacol. Ther.116(1), 7–19 (2007).
  • Aguayo LG . Ethanol potentiates the GABAA -activated Cl- current in mouse hippocampal and cortical neurons. Eur. J. Pharmacol.187(1), 127–130 (1990).
  • Nishio M , NarahashiT. Ethanol enhancement of GABA-activated chloride current in rat dorsal root ganglion neurons.Brain Res.518(1–2), 283–286 (1990).
  • Osmanovic SS , ShefnerSA. Enhancement of current induced by superfusion of GABA in locus coeruleus neurons by pentobarbital, but not ethanol.Brain Res.517(1–2), 324–329 (1990).
  • Proctor WR , SoldoBL, AllanAM, DunwiddieTV. Ethanol enhances synaptically evoked GABAA receptor-mediated responses in cerebral cortical neurons in rat brain slices. Brain Res.595(2), 220–227 (1992).
  • Wafford KA , BurnettDM, LeidenheimerNJet al. Ethanol sensitivity of the GABAA receptor expressed in Xenopus oocytes requires 8 amino acids contained in the γ 2L subunit. Neuron 7(1), 27–33 (1991).
  • Wafford KA , WhitingPJ. Ethanol potentiation of GABAA receptors requires phosphorylation of the alternatively spliced variant of the γ 2 subunit. FEBS Lett.313(2), 113–117 (1992).
  • Zhai J , StewartRR, FriedbergMW, LiC. Phosphorylation of the GABAA receptor γ 2L subunit in rat sensory neurons may not be necessary for ethanol sensitivity. Brain Res.805(1–2), 116–122 (1998).
  • Sapp DW , YehHH. Ethanol- GABAA receptor interactions. A comparison between cell lines and cerebellar purkinje cells. J. Pharmacol. Exp. Ther.284(2), 768–776 (1998).
  • Hodge CW , MehmertKK, KelleySPet al. Supersensitivity to allosteric GABAA receptor modulators and alcohol in mice lacking PKC-ε. Nat. Neurosci. 2(11), 997–1002 (1999).
  • Qi ZH , SongM, WallaceMJet al. Protein kinase C ε regulates γ-aminobutyrate type a receptor sensitivity to ethanol and benzodiazepines through phosphorylation of γ 2 subunits. J. Biol. Chem. 282(45), 33052–33063 (2007).
  • Wallner M , HancharHJ, OlsenRW. Ethanol enhances α4β3δ and α6β3δ γ-aminobutyric acid type A receptors at low concentrations known to affect humans.Proc. Natl Acad. Sci. USA100(25), 15218–15223 (2003).
  • Hanchar HJ , DodsonPD, OlsenRW, OtisTS, WallnerM. Alcohol-induced motor impairment caused by increased extrasynaptic GABAA receptor activity. Nat. Neurosci.8(3), 339–345 (2005).
  • Wei W , FariaLC, ModyI. Low ethanol concentrations selectively augment the tonic inhibition mediated by δ subunit-containing GABAA receptors in hippocampal neurons. J. Neurosci.24(38), 8379–8382 (2004).
  • Fleming RL , WilsonWA, SwartzwelderHS. Magnitude and ethanol sensitivity of tonic GABAA receptor-mediated inhibition in dentate gyrus changes from adolescence to adulthood. J. Neurophysiol.97(5), 3806–3811 (2007).
  • Glykys J , PengZ, ChandraD, HomanicsGE, HouserCR, ModyI. A new naturally occurring GABAA receptor subunit partnership with high sensitivity to ethanol. Nat. Neurosci.10(1), 40–48 (2007).
  • Borghese CM , StorustovuSI, EbertBet al. The δ subunit of γ-aminobutyric acid type A receptors does not confer sensitivity to low concentrations of ethanol. J. Pharmacol. Exp. Ther. 316(3), 1360–1368 (2006).
  • Yamashita M , MarszalecW, YehJZ, NarahashiT. Effects of ethanol on tonic GABA currents in cerebellar granule cells and mammalian cells recombinantly expressing GABAA receptors. J. Pharmacol. Exp. Ther.319(1), 431–438 (2006).
  • Carta M , MameliM, ValenzuelaCF. Alcohol enhances GABAergic transmission to cerebellar granule cells via an increase in Golgi cell excitability.J. Neurosci.24(15), 3746–3751 (2004).
  • Casagrande S , CupelloA, PellistriF, RobelloM. Only high concentrations of ethanol affect GABAA receptors of rat cerebellum granule cells in culture. Neurosci. Lett.414(3), 273–276 (2007).
  • Morrow AL , VandorenMJ, PenlandSN, MatthewsDB. The role of GABAergic neuroactive steroids in ethanol action, tolerance and dependence.Brain Res. Reviews37(1–3), 98–109 (2001).
  • Sobolevsky AI , RosconiMP, GouauxE. X-ray structure, symmetry and mechanism of an AMPA-subtype glutamate receptor.Nature462(7274), 745–756 (2009).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.