408
Views
0
CrossRef citations to date
0
Altmetric
Review

Ion Channel Blockers for the Treatment of Neuropathic Pain

, , , &
Pages 803-842 | Published online: 12 May 2010

Bibliography

  • IASP Council in Kyoto . IASP Terminology. Modified and improved for publication in Kyoto, Japan, 29–30November (2007).
  • Gilron I , CoderreTJ. Emerging drugs in neuropathic pain.Exp. Opin. Emerg. Drugs12(1), 113–126 (2007).
  • Baron R . Mechanisms of disease: neuropathic pain – a clinical perspective.Nat. Clin. Pract.2(2), 95–106 (2006).
  • Janig W , BaronR. Complex regional pain syndrome: mystery explained?Lancet Neurol.2, 687–697 (2003).
  • Marchand F , PerrettiM, McMahonSB. Role of the immune system in chronic pain.Nat. Rev. Neurosci.6, 521–532 (2005).
  • Petrenko AB , YamakuraT, BabaH, ShimojiK. The role of N-methyl-D-aspartate (NMDA) receptors in pain: a review. Anesth. Analg.97(4), 1108–1116 (2003).
  • Qu XX , CaiJ, LiMJet al. Role of the spinal cord NR2B-containing NMDA receptors in the development of neuropathic pain. Exp. Neurol. 215(2), 298–307 (2009).
  • Wieseler-Frank J , MaierSF, WatkinsLR. Central proinflammatory cytokines and pain enhancement.Neurosignals14, 166–174 (2005).
  • Milligan ED , WatkinsLR. Pathological and protective roles of glia in chronic pain.Nat. Rev. Neurosci.10, 23–36 (2009).
  • Markman JD , DworkinRH. Ion channel targets and treatment efficacy in neuropathic pain.J. Pain7(1S), S38–S47 (2006).
  • Matulenko MA , ScanioMJC, Kort,ME. Voltage-gated sodium channel blockers for the treatment of chronic pain.Curr. Top. Med. Chem.9, 362–376 (2009).
  • Burnstock G . Purinergic receptors and pain.Curr. Pharm. Des.15(15), 1717–1735 (2009).
  • Cortright DN , SzallasiA. TRP channels and pain.Curr. Pharm. Des.15(15),
  • Dubé GR , ElagozA, MangatH. Acid sensing ion channels and acid nociception.Curr. Pharm. Des.15(15), 1750–1766 (2009).
  • Dunlop J , VasilyevD, LuPet al. Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels and pain. Curr. Pharm. Des. 15(15), 1767–1772 (2009).
  • Wickenden AD , McNaughton-SmithG. Kv7 channels as targets for the treatment of pain Curr. Pharm. Des.15(15), 1773–1798 (2009).
  • Dray A . Neuropathic pain: emerging treatments.Br. J. Anaesth.101(1), 48–58 (2008).
  • Dib-Hajj SD , BinshtokAM, CumminsTRet al. Voltage-gated sodium channels in pain states: role in pathophysiology and targets for treatment. Brain Res. Rev. 60(1), 65–83 (2009).
  • Catterall WA , GoldinAL, WaxmanSG. International Union of Pharmacology. XLVII. Nomenclature and structure-function relationships of voltage-gated sodium channels.Pharmacol. Rev.57, 397–409 (2005).
  • Chahine M , ChatelierA, BabichOet al. Voltage-gated sodium channels in neurological disorders. CNS & Neurological Disorders – Drug Targets 7, 144–158 (2008).
  • Cummins TR , SheetsPL, WaxmanSG. The roles of sodium channels in nociception: implications for mechanisms of pain.Pain131(3), 243–257 (2007).
  • Priest BT . Future potential and status of selective sodium channel blockers for the treatment of pain.Curr. Opin. Drug Discov. & Develop.12(5), 682–692 (2009).
  • Waxman SG , KocsisJD, BlackJA. Type III sodium channel mRNA is expressed in embryonic but not in adult spinal sensory neurons, and is re-expressed following axotomy.J. Neurophysiol.72, 466–470 (1994).
  • Hains BC , KleinJP, SaabCYet al. Upregulation of sodium channel Nav1.3 and functional involvement in neuronal hyperexcitability associated with central neuropathic pain after spinal cord injury. J. Neurosci. 23, 8881–8892 (2003).
  • Hains BC , SaabCY, KleinJPet al. Altered sodium channel expression in second-order spinal sensory neurons contributes to pain after peripheral nerve injury. J. Neurosci. 24, 4832–4839 (2004).
  • Coward K , AitkenA, PowellCet al. Plasticity of TTX-sensitive sodium channels PNI and brain III in injured human nerves. Neuroreport 12, 495–500 (2001).
  • Black JA , NikolajsenL, KronerKet al. Multiple sodium channel isoforms and mitogen-activated protein kinases are present in painful human neuromas. Ann. Neurol. 64(6), 644–653 (2008).
  • Cummins TR , WaxmanSG. Downregulation of tetrodotoxin-resistant sodium currents and upregulation of a rapidly repriming tetrodotoxin-sensitive sodium current in small spinal sensory neurons after nerve injury.J. Neurosci.17, 3503–3514 (1997).
  • Cummins TR , AgliecoF, RenganathanM. et al. Na v1.3 sodium channels: rapid repriming and slow closed-state inactivation display quantitative differences after expression in a mammalian cell line and in spinal sensory neurons. J. Neurosci.21, 5952–5961 (2001).
  • Lampert A , HainsBC, WaxmanSG. Upregulation of persistent and ramp sodium current in dorsal horn neurons after spinal cord injury.Exp. Brain Res.174, 660–666 (2006).
  • Lindia JA , KohlerMG, MartinWJet al. Relationship between sodium channel Nav1.3 expression and neuropathic pain behavior in rats. Pain 117, 145–153 (2005).
  • Nassar MA , BakerMD, LevatoAet al. Nerve injury induces robust allodynia and ectopic discharges in Nav1.3 null mutant mice. Mol. Pain 2, 33 (2006).
  • Dib-Hajj SD , RushAM, CumminsTRet al. Gain-of-function mutation in Nav1.7 in familial erythromelalgia induces bursting of sensory neurons. Brain 128(8), 1847–1854 (2005).
  • Dib-Hajj SD , RushAM, CumminsTR, Waxman SG. Mutations in the sodium channel Nav1.7 underlie inherited erythromelalgia. Drug Discov. Today3(3), 343–350 (2006).
  • Dib-Hajj SD , CumminsTR, BlackJA, WaxmanSG. From genes to pain: Nav1.7 and human pain disorders. Trends Neurosci.30(11), 555–563 (2007).
  • Drenth JP , WaxmanSG. Mutations in sodium-channel gene SCN9A cause a spectrum of human genetic pain disorders. J. Clin. Invest.117(12), 3603–3609 (2007).
  • Fertleman CR , BakerMD, ParkerKAet al. SCN9A mutations in paroxysmal extreme pain disorder: allelic variants underlie distinct channel defects and phenotypes. Neuron 52, 767–774 (2006).
  • Cox JJ , ReimannF, NicholasAKet al. An SCN9A channelopathy causes congenital inability to experience pain. Nature 444, 894–898 (2006).
  • Goldberg Y , MacfarlaneJ, MacdonaldMet al. Loss-of-function mutations in the Nav1.7 gene underlie congenital indifference to pain in multiple human populations. Clin. Genet. 71, 311–319 (2007).
  • Nassar MA , LevatoA, StirlingLCet al. Neuropathic pain develops normally in mice lacking both Nav1.7 and Nav1.8. Mol. Pain 1, 24 (2005).
  • Nassar MA , StirlingLC, ForlaniGet al. Nociceptor-specific gene deletion reveals a major role for Nav1.7 (PN1) in acute and inflammatory pain. Proc. Natl. Acad. Sci. USA 101, 12706–12711 (2004).
  • Harty TP , Dib-HajjSD, TyrrellLet al. Nav1.7 mutant A863P in erythromelalgia: effects of altered activation and steady-state inactivation on excitability of nociceptive dorsal root ganglion neurons. J. Neurosci. 26, 12566–12575 (2006).
  • Rush AM , Dib-HajjSD, LiuSet al. A single sodium channel mutation produces hyper- or hypoexcitability in different types of neurons. Proc. Natl. Acad. Sci. USA 103, 8245–8250 (2006).
  • Rush AM , CumminsTR, WaxmanSG. Multiple sodium channels and their roles in electrogenesis within dorsal root ganglion neurons.J. Physiol. (London)579(1), 1–14 (2007).
  • Elliott AA , ElliottJR. Characterization of TTX-sensitive and TTX-resistant sodium currents in small cells from adult rat dorsal root ganglia.J. Physiol.463, 39–56 (1993).
  • Akopian AN , SouslovaV, EnglandSet al. The tetrodotoxin-resistant sodium channel SNS has a specialized function in pain pathways. Nat. Neurosci. 2, 541–548 (1999).
  • Renganathan M , CumminsTR, WaxmanSG. Contribution of Nav1.8 sodium channels to action potential electrogenesis in DRG neurons. J. Neurophysiol.86, 629–640 (2001).
  • Black JA , LiuS, TanakaMet al. Changes in the expression of tetrodotoxin-sensitive sodium channels within dorsal root ganglia neurons in inflammatory pain. Pain 108, 237–247 (2004).
  • Gol MS , ReichlingDB, ShusterMJet al. Hyperalgesic agents increase a tetrodotoxin-resistant Na+ current in nociceptors. Proc. Natl. Acad. Sci. USA 93, 1108–1112 (1996).
  • Lai J , GoldMS, KimCSet al. Inhibition of neuropathic pain by decreased expression of the tetrodotoxin-resistant sodium channel, Nav1.8. Pain 95, 143–152 (2002).
  • Dib-Hajj S , BlackJA, FeltsPet al. Down-regulation of transcripts for Na channel α-SNS in spinal sensory neurons following axotomy. Proc. Natl. Acad. Sci. USA 93, 14950–14954 (1996).
  • Cummins TR , WaxmanSG. Downregulation of tetrodotoxin-resistant sodium currents and upregulation of a rapidly repriming tetrodotoxin-sensitive sodium current in small spinal sensory neurons after nerve injury.J. Neurosci.17, 3503–3514 (1997).
  • Dib-Hajj SD , FjellJ, CumminsTRet al. Plasticity of sodium channel expression in DRG neurons in the chronic constriction injury model of neuropathic pain. Pain 83, 591–600 (1999).
  • Novakovic SD , TzoumakaE, McGivernJGet al. Distribution of the tetrodotoxin-resistant sodium channel PN3 in rat sensory neurons in normal and neuropathic conditions. J. Neurosci. 15, 18(6) 2174–2187 (1998).
  • Gold M , WeinreichD, KimCSet al. Redistribution of Nav1.8 in uninjured axons enables neuropathic pain. J. Neurosci. 23, 158–166 (2003).
  • Cummins TR , Dib-HajjSD, BlackJAet al. A novel persistent tetrodotoxin-resistant sodium current in SNS-null and wild-type small primary sensory neurons. J. Neurosci. 19, RC43 (1999).
  • Roza C , LairdJMA, SouslovaVet al. The tetrodotoxin-resistant Na+ channel Nav1.8 is essential for the expression of spontaneous activity in damaged sensory axons of mice. J. Physiol. 550, 921–926 (2003).
  • Porreca F , LaiJ, BianDet al. A comparison of the potential role of the tetrodotoxin-insensitive sodium channels, PN3/SNS and NaN/SNS2, in rat models of chronic pain. Proc. Natl Acad. Sci. USA 96, 7640–7644 (1999).
  • Priest BT , MurphyBA, LindiaJAet al. Contribution of the tetrodotoxin-resistant voltage-gated sodium channel Nav1.9 to sensory transmission and nociceptive behavior. Proc. Natl Acad. Sci. USA 102, 9382–9387 (2005).
  • Amaya F , WangH, CostiganMet al. The voltage-gated sodium channel Nav1.9 is an effector of peripheral inflammatory pain hypersensitivity. J. Neurosci. 26, 12852–12860 (2006).
  • Eisenberg E , RiverY, ShifrinAet al. Antiepileptic drugs in the treatment of neuropathic pain. Drugs 67(9), 1265–1289 (2007).
  • Sindrup HJ , JensenTS. Efficacy of pharmacological treatments of neuropathic pain: an update and effect related to mechanism of drug action.Pain83, 389–400 (1999).
  • Campbell FG , GrahamJG, ZilkhaKJ. Clinical trial of carbazepine (Tegretol) in trigeminal neuralgia.J. Neurol. Neurosurg. Psychiatry29(3), 265–267 (1966).
  • Sindrup SH , JensenTS. Pharmacotherapy of trigeminal neuralgia.Clin. J. Pain18, 22–27 (2002).
  • Wilton TD . Tegretol in the treatment of diabetic neuropathy.S. Afr. Med. J.48(20), 869–872 (1974).
  • Gomez-Perez FJ , ChozaR, RiosJMet al. Nortriptyline–fluphenazine vs carbamazepine in the symptomatic treatment of diabetic neuropathy. Arch. Med. Res. 27, 525–529 (1996).
  • Sindrup SJ , JensenTS. Are sodium channel blockers useless in peripheral neuropathic pain?Pain128, 6–7 (2007).
  • Bhattacharya A , WickendenAD, ChaplanSR. Sodium channel blockers for the treatment of neuropathic pain.Neurother.6(4), 663–678 (2009).
  • Cummins TR , RushAM. Voltage-gated sodium channel blockers for the treatment of neuropathic pain.Exp. Rev. Neurother.7(11), 1597–1612 (2007).
  • Priest BT , KaczorowskiGJ. Blocking sodium channels to treat neuropathic pain.Expert Opin. Ther. Targets11(3), 291–306 (2007).
  • Jain KK . Current challenges and future prospects in management of neuropathic pain.Expert Rev. Neurother.8(11), 1743–1756 (2008).
  • Bear B , AsgianJ, TerminA, ZimmermannN. Small molecules targeting sodium and calcium channels for neuropathic pain.Curr. Opin. Drug Discov. Develop.12(4), 543–561 (2009).
  • Binshtok AM , BeanBP, WoolfCJ. Inhibition of nociceptors by TRPV1-mediated entry of impermeant sodium channel blockers.Nature447, 607–611 (2007).
  • Sah D , GuoW, LuoMet al. Small interfering RNA targeting Nav1.8 alleviates experimentally-induced chronic pain. Presented at: 36th Annual Meeting of the Society for Neuroscience. Atlanta, GA, USA, 14–18 October 2006 (Abstract 245.11).
  • Catterall WA , Perez-ReyesE, SnutchTP, StriessnigJ. International Union of Pharmacology. XLVIII. Nomenclature and structure-function relationships of voltage-gated calcium channels.Pharmacol. Rev.57(4), 411–425 (2005).
  • Cizkova D , MarsalaJ, LukacovaNet al. Localization of N-type Ca2+ channels in the rat spinal cord following chronic constrictive nerve injury. Exp. Brain Res. 147, 456–463 (2002).
  • Luo ZD , ChaplanSR, HigueraES et al. Upregulation of dorsal root ganglion (a)2(d) calcium channel subunit and its correlation with allodynia in spinal nerve injured rats. J. Neurosci.21(6), 1868–1875 (2001).
  • Striessnig J , KoschakA. Exploring the function and pharmacotherapeutic potential of voltage-gated Ca2+ channels with gene knockout models. Channels2(4), 1–19 (2008).
  • Kim C , JunK, LeeTet al. Altered nociceptive response in mice deficient in the a(1B) subunit of the voltage-dependent calcium channel. Mol. Cell. Neurosci. 18, 235–245 (2001).
  • Saegusa H , KuriharaT, ZongSet al. Suppression of inflammatory and neuropathic pain symptoms in mice lacking the N-type Ca2+ channel. EMBO J. 20, 2349–2356 (2001).
  • Williams JA , DayM, HeavnerJE. Ziconotide: an update and review.Expert Opin. Pharmacother.9(9), 1575–1583 (2008).
  • Vitale V , BattelliD, GasperoniE, MonacheseN. Intrathecal therapy with ziconotide: clinical experience and consideration on its use.Minerva Anestesiol.74, 727–733 (2008).
  • Moore RA , StraubeS, WiffenPJ, DerryS, McQuayHJ. Pregabalin for acute and chronic pain in adults.Cochrane Database Syst. Rev.8(3), CD007076 (2009).
  • Noor M , GajrajNM. Pregabalin: its pharmacology and use in pain managementAnesth. Analg.105(6), 1805–1815 (2007).
  • McKeage K , KeamSJ. Pregabalin: in the treatment of postherpetic neuralgia.Drugs Aging26(10), 883–892 (2009).
  • Taylor CP . Mechanisms of analgesia by gabapentin and pregabalin calcium channel α2-δ [Cavα2-δ] ligands. Pain142(1–2), 13–16 (2009).
  • Davies A , HendrichJ, Tran Van Minh A, Wratten J, Douglas L, Dolphin AC. Functional biology of the α2-δ subunits of voltage-gated calcium channels. Trends Pharmacol. Sci.28(5), 220–228 (2007).
  • Heblich F , Tran Van Minh A, Hendrich J, Watschinger K, Dolphin AC. Time course and specificity of the pharmacological disruption of the trafficking of voltage-gated calcium channels by gabapentin. Channels2(1), 4–9 (2008).
  • Perez-Reyes E . Molecular physiology of low-voltage-activated T-type calcium channels.Physiol. Rev.83, 117–161, (2003).
  • Jagodic MM , PathirathnaS, JoksovicPMet al. Upregulation of the T-type calcium current in small rat sensory neurons after chronic constrictive injury of the sciatic nerve. J. Neurophysiol. 99, 3151–3156 (2008).
  • Jagodic MM , PathirathnaS, NelsonMTet al. Cell-specific alterations of T-type calcium current in painful diabetic neuropathy enhance excitability of sensory neurons. J. Neurosci. 27(12), 3305–3316 (2007).
  • Todorovic SM , Jevtovic-TodorovicV. Regulation of T-type channels in the peripheral pain pathway.Channels4, 238–245 (2007).
  • McCallum JB , KwokWM, MynlieffM, BosnjakZJ, HoganQH. Loss of T-type calcium current in sensory neurons of rats with neuropathic pain.Anesthesiology98, 209–216 (2003).
  • Wolfart J , RoeperJ. Selective coupling of T-type calcium channels to SK potassium channels prevents intrinsic bursting in dopaminergic midbrain neurons.J. Neurosci.22, 3404–3413 (2002).
  • Mircea C . Iftinca MC, Zamponi GW. Regulation of neuronal T-type calcium channels.Trends Pharmacol. Sci.30(1), 32–40 (2009).
  • Bourinet E , AllouiA, MonteiolAet al. Silencing of the Cav3.2 T-type calcium channel gene in sensory neurons demonstrates its major role in nociception. EMBO J. 24, 315–324 (2005).
  • Belardetti F , ZamponiGW. Linking calcium channel isoforms to potential therapiesCurr. Opin. Invest. Drugs7, 707–715 (2008).
  • Gajraj NM . Pregabalin: its pharmacology and use in pain management.Anesth. Analg.6, 1805–1815 (2007).
  • Kolosov A , GoodchildCS, CookIet al. CNSB004 (Leconotide) causes antihyperalgesia without side effects when given intravenously: a comparison with ziconotide in a rat model of diabetic neuropathic pain. Pain Med. 11, 262–273 (2010).
  • Yamamoto T , TakaharaA. Recent updates of N-type calcium channel blockers with therapeutic potential for neuropathic pain and stroke.Curr. Top. Med. Chem.9, 377–395 (2009).
  • Gutman GA , ChandyKG, GrissmerSet al. International Union of Pharmacology. LIII. Nomenclature and molecular relationships of voltage-gated potassium channels. Pharmacol. Rev. 57, 473–508 (2005).
  • Wei AD , GutmanGA, AldrichRet al. International Union of Pharmacology. LII. Nomenclature and molecular relationships of calcium-activated potassium channels. Pharmacol. Rev. 57, 463–472 (2005).
  • Kubo Y , AdelmanJP, ClaphamDEet al. International Union of Pharmacology. LIV. Nomenclature and molecular relationships of inwardly rectifying potassium channels. Pharmacol. Rev. 57, 509–526 (2005).
  • Goldstein SAN , BaylissDA, KimDet al. International Union of Pharmacology. LV. Nomenclature and molecular relationships of two-P potassium channels. Pharmacol. Rev. 57, 527–540 (2005).
  • Ocana M , CendanCM, CobosEJ, EntrenaJM, Baeyens,JM. Potassium channels and pain: present realities and future opportunities.Eur. J. Pharmacol.500, 203–219 (2004).
  • Chien L -Y, Cheng J-K, Chu D, Cheng C-F, Tsaur M-L. Reduced expression of A-type potassium channels in primary sensory neurons induces mechanical hypersensitivity. J. Neurosci.27(37), 9855–9865 (2007).
  • Phuket N , RatanadilokT, CovarrubiasM. Kv4 channels underlie the subthreshold-operating A-type K-current in nociceptive dorsal root ganglion neurons. Front. Mol. Neurosci.2, 3 (2009).
  • Chen SR , CaiYQ, PanHL. Plasticity and emerging role of BKCa channels in nociceptive control in neuropathic pain.J. Neurochem.110(1), 352–362 (2009).
  • Rivera-Arconada I , RozaC, Lopez-GarciaJA. Enhancing M currents: a way out for neuropathic pain?Front Mol Neurosci.2, 10 (2009).
  • Jiang YQ , SunQ, TuHY, WanY. Characteristic of HCN channels and their participation in neuropathic pain.Neurochem. Res.33, 1979–1989 (2008).
  • Noma A , IrisawaH. Membrane currents in the rabbit sinoatrial node cell as studied by the double microelectrode method.Pflugers Arch.364(1), 45–52 (1976)
  • Chaplan SR , GuoHQ, LeeDHet al. Neuronal hyperpolarization-activated pacemaker channels drive neuropathic pain. J.Neurosci. 23, 1169–1178 (2003).
  • Sun Q , XingGG, TuHY, HanJS, WanY. Inhibition of hyperpolarization-activated current by ZD7288 suppresses ectopic discharges of injured dorsal root ganglion neurons in a rat model of neuropathic pain.Brain Res.1032(1–3), 63–69 (2005).
  • Mayer ML , WestbrookGL. A voltage-clamp analysis of inward (anomalous) rectification in mouse spinal sensory ganglion neurones.J.Physiol.340, 19–45 (1983).
  • Kouranova EV , StrassleBW, RingRH, BowlbyMR, VasilyevDV. Hyperpolarization-activated cyclic nucleotide-gated channel mRNA and protein expression in large versus small diameter dorsal root ganglion neurons: correlation with hyperpolarization-activated current gating.Neuroscience153(4), 1008–1019 (2008).
  • Tu H , DengL, SunQ, YaoL, HanJS, WanY. Hyperpolarization-activated, cyclic nucleotide-gated cation channels: roles in the differential electrophysiological properties of rat primary afferent neurons.J. Neurosci. Res.76(5), 713–722 (2004).
  • Papp I , SzucsP, HolloK, ErdelyiF, SzaboG, AntalM. Hyperoplarization-activated and cyclic nucleotide-gated cation channel subunit 2 ion channels modulate synaptic transmission from nociceptive primary afferents containing substance P to secondary sensory neurons in laminae I-IIo of the rodent spinal dorsal horn. Eur. J. Neurosci.24, 1341–1352 (2006).
  • Luo L , ChangL, BrownSMet al. Role of peripheral hyperpolarization-activate cyclic nucleotide-modulated channel pacemaker channels in acute and chronic pain models in the rat. Neuroscience 144, 1477–1485 (2007).
  • Bie B , PengY, ZhangY, PanZZ. cAMP-mediated mechanism for pain sensitization during opioid withdrawal.J. Neurosci.25(15), 3824–3832 (2005).
  • Jolas T , NestlerEJ, AghajanianGK. Chronic morphine increases GABA tone on serotoninergic neurons of the dorsal raphe nucleus: association with an upregulation of the cyclic AMP pathway.Neuroscience95(2), 433–443 (2000).
  • Brown SM , DubinAE, ChaplanSR. The role of pacemaker currents in neuropathic pain.Pain Practice4(3), 182–193 (2004).
  • Devor M , RaberP. Autotomy after nerve injury and its relation to spontaneous discharge originating in nerve-end neuromas.Behav. Neurol. Biol.37, 276–283 (1983).
  • Liu CN , WallPD, Ben-DorE, MichaelisM, AmirR, DevorM. Tactile allodynia in the absence of C-fiber activation: altered firing properties of DRG neurons following spinal nerve injury.Pain85, 503–521 (2000).
  • Tal M , EliavE. Abnormal discharge originates at the site of nerve injury in experimental constriction neuropathy (CCI) in the rat.Pain64(3), 511–518 (1996).
  • Kajander KC , BennettGJ. Onset of a painful peripheral neuropathy in rat: a partial and differential deafferentation and spontaneous discharge in A-β and A-δ primary afferent neurons.J. Neurophysiol.68(3), 734–744 (1992).
  • Song XJ , HuSJ, GreenquistKW, ZhangJM, LaMotteRH. Mechanical and thermal hyperalgesia and ectopic neuronal discharge after chronic compression of dorsal root ganglia.J.Neurophysiol.82(6), 3347–3358 (1999).
  • Wan Y . Involvement of hyperpolarization-activated cyclic nucleotide-gated cation channels in dorsal root ganglion in neuropathic pain.Acta Physiol. Sinica60(5), 579–580 (2008).
  • Yao H , DonnellyDF, MaC, LaMotteRH. Upregulation of the hyperpolarization-activated cation current after chronic compression of the dorsal root ganglion.J. Neurosci.23, 2069–2074 (2003).
  • Jiang YQ , XingGG, WangSLet al. Axonal accumulation of hyperpolarization-activated cyclic nucleotide-gated cation channels contributes to mechanical allodynia after peripheral nerve injury in rat. Pain 137, 495–506 (2008).
  • Lee DH , ChangL, SorkinLS, ChaplanSR. Hyperpolarization-activated, cation-nonselective, cyclic nucleotide-modulated channel blockade alleviates mechanical allodynia and suppresses ectopic discharge in spinal nerve ligated rats.J.Pain.6(7), 417–424 (2005).
  • Hellwig N , AlbrechN, HarteneckC, SchultzG, SchaeferM. Homo- and heteromeric assembly of TRPV channel subunits.J. Cell Sci.118, 917–928 (2005).
  • Salazar H , Jara-OsegueraA, Hernandez-GarciaEet al. Structural determinants of gating in the TRPV1 channel. Nat. Struct. Mol. Biol. 16(7), 704–710 (2009).
  • Montell C . The TRP superfamily of cation channels.Science STKE272, re3 (2005).
  • Caterina MJ , SchumacherMA, TominagaM, RosenTA, LevineJD, JuliusD. The capsaicin receptor: a heat-activated ion channel in the pain pathway.Nature389, 816–824 (1997).
  • Tominaga M , CaterinaMJ, MalmbergABet al. The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron 21, 531–543 (1998).
  • Xu H , BlairNT, ClaphamDE. Camphor activates and strongly desensitizes the transient receptor potential vanilloid subtype 1 channel in a vanilloid-independent mechanism.J. Neurosci.25, 8924–8937 (2005).
  • Macpherson LJ , GeierstangerBH, ViswanathVet al. The pungency of garlic: activation of TRPA1 and TRPV1 in response to allicin. Curr. Biol. 15, 929–934 (2005).
  • Yoshida T , InoueR, MoriiTet al. Nitric oxide activates TRP channels by cysteine S-nitrosylation. Nat. Chem. Biol. 2(11), 596–607 (2006).
  • Trevisani M , SmartD, GunthorpeMJet al. Ethanol elicits and potentiates nociceptor responses via the vanilloid receptor-1. Nat. Neurosci. 5, 546–551 (2002).
  • Lee SY , LeeJH, KangKK, HwangSY, ChoiKD, OhU. Sensitization of vanilloid receptor involves an increase in the phosphorylated form of the channel.Arch. Pharm. Res.28, 405–412 (2005).
  • Sanchez JF , KrauseJE, CortrightDN. The distribution and regulation of vanilloid receptor VR1 and VR1 5´ splice variant RNA expression in rat.Neuroscience107, 373–381 (2001).
  • Caterina MJ , JuliusD. The vanilloid receptor: a molecular gateway to the pain pathway.Annu. Rev. Neurosci.24, 487–517 (2001).
  • Hudson LJ , BevanS, WotherspoonG, GentryC, FoxA, WinterJ. VR1 protein expression increases in undamaged DRG neurons after partial nerve injury.Eur. J. Neurosci.13, 2105–2114 (2001).
  • Caterina MJ , LefflerA, MalmbergABet al. Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 288, 306–313 (2000).
  • Davis JB , GrayJ, GunthorpeMJet al. Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia. Nature 405, 183–187 (2000).
  • Christoph T , GillenC, MikaJet al. Antinociceptive effect of antisense oligonucleotides against the vanilloid receptor VR1/TRPV1. Neurochem. Int. 50, 281–290 (2007).
  • Christoph T , GrunwellerA, MikaJet al. Silencing of vanilloid receptor TRPV1 by RNAi reduces neuropathic and visceral pain in vivo. Biochem. Biophys. Res. Commun. 350, 238–243 (2006).
  • Kanai Y , NakazatoE, FujiuchiA, HaraT, ImaiA. Involvement of an increased spinal TRPV1 sensitization through its upregulation in mechanical allodynia of CCI rats.Neuropharmacol.49, 977–984 (2005).
  • Pomonis JD , HarrisonJE, MarkL, BristolDR, ValenzanoKJ, WalkerK. N-4-Tertiarybutylphenyl)-4-(3-chloropyridin-2-yl)tetrahydropyrazine-1(2H)-carbox-amide (BCTC), a novel, orally-effective vanilloid receptor 1 antagonist with analgesic properties: II. In vivo characterization in rat models of inflammatory and neuropathic pain. J. Pharmacol. Exp. Ther.306, 387–393 (2003).
  • Honore P , WismerCT, MikusaJet al. A-425619 [1-isoquinolin-5-yl-3-(4-trifluoromethyl-benzyl)-urea], a novel transient receptor potential type V1 receptor antagonist, relieves pathophysiological pain associated with inflammation and tissue injury in rats. J. Pharmacol. Exp. Ther. 314, 410–421 (2005).
  • Smith GD , GunthorpeMJ, KelsellREet al. TRPV3 is a temperature sensitive vanilloid receptor-like protein. Nature 418, 186–190 (2002).
  • Xu H , RamseyIS, KotechaSAet al. TRPV3 is a calcium-permeable temperature-sensitive cation channel. Nature 418, 181–186 (2002).
  • Hu HZ , XiaoR, WangCet al. Potentiation of TRPV3 channel function by unsaturated fatty acids. J. Cell. Physiol. 208, 201–212 (2006).
  • Peier AM , ReeveAJ, AnderssonDAet al. A heat-sensitive TRP channel expressed in keratinocytes. Science 296, 2046–2049 (2002).
  • Moqrich A , HwangSW, EarleyTJet al. Impaired thermosensation in mice lacking TRPV3, a heat and camphor sensor in the skin. Science 307, 1468–1472 (2005).
  • Gullapalli S , ThomasA, RaoP, KattigeV, GudiGS, Khairatkar-JoshiN. GRC-15133: a novel, selective TRPV3 antagonist with antihyperalgesic effects in inflammatory and neuropathic pain. CHI’s World Pharmaceutical Congress, Philadelphia, PA, USA, 2008.
  • Jaquemar D , Schenker, Trueb B. An ankyrin-like protein with transmembrane domains is specifically lost after oncogenic transformation of human fibroblasts. J. Biol.Chem.274, 7325–7333 (1999).
  • Bandell M , StoryGM, HwangSWet al. Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron 41, 849–857 (2004).
  • Taylor-Clark TE , UndemBJ, MacglashanDW, GhattaS, CarrMJ, McAlexanderMA. Prostaglandin-induced activation of nociceptive neurons via direct interaction with transient receptor potential A1 (TRPA1).Mol. Pharmacol.73, 274–281 (2008).
  • Story GM , PeierAM, ReeveAJ, EidSR, MosbackerJ, HricikTR. ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures.Cell112, 819–829 (2003).
  • Obata K , KatsuraH, MizushimaT, YamanakaH, KobayashiK, DayY. TRPA1 induced in sensory neurons contributes to cold hyperalgesia after inflammation and nerve injury.J. Clin. Invest.115, 2393–2401 (2005).
  • Bautista DM , JordtSE, NikaiT, TsurudaPR, ReadAJ, PobleteJ. TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents.Cell124, 1269–1282 (2006).
  • Katsura H , ObataK, MizushimaT, YamanakaH, KobayashiK, DayY. Antisense knock-down of TRPA1, but not TRPM8, alleviates cold hyperalgesia after spinal nerve ligation in rats.Exp. Neurol.200, 112–113 (2006).
  • Jane DE , LodgeD, CollingridgeGL. Kainate receptors: pharmacology, function and therapeutic potential.Neuropharmacol.56, 90–113 (2009).
  • Petrus M , PeierAM, BandellMet al. A role of TRPA1 in mechanical hyperalgesia is revealed by pharmacological inhibition. Mol. Pain 3, 40 (2007).
  • McNamara CR , Mandel BrehmJ, BautistaDMet al. TRPA1 mediates formalin-induced pain. Proc. Natl. Acad. Sci. USA104, 13525–13530 (2007).
  • Eid SR , CrownED, MooreELet al. HC-030031, a TRPA1 selective antagonist, attenuates inflammatory- and neuropathy-induced mechanical hypersensitivity. Mol. Pain 4, 48 (2008).
  • Peier AM , MoqrichA, HergardenAC, ReeveAJ, AnderssonDA, StoryGM. A TRP channel that senses cold stimuli and menthol.Cell108, 705–715 (2002).
  • Bautista DM , SiemensJ, GlazerJM, TsurudaPR, BasbaumAI, StuckyCL. The menthol receptor TRPM8 is the principal detector of environmental cold.Nature448, 204–208 (2007).
  • McKemy DD , NeuhausserWM, JuliusD. Identification of a cold receptor reveals a general role for TRP channels in thermosensation.Nature416, 52–58 (2007).
  • Kobayashi A , FukuokaT, ObataHet al. Distinct expression of TRPM8, TRPA1 and TRPV1 mRNAs in rat primary afferent neurons with Aδ/C-fibers and colocalization with Trk receptors. J. Comp. Neurol. 493, 596–606 (2005).
  • Colburn RW , LubinML ., Stone DJ, Wang Y, Lawrence D, D‘Andrea MR. Attenuated cold sensitivity in TRPM8 null mice. Neuron54, 379–386 (2007).
  • Dhaka A , MurrayAN, MathurJ, EarleyTJ, PetrusMJ, PatapoutianA. TRPM8 is required for cold sensation in mice.Neuron54, 371–378 (2007).
  • Proudfoot CJ , GarryEM, CottrellDFet al. Analgesia mediated by the TRPM8 cold receptor in chronic neuropathic pain. Curr. Biol. 16, 1591–1605 (2006).
  • Xing H , ChenM, LingJ, TanW, GuJG. TRPM8 mechanism of cold allodynia after chronic nerve injury.J. Neurosci.27, 13680–13690 (2007).
  • Caspani O , ZurborgS, LabuzD, HeppenstallPA. The contribution of TRPM8 and TRPA1 channels to cold allodynia and neuropathic pain.PloS ONE4(10), e7383 (2009).
  • Szallasi A , AppendinoG. Vanilloid receptor TRPV1 antagonists as the next generation of painkillers. Are we putting the cart before the horse?J. Med. Chem.47(11), 2717–2723 (2004).
  • Westaway SM . The potential of transient receptor potential vanilloid type 1 channel modulators for the treatment of pain.J. Med. Chem.50, 2589–2596 (2007).
  • Szallasi A , CortrightDN, BlumCA, EidSR. The vanilloid receptor TRPV1: 10 years from channel cloning to antagonist proof-of-concept.Nat. Rev. Drug Discov.6, 357–372 (2007).
  • Starowicz K , CristinoL, DiMarzoV. TRPV1 receptors in the central nervous system: potential for previously unforeseen therapeutic applications.Curr. Phar. Des.14, 42–54 (2008).
  • Wong GY , GavvaNR. Therapeutic potential of vanilloid receptor TRPV1 agonists and antagonists as analgesics: recent advances and setbacks.Brain Res. Rev.60, 267–277 (2009).
  • Gavva NR . Body-temperature maintenance as the predominant function of the vanilloid receptor TRPV1.Trends. Pharm. Sci.29(11), 550–557 (2008).
  • Salter M .W. Cellular signaling pathways of spinal pain neuroplasticity as targets for analgesic development. Curr. Top. Med. Chem.5, 557–567 (2005).
  • Bleakman D , AltA, NisenbaumES. Glutamate receptors and pain.Semin. Cell. Dev. Biol.17, 592–604 (2007).
  • Collingridge GL , OlsenRW, PetersJ, SpeddingM. A nomenclature for ligand-gated ion channels.Neuropharmacol.56, 2–5 (2009).
  • Mayer ML , ArmstrongN. Structure and function of glutamate receptor ion channels.Annu. Rev. Physiol.66, 161–181 (2004).
  • Paoletti P , NeytonJ. NMDA receptor subunits: function and pharmacology.Curr. Opin. Pharmacol.7(1), 39–47 (2007).
  • Childers WE Jr, Baudy RB. N-methyl-D-aspartate antagonists and neuropathic pain: the search for relief. J. Med. Chem.50(11), 2557–2562 (2007).
  • Yaksh TL , SorkinLS. Mechanism of neuropathic pain.Curr. Med. Chem. CNS Agents11, 2977–2994 (2005).
  • Zhou S , BonaseraL, CarltonSM. Peripheral administration of NMDA, AMPA or KA results in pain behaviors in rats.Neuroreport7, 895–900 (1996).
  • Coderre TJ , MelzackR. The contribution of excitatory amino acids to central sensitization and persistent nociception after formalin-induced tissue injury.J.Neurosci.12, 3665–3670 (1992).
  • Karlsson U , SjodinJ, AngebyKet al. Glutamate-induced currents reveal three functionally distinct NMDA receptor populations in rat dorsal horn. Effects of pheriperal nerve lesion and inflammation. Neuroscience 112, 861–868 (2002).
  • Davies SN , LodgeD. Evidence for involvement of N-methylaspartate receptors in “windup” of class 2 neurones in the dorsal horn of the rat. Brain Res.424, 402–406 (1987).
  • Dickenson AH , SullivanAF. Evidence for a role of the NMDA receptor in the frequency dependent potentiation of deep rat dorsal horn nociceptive neurons following C fibre stimulation.Neuropharmacol.26, 1235–1238 (1987).
  • Brown DG , KruppJJ. N methyl-D-aspartate receptor (NMDA) antagonists as potential pain therapeutics. Curr. Top. Med. Chem.6, 749–770 (2006).
  • Chizh BA , HeadleyPM. NMDA antagonists and neuropathic pain – multiple drug targets and multiple uses.Curr. Pharm. Des.11, 2977–2994 (2005).
  • Mony L , KewJNC, GunthorpeMJ, PaolettiP. Allosteric modulators of NR2B-containing NMDA receptors: molecular mechanism and therapeutic potential.Br. J. Pharmacol.157, 1301–1317 (2009).
  • Morales-Alcelay S , RubioL, MartinezA. AMPA glutamate receptors and neuropathic pain.Minirev. Med. Chem.3, 757–763 (2003).
  • Garry EM , MossA, RosieRet al. Specific involvement in neuropathic pain of AMPA receptors and adapter proteins for the GluR2 subunit. Mol. Cell. Neurosci. 24, 10–22 (2003).
  • Harris JA , CorsiM, QuartiroliM, ArbanR, BentivoglioM. Upregulation of spinal glutamate receptors in chronic pain.Neuroscience74, 7–12 (1996).
  • Bennett AD , EverhartAW, HulseboschCE. Intrathecal administration of an NMDA or a non-NMDA receptor antagonist reduces mechanical but not thermal allodynia in a rodent model of chronic central pain after spinal cord injury.Brain Res.859, 72–82 (2000).
  • Szekely JI , TorokK, MatéG. The role of ionotropic glutamate receptors in nociception with special regard to the AMPA binding site.Curr. Pharm. Des.8, 887–912 (2002).
  • Donevan SD , RogawskiMA. GYKI52466, a 2,3-benzodiazepine, is a highly selective, noncompetitive antagonist of AMPA/kainate receptor responses.Neuron10, 51–59 (1993).
  • Gilron I , MaxMB, LeeGet al. Effects of the 2-amino-3-hydroxy-5-methyl-4-isoazole-propionic acid/kainate antagonist LY293558 on spontaneous and evoked postoperative pain. Clin. Pharmacol. Ther. 68, 320–327 (2000).
  • Gormsen L , FinnerupNB, AlmqvistPM, JensenTS. The efficacy of the AMPA receptor antagonist NS1209 and lidocaine in nerve injury pain: a randomized, double-blind, placebo-controlled, three-way crossover study.Anesth. Analg.108, 1311–1319 (2009).
  • Sato K , KiyamaH, ParkHT, TohyamaM. AMPA, KA and NMDA receptors are expressed in the rat DRG neurons.Neuroreport4, 1263–1265 (1993).
  • Giovengo SL , KittoKF, KurtzHJ, VelazquezRA, LarsonAA. Parenterally administered kainic acid induces a persistent hyperalgesia in the mouse and rat.Pain111, 151–161 (1999).
  • Procter MJ , HoughtonAK, FaberESet al. Actions of kainate and AMPA selective glutamate receptor ligands on nociceptive processing in the spinal cord. Neuropharmacol. 37, 1287–1297 (1998).
  • Alt A , WeissB, OgdenAMet al. Pharmacological characterization of glutamatergic agonist and antagonist at recombinant human homomeric and heteromeric kainate receptors in vitro. Neuropharmacol. 46, 793–806 (2004).
  • Palecek J , NeugebauerV, CarltonSM, IvengarS, WillisWD. The effect of kainate GluR5 receptor antagonist on responses of spinothalamic neurons in a model of peripheral neuropathy in primates.Pain111, 151–161 (2004).
  • Wu L , KoSW, ZhuoM. Kainate receptors and pain: from dorsal root ganglion to the anterior cingulated cortex.Curr. Pharm. Des.13, 1597–1605 (2007).
  • Burnstock G . Physiology and pathophysiology of purinergic neurotransmission.Physiol. Rev.87, 659–797 (2007).
  • Burnstock G , WilliamsM. P2 purinergic receptors: modulation of cell function and therapeutic potential.J. Pharmacol. Exp.295, 862–869 (2000).
  • North RA . Molecular physiology of P2X receptors.Physiol. Rev.82, 1013–1067 (2002).
  • Khakh BS , NorthRA. P2X receptors as cell-surface ATP sensors in health and disease.Nature442, 527–532 (2006).
  • North RA , SuprenantA. Pharmacology of cloned P2X receptors.Annu. Rev. Pharmacol. Toxicol.40, 563–580 (2000).
  • Fredholm BB , IjzermanAP, JacobsonKA, KlotzKN, LindenJ. International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors.Pharmacol. Rev.53, 527–552 (2001).
  • Burnstock G . Purine and pyrimidine receptors.Cell. Mol. Life Sci.64, 1471–1483 (2007).
  • Guo C , MasinM, QureshiOS, Murrell-LagnadoRD. Evidence for functional P2X4/P2X7 heteromeric receptors. Mol. Pharmacol.72, 1447–1456 (2007).
  • Jones CA , VialC, SellersLAet al. Functional regulation of P2X6 receptors by N-linked glycosylation: identification of novel α:β-methylene ATP-sensitive phenotype. Mol. Pharmacol. 65(4), 979–985 (2004).
  • Holton FA , HoltonPJ. The capillary dilator substances in dry powders of spinal roots; a possible role for adenosine triphosphate in chemical transmission from nerve endings.J. Physiol.126, 124–140 (1954).
  • Holton PJ . The liberation of adenosine triphosphate on antidromic stimulation of sensory nerves.J. Physiol.145, 494–504 (1959).
  • Jahr CE , JessellTM. ATP excites a subpopulation of rat dorsal horn neurones.Nature304, 730–733 (1983).
  • Nakagawa T ,Wakamatsu K, Zhang N et al. Intrathecal administration of ATP produces long-lasting allodynia in rats: differential mechanisms in the phase of the induction and maintenance. Neuroscience147, 445–455 (2007).
  • Bleehen T , KeeleCA. Observation on the algogenic actions of adenosine compounds on the human blister base preparation.Pain3, 367–377 (1977).
  • Hamilton SG , WarburtonJ, BhattacharjeeA, WardJ, McMahonSB. ATP in human skin elicits a dose-related pain response under conditions of hyperalgesia.Brain123, 1238–1246 (2000).
  • Jarvis MF . Contributions of P2X3 homomeric and heteromeric channels to acute and chronic pain. Exp. Opin. Ther. Targets7, 513–522 (2003).
  • Inoue K . The function of microglia through purinergic receptors: neuropathic pain and cytokine release.Pharmacol. Ther.109, 210–226 (2006).
  • Donnelly-Roberts D , McGaraughtyS, ShiehCC, HonoreP, JarvisMF. Painful purinergic receptors.J. Pharmaol. Exp. Ther.324, 409–415 (2008).
  • Ahrens J , LeuwerM, ReyhanDet al. Positive allosteric modulatory effects of ajulemic acid at strychnine-sensitive glycine α1- and α1β-receptors. Naunyn Schmied. Arch. Pharmacol. 379(4), 371–378 (2009).
  • Burnstock G . Purine-mediated signalling in pain and visceral perception.Trends Pharmacol. Sci.22, 182–188 (2001).
  • Shinoda M , KawashimaK, OzakiN, AsaiH, NagamineK, SugiuraY. P2X3 receptor mediates heat hyperalgesia in a rat model of trigeminal neuropathic pain. J. Pain8, 588–597 (2007).
  • Cockayne DA , HamiltonSG, ZhuQMet al. Urinary bladder hyporeflexia and reduced pain-related behaviour in P2X3-deficient mice. Nature 407, 1011–1015 (2000).
  • Souslova V , CesareP, DingYet al. Warm-coding deficits and aberrant inflammatory pain in mice lacking P2X3 receptors. Nature 407, 1015–1017(2000).
  • Honore P , KageK, MikusaJet al. Analgesic profile of intrathecal P2X(3) antisense oligonucleotide treatment in chronic inflammatory and neuropathic pain states in rats. Pain 99, 11–19 (2002).
  • Dorn G , PatelS, WotherspoonGet al. siRNA relieves chronic neuropathic pain. Nucleic Acids Res. 32, e49 (2004).
  • Honore P , MikusaJ, BianchiBet al. TNP-ATP, a potent P2X3 receptor antagonist, blocks acetic acid-induced abdominal constriction in mice: comparison with reference analgesics. Pain 96, 99–105 (2002).
  • Kim C , ChungJM, ChungK. Changes in the gene expression of six subtypes of P2X receptors in rat dorsal root ganglion after spinal nerve ligation.Neurosci. Lett.337, 81–84 (2003).
  • Inoue K . The function of microglia through purinergic receptors: neuropathic pain and cytokine release.Pharmacol. Ther.109, 210–226 (2006).
  • Surprenant A , RassendrenF, KawashimaE, NorthRA, BuellG. The cytolytic P2z receptor for extracellular ATP identified as a P2X receptor (P2X7). Science272, 735–738 (1996).
  • Nuttle LC , DubyakGR. Differential activation of cation channels and non-selective pores by macrophage P2z purinergic receptors expressed in Xenopus oocytes.J. Biol. Chem.269(19), 13988–13996 (1994).
  • Hide I , TanakaM, InoueAet al. Extracellular ATP triggers tumor necrosis factor-α release from rat microglia. J. Neurochem. 75, 965–972 (2000).
  • Sanz JM , Di Virgilio F. Kinetics and mechanism of ATP-dependent IL-1 β release from microglial cells. J. Immunol.164, 4893–4898 (2000).
  • Watkins LR , MilliganED, MaierSF. Glial activation: a driving force for pathological pain.Trends Neurosci.24:450– 455 (2001).
  • Papp L , ViziES, SperlághB. Lack of ATP-evoked GABA and glutamate release in the hippocampus of P2X7 receptor -/- mice. Neuroreport15, 2387–2391 (2004).
  • Chessell IP , HatcherJP, BountraCet al. Disruption of the P2X7 purinoceptor gene abolishes chronic inflammatory and neuropathic pain. Pain 114:386–396 (2005).
  • Honore P , Donnelly-RobertsD, NamovicMTet al. A-740003 [N-(1-{[(cyanoimino)(5-quinolinylamino)methyl]amino}-2,2-dimethylpropyl)-2-(3,4-dimethoxyphenyl) acetamide], a novel and selective P2X7 receptor antagonist, dose-dependently reduces neuropathic pain in the rat. J. Pharmacol. Exp. Ther. 319:1376–1385 (2006).
  • Lingueglia E . Acid-sensing ion channels in sensory perception.J.Biol.Chem.282(24), 17325–17329 (2007).
  • Gonzales EB , KawateT, GouauxE. Pore architecture and ion sites in acid-sensing ion channels and P2X receptors.Nature460, 599–605 (2009).
  • Reyhan D , LeuwerM, de la Roche J et al. Modulation of glycine receptor function by the synthetic cannabinoid HU210. Pharmacology83(5), 270–274 (2009).
  • Holzer P . Acid sensor ion channels and receptors.Handb. Exp. Pharmacol.194, 283–332 (2009).
  • Lindahl O . Pain: a chemical explanation.Acta Rheumatol. Scand.8, 161–169 (1962).
  • Reeh PW , SteenKH. Tissue acidosis in nociception and pain.Prog. Brain Res.113, 143–151 (1996).
  • Voilley N , De Weille J, Mamet J, Lazdunski M. Nonsteroid anti-inflammatory drugs inhibit both the activity and the inflammation-induced expression of acid-sensing ion channels in nociceptors. J. Neurosci.21(20), 8026–8033 (2001).
  • Mamet J , BaronA, LazdunskyM, VoilleyN. Proinflammatory mediators, stimulators of sensory neuron excitability via the expression of acid-sensing ion channels.J.Neurosci.22(24), 10662–10670 (2002).
  • Ferreira J , SantosAR, CalixtoJB. Antinociception produced by systemic, spinal and supraspinal administration of amiloride in mice.Life Sci.65(10), 1059–1066 (1999).
  • Xu TL , DuanB. Calcium-permeable acid-sensing ion channel in nociceptive plasticity: a new target for pain control.Prog. Neurobiol.87, 171–180 (2009).
  • Poirot O , BertaT, DecosterdI, KellenbergerS. Distinct ASIC currents are expressed in rat putative nociceptors and are modulated by nerve injury.J. Physiol.576(1), 215–234 (2006).
  • Mazzuca M ., Heurteaux C, Alloui A et al. A tarantula peptide against pain via ASIC1a channels and opioid mechanisms. Nat. Neurosci.10(8), 943–945 (2007).
  • Munro G , AhringPK, MirzaNR. Developing analgesic by enhancing spinal inhibition after injury: GABAA receptor subtypes as novel targets. Trends Pharmacol. Sci.30(9), 453–459 (2009).
  • Enna SJ , McCarsonKE. The role of GABA in the mediation and perception of pain.Adv. Pharmacol.54, 1–27 (2006).
  • Sieghart W . Structure, pharmacology, and function of GABAA receptor subtypes. Adv. Pharmacol.54, 231–263 (2006).
  • Carlton SM , ZhouS, CoggeshallRE. Peripheral GABAA receptors: evidence for peripheral primary afferent depolarization. Neuroscience93(2), 713–722 (1999).
  • Bohlhalter S , WeinmannO, MohlerH, Frirschy J-M. Laminar compartmentalization of GABAA-receptor subtypes in the spinal cord: an immunohistochemical study. J. Neurosci.16(1), 283–297 (1996).
  • Melzack R , WallP .D. Pain mechanism: a new theory. Science150, 971–979 (1965).
  • Kaneko M , HammondDL. Role of spinal γ-aminobutyric acid A receptors in formalin-induced nociception in the rat.J.Pharmacol. Exp Ther.282(2), 928–938 (1997).
  • Malan TP , MataHP, PorrecaF. Spinal GABAA and GABAB receptor pharmacology in a rat model of neuropathic pain. Anesthesiology96, 1161–1167 (2002).
  • Rode F , JensenDG, Blackburn-MunroG, BjerrumOJ. Centrally-mediated antinociceptive actions of GABAA receptor agonists in the rat spared nerve injury model of neuropathic pain. Eur. J. Pharmacol.516, 131–138 (2005).
  • Naik AK , PathirathnaS, Jevtovic-TodorovicV. GABAA receptor modulation in dorsal root ganglia in vivo affects chronic pain after nerve injury. Neuroscience154, 1539–1553 (2008).
  • Hwang JH , YakshTL. The effect of spinal GABA receptor agonist on tactile allodynia in a surgically-induced neuropathic pain model in the rat.Pain70(1), 15–22 (1997).
  • Loomis CW , KhandwalaH, OsmondG, HefferanMP. Coadministration of intrathecal strychnine and bicuculline effects synergistic allodynia in the rat: an isobolographic analysis.J. Pharmacol. Exp. Ther.296(3), 756–761 (2001).
  • Polgar E , HughesDI, RiddelJS, MaxwellDJ, PuskarZ, ToddAJ. Selective loss of spinal GABAergic or glycinergic neurons is not necessary for development of thermal hyperalgesia in the chronic constriction injury model of neuropathic pain.Pain104(1–2), 229–239 (2003).
  • Drew GM , SiddalPJ, DugganAW. Mechanical allodynia following contusion injury of the rat spinal cord is associated with loss of GABAergic inhibition in the dorsal horn.Pain109, 379–388 (2004).
  • Ibuki T , HamaAT, WangXT, PappasGD, SagenJ. Loss of GABA-immunoreactivity in the spinal dorsal horn of rats with peripheral nerve injury and promotion of recovery by adrenal medullary grafts.Neuroscience76, 845–858 (1997).
  • Miletic G , DraganicP, PankratzMT, MileticV. Muscimol prevents long-lasting potentiation of dorsal horn field potential in rats with chronic constriction injury exhibiting decreased levels of the GABA transporter GAT-1.Pain105, 347–353 (2003).
  • Obata K , YamanakaH, FukuokaTet al. Contribution of injured and uninjured dorsal root ganglion neurons to pain behavior and the changes in gene expression following chronic constriction injury of the sciatic nerve in rats. Pain 101, 65–77 (2003).
  • Rudolph U , MohlerH. Analysis of GABAA receptor function and dissection of the pharmacology of benzodiazepines and general anesthetics through mouse genetics. Annu. Rev. Pharmacol. Toxicol.44, 475–498 (2004).
  • Knabl J , WitschiR, HoslKet al. Reversal of pathological pain through specific GABAA receptor subtypes. Nature 451, 330–335 (2008).
  • Rudolph U , CrestaniF, BenkeDet al. Benzodiazepine actions mediated by specific gamma-aminobutyric acid (A) receptor subtypes. Nature 401(6755), 796–800 (1999).
  • McKernan RM , RosahlTW, ReynoldsDSet al. Sedative but not anxiolytic properties of benzodiazepines are mediated by the GABAA receptor a 1 subtype. Nat. Neurosci. 3(6), 587–692 (2000).
  • Mirza NR , LarsenJS, MathiasenCet al. NS11394 [3´-[5-(1-hydroxy-1-methyl-ethil)-benzoimidazol-1-yl]-biphenyl-2-carbonitrile], a unique subtype-selective GABAA receptor positive allosteric modulator: in vitro actions, pharmacokinetic properties and in vivo anxiolytic efficacy. J. Pharmacol. Exp. Ther. 327(3), 954–968 (2008).
  • Munro G , Lopez-GarciaJA, Rivera-ArconadaIet al. Comparison of the novel subtype-selective GABAA receptor-positive allosteric modulator NS11394 [3‘-[5-(1-hydroxy-1-methyl-ethil)-benzoimidazol-1-yl]-biphenyl-2-carbonitrile] with diazepam, zolpidem, bretazenil and gaboxadol in rat models of inflammatory and neuropathic pain. J. Pharmacol. Exp. Ther. 327, 969–981 (2008).
  • Knabl J , WitschiR, HoslKet al. Reversal of pathological pain through specific GABAA receptor subtypes. Nature 451, 330–335 (2008).
  • Zeilhofer HU , MohlerH, Di Lio A. GABAergic analgesia: new insights from mutant mice and subtype-selective agonists. Trends Pharmacol. Sci.30(8), 397–402 (2009).
  • Zeilhofer HU , WitschiR, HolsK. Subtype-selective GABAA receptor mimetics-novel antihyperalgesic agents? J. Mol. Med.87, 465–469 (2009).
  • Lynch JW . Native glycine receptor subtypes and their physiological role.Neuropharmacol.56, 303–309 (2009).
  • Lynch JW . Molecular structure and function of the glycine receptor chloride channel.Physiol. Rev.84, 1051–1095 (2004).
  • Webb TI , LynchJW. Molecular pharmacology of the glycine receptor chloride channels.Curr. Pharm Des.13, 2350–2367 (2007).
  • Lynch JW , CallisterRJ. Glycine receptors: a new therapeutic target in pain pathways.Curr. Opin. Investig. Drugs.7(1): 48–53 (2006).
  • Harvey RJ , DepnerUB, WassleHet al. GlyR α3: an essential target for spinal PGE2-mediated inflammatory pain sensitization. Science 304(5672), 884–887 (2004).
  • Ahmadi S , LipprossS, NeuhuberWL, ZeilhoferHU. PGE(2) selectively blocks inhibitory glycinergic neurotransmission onto rat superficial dorsal horn neurons.Nat. Neurosci.5(1), 34–40 (2002).
  • Racz I , SchutzB, Abo-SalemOM, ZimmerA. Visceral, inflammatory and neuropathic pain in glycine receptor α 3-deficient mice.Neuroreport16(18), 2025–2028 (2005).
  • Zeilhofer HU . The glycinergic control of spinal pain processing.Cell. Mol. Life Sci.62, 1–9 (2005).
  • Pellicer F . Lopez-Avila A. Coffeen U. Ortega-Legaspi JM, Del Angel R. Taurine in the anterior cingulated cortex diminishes neuropathic nociception: a possible interaction with the glycine A receptor.Pain11, 444–451 (2007).
  • Ahrens J , ReyhanD, LeuwerMet al. The nonpsychotropic cannabinoid cannabidiol modelates and directly activates α-1 and α-1-β glycine receptor function. Pharmacology 83(4), 217–222 (2009).
  • Muth-Sebach U , HermannsH, StegmannJUet al. Antinociceptive effects of systemic lidocaine: involvement of the spinal glycinergic system. Eur. J. Pharmacol. 613(1–3), 68–73 (2009).
  • Dekermendjian K , WennaN, AneirosE, BernströmJ, NymanE. Discovery of novel positive allosteric modulators for the inhibitor glycine receptor.Presented at: 38th Annual Meeting for the Society for Neuroscience 729.3, Washingon, DC, USA, 15–19 November 2008.
  • Derbach V , SurprenantA, NorthRA. 5-HT3 receptors are membrane ion channels.Nature339, 706–709 (1989).
  • Hoyer D , ClarkeDE, FozardJRet al. International union of pharmacology classification of receptors for 5- hydroxytryptamine (serotonin). Pharmacol. Rev. 46, 157–203 (1994).
  • Herrmann S , StieberJ, LudwigA. Pathophysiology of HCN channels.Pflugers Arch.454(4), 517–522 (2007).
  • Barnes NM , HalesTG, LummisS, PetersJA. The 5-HT3 receptor – the relationship between structure and function.Neuropharmacol.56, 273–284 (2009).
  • Miquel MC , EmeritMB, NosjeanAet al. Differential subcellular localization of the 5-HT3-A receptor subunit in the rat central nervous system. Eur. J. Neurosci. 15, 449–457 (2002).
  • Pierce PA , XieGX, LevineJD, PeroutkaSJ. 5-Hydroxytryptamine receptor subtype messenger RNAs in rat peripheral sensory and sympathetic ganglia: a polymerase chain reaction study.Neuroscience70, 553–559 (1996).
  • Richardson BP , EngelG, DonatschP, StadlerPA. Identification of serotonin M-receptor subtypes and their specific blockade by a new class of drugs.Nature316, 126–131 (1985).
  • Sufka KJ , SchomburgFM, GiordanoJ. Receptor mediation of 5-HT-induced inflammation and nociception in rats.Pharmacol. Biochem. Behav.41, 53–56 (1992).
  • Zeitz KP , GuyN, MalmbergABet al. The 5-HT3 subtype of serotonin receptor contributes to nociceptive processing via a novel subset of myelinated and unmyelinated nociceptors. J. Neurosci. 22, 1010–1019 (2002).
  • Espejo EF , GilE. Antagonism of peripheral 5-HT4 receptors reduces visceral and cutaneous pain in mice, and induces visceral analgesia after simultaneous inactivation of 5- HT3 receptors.Brain Res.788, 20–24 (1998).
  • Giordano J , DycheJ. Differential analgesic actions of serotonin 5-HT3 receptor antagonists in the mouse.Neuropharmacol.28, 423–427 (1989).
  • Giordano J , RogersLV. Peripherally administered serotonin 5-HT3 receptor antagonists reduce inflammatory pain in rats.Eur. J. Pharmacol.170, 83–86 (1989).
  • Eschalier A , KayserV, GuilbaudG. Influence of a specific 5-HT3 antagonist on carrageenan-induced hyperalgesia in rats.Pain36, 249–255 (1989).
  • Chen Y , OatwayMA, WeaverLC. Blockade of the 5-HT3 receptor for days causes sustained relief from mechanical allodynia following spinal cord injury. J. Neurosci. Res.87, 418–424 (2009).
  • Fozard JR . Neuronal 5-HT receptors in the periphery.Neuropharmacol.23, 1473–1486 (1984).
  • Giordano J , DaleoC, SacksSM. Topical ondansetron attenuates nociceptive and inflammatory effects of intradermal capsaicin in humans.Eur. J. Pharmacol.354, R13–14 (1998).
  • McCleane GJ , SuzukiR, DickensonAH. Does a single intravenous injection of the 5HT3 receptor antagonist ondansetron have an analgesic effect in neuropathic pain? A double-blinded, placebo-controlled cross-over study. Anesth. Analg.97, 1474–1478 (2003).
  • Ye JH , MuiWC, RenJet al. Ondansetron exhibits the properties of a local anesthetic. Anesth. Analg. 85, 1116–1121 (1997).
  • Ambesh SP , DubeyPK, SinhaPK. Ondansetron pretreatment to alleviate pain on propofol injection: a randomized, controlled, double-blinded study.Anesth. Analg.98, 197–199 (1999).
  • Fearber L , DrechslerS, LadenburgerS, GschaidmeierH, FischerW. The neuronal 5-HT3 receptor network after 20 years of research – evolving concepts in management of pain and inflammation. Eur. J. Pharm.560, 1–8 (2007).
  • Suzuki T , YongHL, TakashiM. The antiallodynic and antihyperalgesic effects of Neurotropin® in mice with spinal nerve ligation. Anesth. Analg.101, 793–799 (2005).
  • Gotti C , ClementiF. Neuronal nicotinic receptors: from structure to pathology.Prog. Neurobiol.74(6), 363–396 (2004).
  • Gerzanich V , WangF, KuryatovA, LindstromJ. α5-subunit alters desensitization, pharmacology, Ca2+ permeability and Ca2+ modulation of human neuronal α3 nicotinic receptors. J. Pharmacol. Exp. Ther.286(1), 311–320 (1998).
  • Nelson ME , LindstromJ. Single channel properties of human α3 AChRs: impact of β2, β4 and α5 subunits.J. Physiol.516(3), 657–678 (1999).
  • Haberberger RV , BernardiniN, KressM, HartmannP, LipsKS, KummerW. Nicotinic acetylcholine receptor subtypes in nociceptive dorsal root ganglion neurons of the adult rat.Auton. Neurosci.113, 32–42 (2004).
  • Khan I , OsakaH, StanislausS. Nicotinic acetylcholine receptors distribution in relation to spinal neurotransmission pathways.J. Comp. Neurol.467(1), 44–59 (2003).
  • Aceto MD , BagleyRS, DeweyWL, FuTC, MartinBR. The spinal cord as a major site for the antinociceptive action of nicotine in the rat.Neuropharmacol.25, 1031–1036 (1986).
  • Badio B , DalyJW. Epibatidine, a potent analgetic and nicotinic agonist.Mol. Pharmacol.45, 563–569 (1994).
  • Marubio LM , Arroyo-JimenezMM, Cordero-ErausquinMet al. Reduced antinociception in mice lacking neuronal nicotinic receptor subunits. Nature 398, 805–810 (1999).
  • Bitner RS , NikkelAL, CurzonPet al. Reduced nicotinic receptor-mediated antinociception following in vivo antisense knock-down in rat. Brain Res. 871, 66–74 (2000).
  • Damaj MI , FonckC, MarksMJet al. Genetic approaches identify differential roles for α4β2 nicotinic receptors in acute models of antinociception in mice. J. Pharmacol. Exp. Ther. 321, 1161–1169 (2007).
  • Wonnacott S , SoliakovL, WilkieG, RedfernP, MarshallD. Presynaptic nicotinic acetylcholine receptors in the brain.Drug Dev. Res.38, 149–159 (1996).
  • Rueter LE , KohlassKL, CurzonP, SurowyCS, MeyerMD. Peripheral and central sites of action for A-85380 in the spinal nerve ligation model of neuropathic pain.Pain103(3), 269–276 (2003).
  • Kesingland AC , GentryCT, PanesarMSet al. Analgesic prolfile of the nicotinic acetylcholine receptor agonists, (+)-epibatidine and ABT-594 in models of persistent inflammatory and neuropathic pain. Pain 86(1–2), 113–118 (2000).
  • Bannon AW , DeckerMW, KimDJ, CampbellJE, ArnericSP. ABT-594, a novel cholinergic channel modulator, is efficacious in nerve ligation and diabetic neuropathy models of neuropathic pain.Brain Res.801(1–2), 158–163 (1998).
  • Jordan KG , HauserTA, FedorovN, TrainaVM, BencherifM. TC-6499: an orally effective and selective α-4-β-2 neuronal nicotinic receptor agonist with anti-allodynic activity. 37th Annual Meeting of the Society for Neuroscience abstr. 39.7, San Diego, CA, USA, 3–7 November 2007.
  • Arneric SP , HolladayM, WilliamsM. Neuronal nicotinic receptors: a perspective on two decades of drug discovery research.Biochemical Pharmacol.74, 1092–1101 (2007).
  • Taly A , CirringerPJ, GuedinD, LestageP, ChangeuxJP. Nicotinic receptors: allosteric transitions and therapeutic targets in the nervous system.Nat. Rev. Drug Discov.8, 733–750 (2009).
  • Blackburn-Munro G , Dalby-BrownW, MirzaN R, Mikkelsen JD, Blackburn-Munro RE. Retigabine: chemical synthesis to clinical application. CNS Drug Rev.11(1), 1–20 (2005).
  • Cattabeni F . Ralfinamide.IDrugs7(10), 935–939 (2004).
  • Colombo E , CuratoloL, CacciaC, FaravelliLet al. Ralfinamide acts through NMDA receptor complex: a central role for chronic pain treatment. Eur.J. Pain , 11(1), 152–153 (2007).
  • Barbieri M , BregolaG, BuzziAet al. Mechanisms of action of CHF3381 in the forebrain. Br. J. Pharmacol. 139, 1333–1341 (2003).
  • Simpson DM , BrownSJ, TobiasJ. Controlled trial of high-concentration capsaicin patch for treatment of painful HIV neuropathy.Neurology70, 2305–2313 (2008).
  • Simpson DM , EstanislaoL, BrownSJ. An open-label pilot study of high-concentration capsaicin patch in painful HIV neuropathy.Pain Symptom. Manag.35, 299–306 (2008).
  • Rami HK , ThompsonM, StempGet al. Discovery of SB-705498: A potent, selective and orally bioavailable TRPV1 antagonist suitable for clinical development. Bioorg. Med. Chem. Lett. 16(12) 3287–3291 (2006).
  • Swanson DM , DubinAE, ShahCet al. Identification and biological evaluation of 4-(3-trifluoromethylpyridin-2-yl)piperazine-1-carboxylic acid (5-trifluoromethylpyridin-2-yl)amide, a high affinity TRPV1 (VR1) vanilloid receptor antagonist. J. Med. Chem. 48(6), 1857–1872 (2005).
  • Pomonis JD , HarrisonJE, MarkL, BristolDR, ValenzanoKJ, WalkerK. N-4-tertiarybutylphenyl)-4-(3-cholorphyridin-2-yl)tetrahydropyrazine -1(2H)-carbox-amide (BCTC), a novel, orally effective vanilloid receptor 1 antagonist with analgesic properties: II. In vivo vharacterization in rat models of inflammatory and neuropathic pain. J. Pharmacol. Exp. Ther.306, 387–393 (2003).
  • Culshaw AJ , BevanS, ChristiansenMet al. Identification and biological characterization of 6-aryl-7-isopropylquinazolinones as novel TRPV1 antagonists that are effective in models of chronic pain. J. Med. Chem. 49(2), 471–474 (2006).
  • Walpole CSJ , BevanS, BovermannGet al. The discovery of capsazepine, the first competitive antagonist of the sensory neuron excitants capsaicin and resiniferatoxin. J. Med. Chem. 37(13), 1942–1954 (1994).
  • Walker KM , UrbanL, MedhurstSJet al. The VR1 antagonist capsazepine reverses mechanical hyperalgesia in models of inflammatory and neuropathic pain. J. Pharm. Exp. Ther. 304, 56–62 (2003).
  • Gauvin DM , MikusaJ, BakerSet al. A-967079, a potent and selective TRPA1 antagonist, is efficacious in rat preclinical pain models. Presented at: 39th Annual Meeting of the Society for Neuroscience. Chicago, IL, USA, 17–21 October 2009 (Abstract 761.3).
  • Watanabe S , OhmiM, InoueT, NonomuraC, FujiiuchiA. Identification of novel TRPM8 channel antagonists. Presented at: 39th Annual Meeting of the Society for Neuroscience. Chicago, IL, USA, 17–21 October 2009 (Abstract 73.7).
  • Anand R , RossettiSM, MarchettiniPet al. Efficacy and safety of ralfinamide in a 8-week, randomised, double-blind, placebo controlled, international trial in patients with neuropathic pain. Ralfinamide 001 study group. Presented at: 60th Annual Meeting of the American Academy of Neurology. 11–14 April 2008 (Abstract P03,179).
  • Zhang S -H, Blech-Hermoni Y, Seltzer, Z, Faravelli L et al. Ralfinamide administered orally before hindpaw neurectomy or postoperatively provided long-lasting suppression of spontaneous neuropathic pain-related behavior in the rat. Pain39(2), 293–305 (2008).
  • Stummann TC , SalvatiP, FarielloRG, and Faravelli L. The anti-nociceptive agent ralfinamide inhibits tetrodotoxin-resistant and tetrodotoxin-sensitive Na+ currents in dorsal root ganglion neurons. Eur.J.Pharmacol.510(3), 197–208 (2005).
  • Yamane H , de Groat WC, Sculptoreanu A. Effects of ralfinamide, a Na+ channel blocker, on firing properties of nociceptive dorsal root ganglion neurons of adult rats. Exper. Neurol.208, 63–72 (2007).
  • Brochu RM , DickIE, TarpleyJWet al. Block of peripheral nerve sodium channels selectively inhibits features of neuropathic pain in rats. Mol. Pharmacol. 69(3), 823–832 (2006).
  • Shao PP , OkD, FisherMHet al. Novel cyclopentane dicarboxamide sodium channel blocker, as potential treatment for chronic pain. Bioorg. Med. Che. Lett. 15(7), 1901–1907 (2005).
  • Jarvis MF , HonoreP, Shieh C-C et al. A-803467, a potent and selective Nav1.8 sodium channel blocker, attenuates neuropathic and inflammatory pain in the rat. Proc. Natl Acad. Sci. USA104(20), 8520–8525 (2007).
  • Kort ME , DrizinI, GreggRJet al. Discovery and biological evaluation of 5-aryl-2-furfuramides. Potent and selective blockers of Nav1.8 sodium channel with efficacy in models of neuropathic and inflammatory pain. J. Med. Chem. 51, 407–416 (2008).
  • Hoyt SB , LondonC, OkDet al. Benzazepinone Nav1.7 blockers: potential treatments for neuropathic pain. Bioorg. Med. Chem. Lett. 17(22), 6172–6177 (2007).
  • Williams BS , FelixJP, PriestBTet al. Characterization of a new class of potent inhibitors of the voltage-gated sodium channel Nav1.7. Biochemistry 46(50), 14693–14703 (2007).
  • McGowan E , HoytSB, LiXet al. A peripherally acting Nav1.7 sodium channel blocker reverses hyperalgesia and allodynia on rat models of inflammatory and neuropathic pain. Anesth. Analg. 109, 951–958 (2009).
  • Zamponi GW , Feng Z-P, Zhang L et al. Scaffold-based design and synthesis of potent N-type calcium channel blockers. Bioorg. Med. Chem. Lett.19, 6467–6472 (2009).
  • Knutsen LJS , HobbsCJ, EarnshawCGet al. Synthesis and SAR of novel 2-arylthiazolidinones as selective analgesic N-type calcium channel blockers. Bioorg. Med. Chem. Lett. 17(3), 662–667 (2007).
  • Yamamoto T , NiwaS, OhnoSet al. The structure activity relationship study on the water-soluble 1,4-dihydropyridine derivatives blocking N-type calcium channels. 20th International Symposium on Medicinal Chemistry abstr. P150, 31 August 2008.
  • Saito Y , KiriharaY, HashimotoTet al. Spinal antinociceptive effects of a new calcium channel blocker, AGS1164, in rats. 33rd Annual Meeting of the Society for Neuroscience. New Orleans, LA, 8–12 November 2003.
  • Koganei H , FujitaS, IwayamaSet al. Analgesic effects of a novel compound which posseses N-type calcium channel blocking activity. 32rd Annual Meeting of the Society for Neuroscience abs. 656.2, Orlando, FL, 2–7 November 2002.
  • Yang Z -Q, Barrow JC, Shipe WD et al. Discovery of 1,4-substituted piperidines as potent and selective inhibitors of T-type calcium channels. J. Med. Chem.51(20), 6471–6477 (2009).
  • Goodchild CS , NelsonJ, CookeI, AshbyM, JacksonK. Combination therapy with flupirtine and opioid: open-label case series in the treatment of neuropathic pain associated with cancer.Pain Med.9(7), 939–949 (2008).
  • Wickenden AD , McNaughton-SmithG, RoeloffsR, LondonB, ClarkS. ICA-27243: a novel, potent, and selective KCNQ2/Q3 potassium channel activator. Presented at: 35th Annual Meeting of the Society for Neuroscience Washington, DC, USA, 12–16 November 2005 (Abstract 153.13).
  • Roeloffs R , HarrisonW, MahoneyJH, LeachC, RobinetteL. In vivo profile of a KCNQ2/3 selective versus a pan-KCNQ activator in rodent models of pain. Presented at: 38th Annual Meeting of the Society for Neuroscience Washington, DC, USA 15–18 November 2008 (Abstract 631.4).
  • Wickenden AD , KrajewskiJL, LondonBet al. N-(6-chloro-pyridin-3-yl)-3,4-difluoro-benzamide (ICA-27243): a novel, selective KCNQ2/Q3 potassium channel activator. Mol. Pharmacol. 73(3), 977–986 (2008).
  • Wu YJ , HeH, Sun L-Q et al. Synthesis and structure–activity relationship of acrylamides as KCNQ2 potassium channel openers. J. Med. Chem.47(11), 2887–2896 (2004).
  • Boden PR , GentryC, LhullerL, AzizO. Novel compounds which disrupt Kv1.1/Kv-β-1-subunit interactions are antianalgesic in vivo. Presented at: 37th Annual Meeting of the Society for Neuroscience San Diego, CA, 3–7 November 2007 (Abstract 469.30).
  • Mangat M , SchmudermaierM, DubéGR, SchmudermaierB, GervaisF, GustorffB. The effects of PPC-5650, an ASIC1a antagonist on hyperalgesia in a human inflammatory pain model. Presented at: The 11th International Conference on the Mechanisms and Treatment of Neuropathic Pain 6–8 November 2008.
  • Simard B , PaquetM, ElagozAet al. PPC-5692, a novel and selective ASIC1a antagonist, exerts analgesic effects across multiple animal pain models. Presented at: 38th Annual Meeting for the Society for Neuroscience Washington, DC, USA, 15–19 November 2008 (Abstract 857.14).
  • Bordet T , BuissonB, MichaudMet al. Specific antinociceptive activity of cholest-4-en-3-one, oxime (TRO19622) in experimental models of painful diabetic and chemotherapy-induced neuropathy. J. Pharmacol. Exp. Therap. 326(2), 623–632 (2008).
  • Walters R , BradfordAPJ, FischerJet al. Early clinical experience with the novel NMDA receptor antagonist CNS 5161. Br J Clin Pharmacol. 53(3), 305–311 (2002).
  • Hu L -Y, Guo J, Magar SS et al. Synthesis and pharmacological evaluation of N-(2,5-disubstituted phenyl)-N-3-substituted phenyl)-N-methylguanidines as N-methyl-D-aspartate receptor ion-channel blockers. J. Med. Chem.40, 4281–4289 (1997).
  • Tarral A , DostertP, GuillevicYet al. Pharmacokinetics and pharmacodynamics of CHF 3381, a novel N-methyl-D-aspartate antagonist, after single oral doses in healthy subjects. J. Clin. Pharm. 43(8), 901–911 (2003).
  • Villetti G , BregolaG, BassaniFet al. Preclinical evaluation of CHF3381 as a novel antiepileptic agent. Neuropharmacol. 40, 866 (2001).
  • Zucchini S , BuzziA, BergamaschiMet al. Neuroprotective activity of CHF3381, a putative N-methyl-D-aspartate receptor antagonist. Neuroreport 13, 2071–2074 (2002).
  • Rammes G . Neramexane: a moderate-affinity NMDA receptor channel blocker: new prospects and indications.Exp. Rev. Clin. Pharmacol.2(3), 231–238 (2009).
  • Chen SR , SamoriskiG, PanHL. Antinociceptive effects of chronic administration of uncompetitive NMDA receptor antagonists in a rat model of diabetic neuropathic pain.Neuropharmacol.57(2), 121–126 (2009).
  • Malyshkin AA , MedvedevIO, DanyszWet al. Anti-allodynic interactions between NMDA receptor channel blockers and morphine or clonidine in neuropathic rats. Eur. J. Pharmacol. 519(1–2), 80–85 (2005).
  • Klein T , MagerlW, HanschmannAet al. Antihyperalgesic and analgesic properties of the N-methyl-D-aspartate (NMDA) receptor antagonist neramexane in a human surrogate model of neurogenic hyperalgesia. Eur.J.Pain (Amsterdam, Netherlands) 12(1), 17–29 (2007).
  • Erichsen HK , Blackburn-MunroG. Pharmacological characterisation of the spared nerve injury model of neuropathic pain.Pain98(1–2), 151–161 (2002).
  • Blackburn-Munro G , BomholtS, ErichsenHKet al. Behavioural effects of the novel AMPA/GluR5 selective receptor antagonist NS1209 after systemic administration in animal models of experimental pain. Neuropharmacol. 47(3), 351–362 (2004).
  • Gormsen L , FinnerupNB, AlmqvistPMet al. The efficacy of the AMPA receptor antagonist NS1209 and lidocaine in nerve injury pain: a randomized, double-blind, placebo-controlled, three-way crossover study. Anesth. Analg. 108(4), 1311–1319 (2009).
  • Kasper C , PickeringDS, MirzaOet al. The structure of a mixed GluR2 ligand-binding core dimer in complex with (S)-glutamate and the antagonist (S)-NS1209. J. Mol. Biol. 357(4), 1184–1201 (2006).
  • Pinza M , FarinaC, CerriAet al. Synthesis and pharmacological activity of a series of dihydro-1H-pyrrolo[1,2-a]imidazole-2,5(3H,6H)-diones, a novel class of potent cognition enhancers. J. Med. Chem. 36(26), 4214–4220 (1993).
  • Farina C , GagliardiS, GhelardiniCet al. Synthesis and biological evaluation of novel dimiracetam derivatives useful for the treatment of neuropathic pain. Bioorg. Med. Chem. 16(6), 3224–3232 (2008).
  • Bonanno G , MisianoP, BonifacinoTet al. Effects of BND-11624 at ionotropic and metabotropic glutamatergic receptors regulating neurotransmitter release in the rat CNS. Annual Meeting of the Society for Neuroscience. Atlanta, US, 17 November 2008 (Abstract 368.2/JJ27).
  • Farkas S , HorvathC, NagyJet al. RGH-896 is a novel potent and selective NR2B-NMDA antagonist with efficacy in neuropathic pain models. 33rd Annual Meeting of the Society for Neuroscience. New Orleans, LA, USA, 8–12 November 2009.
  • Barta-Szalai G , BorzaI, BozoEet al. Oxamides as novel NR2B selective NMDA receptor antagonists. Bioorg. Med.Chem. Lett. 14(15), 3953–3956 (2004).
  • Palecek J , NeugebauerV, CarltonsM, IyengarS. Willis WD. The effect of a kainate GluR5 receptor antagonist on responses of spinothalamic tract neurons in a model of peripheral neuropathy in primates.Pain111(1–2), 151–161 (2004).
  • Baudy RB , ButeraJA, Abou-GharbiaMAet al. Prodrugs of perzinfotel with improved oral bioavailability. J. Med. Chem. 52(3), 771–778 (2009).
  • Perez-Medrano A , Donnelly-RobertsDL, HonorePet al. Discovery and biological evaluation of novel cyanoguanidine P2X7 antagonists with analgesic activity in a rat model of neuropathic pain. J. Med. Chem. 52, 3366–3376 (2009).
  • Nelson DW , GreggRJ, KortMEet al. Structure-activity relationship studies on a series of novel, substituted 1-benzyl-5-phenyltetrazole P2X7 antagonists. J. Med. Chem. 49, 3659–3666 (2006).
  • Jahangir A , AlamM, CarterDSet al. Identification and SAR of novel diaminopyrimidines. Part 2: the discovery of RO-51, a potent and selective, dual P2X3/P2X2/3 antagonist for the treatment of pain. Bioorg. Med. Chem. Lett. 19(6), 1632–1635 (2009).
  • Crean CS , YerxaBR, BednarskiKet al. Analgesic effects of INS48506, a P2X(3) receptor antagonist, in models of acute, inflammatory and neuropathic pain. 33rd Annual Meeting of the Society for Neuroscience. New Orleans, LA, USA, 8–12 November 2003.
  • Hsu DR , Wei Z-L, O‘Mohony DJR et al. Novel antagonists of P2X3 and P2X2/3 purinergic receptors. 37th Annual Meeting of the Society for Neuroscience Abstr. 820.13, San Diego, CA, USA, 3–7 November 2007.
  • Rueter LE , CurzonP, KohlhaasK, GauvinD, HonoreP. ABT-894, a neuronal nicotinic receptor agonist, with an improved therapeutic window in preclinical models of neuropathic pain vs. gastrointestinal and CNS side effects. 38th Annual Meeting for the Society for Neuroscience. Washington, DC, USA, 15–19 November 2008 (Abstract 856.20).
  • Lippiello PM , GattoGJ, JordanKG, BencherifM. Novel neuronal nicotinic receptor selective compounds for the treatment of acute, chronic and neurpathic pain.Eur. Neuropsychopharmacol.17 (4), 252 (2007).
  • Holtman J , Johnson-HardyJ, CrooksP, ChakrabortyU, WalaE. Novel opioid-nicotinic combination drug therapy for pain. 28th Annual Scientific Meeting of the American Pain Society 29 Abstract. 216, 7 May 2009.
  • Rueter LE , KohlhaasKL, CurzonP, SurowyCS, MeyerMD. Peripheral and central sites of action for A-85380 in the spinal nerve ligation model of neuropathic pain.Pain103(3), 269–276 (2003).
  • Dunlop J , VasilyevD, LuP, CummonsT, BowlbyMR. Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels and pain.Curr. Pharm. Des.15, 1767–1772 (2009).
  • Jiang YQ , SunQ, TuHY, WanY. Characteristic of HCN channels and their participation in neuropathic pain.Neurochem. Res.33, 1979–1989 (2008).
  • Maher MP , Wu N-T, Guo H-Q,Dubin AE, Chaplan SR, Wickenden AD: HCN channels as targets for drug discovery. Comb. Chem.High Through. Screen.12(1), 64–72 (2009).

Patents

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.