173
Views
0
CrossRef citations to date
0
Altmetric
Review

K+ Channels as Therapeutic Targets in Oncology

&
Pages 745-755 | Published online: 12 May 2010

Bibliography

  • Jiang Y , LeeA, ChenJet al. X-ray structure of a voltage-dependent K+ channel. Nature 423, 33–41 (2003).
  • Long SB , CampbellEB, MackinnonR. Crystal structure of a mammalian voltage-dependent shaker family K+ channel. Science309(5736), 897–903 (2005).
  • Gutman GA , ChandyKG, GrissmerSet al. International union of pharmacology. Liii. Nomenclature and molecular relationships of voltage-gated potassium channels. Pharmacol. Rev. 57(4), 473–508 (2005).
  • Pongs O , KecskemethyN, MüllerRet al. Shaker encodes a family of putative potassium channel proteins in the nervous system of drosophila. Embo 7(1087), 1087–1096 (1988).
  • Tempel B , PapazianD, SchwarzT, JanY, JanL. Sequence of a probable potassium channel component encoded at shaker locus of drosophila.Science237, 770–775 (1987).
  • Latorre R , BrauchiS, OrtaG, ZaelzerC, VargasG. ThermoTRP channels as modular proteins with allosteric gating.Cell Calcium42(4–5), 427–438 (2007).
  • Wei AD , GutmanGA, AldrichR, ChandyKG, GrissmerS, WulffH. International union of pharmacology. Lii. Nomenclature and molecular relationships of calcium-activated potassium channels. Pharmacol. Rev.57(4), 463–472 (2005).
  • Lotshaw DP . Biophysical, pharmacological, and functional characteristics of cloned and native mammalian two-pore domain K+ channels. Cell Biochem. Biophys.47(2), 209–256 (2007).
  • Duprat F , LauritzenI, PatelA, HonoreE. The task background K2p channels: chemo- and nutrient sensors. Trends Neurosci.30(11), 573–580 (2007).
  • Kim D . Physiology and pharmacology of two-pore domain potassium channels.Curr Pharm Des11(21), 2717–2736 (2005).
  • Wulff H , CastleNA, PardoLA. Voltage-gated potassium channels as therapeutic targets.Nat. Rev. Drug Discov.8(12), 982–1001 (2009).
  • Tanaka K , ShiotaG, MeguroM, MitsuyaK, OshimuraM, KawasakiH. Loss of imprinting of long QT intronic transcript 1 in colorectal cancer.Oncology60(3), 268–273 (2001).
  • Brevet M , FucksD, ChatelainDet al. Deregulation of 2 potassium channels in pancreas adenocarcinomas: implication of Kv1.3 gene promoter methylation. Pancreas 38(6), 649–654 (2009).
  • Brevet M , HarenN, SevestreH, MervielP, Ouadid-AhidouchH. DNA methylation of Kv1.3 potassium channel gene promoter is associated with poorly differentiated breast adenocarcinoma. Cell Physiol. Biochem.24(1–2), 25–32 (2009).
  • Hawes SE , SternJE, FengQet al. DNA hypermethylation of tumors from non-small cell lung cancer (NSCLC) patients is associated with gender and histologic type. Lung Cancer DOI:10.1016/j.lungcan.2009.11.002 (2009) (Epub ahead of print).
  • Feng Q , HawesSE, Stern Je et al. DNA methylation in tumor and matched normal tissues from non-small cell lung cancer patients. Cancer Epidemiol Biomarkers Prev.17(3), 645–654 (2008).
  • Ruf N , BahringS, GaletzkaDet al. Sequence-based bioinformatic prediction and quasep identify genomic imprinting of the KCNK9 potassium channel gene in mouse and human. Hum. Mol. Genet. 16(21), 2591–2599 (2007).
  • Wonderlin WF , WoodforkKA, StroblJS. Changes in membrane potential during the progression of MCF-7 human mammary tumor cells through the cell cycle.J. Cell Physiol.165(1), 177–185 (1995).
  • Abdul M , HooseinN. Expression and activity of potassium ion channels in human prostate cancer.Cancer Lett.186(1), 99–105 (2002).
  • Fraser SP , GrimesJA, DissJK, StewartD, DollyJO, DjamgozMB. Predominant expression of Kv1.3 voltage-gated K+ channel subunit in rat prostate cancer cell lines. Electrophysiological, pharmacological and molecular characterisation. Pflugers Arch.446(5), 559–571 (2003).
  • Ouadid-Ahidouch H , ChaussadeF, RoudbarakiMet al. Kv1.1 K+ channels identification in human breast carcinoma cells: Involvement in cell proliferation. Biochem. Biophys. Res. Commun. 278(2), 272–277 (2000).
  • Jang SH , KangKS, RyuPD, LeeSY. Kv1.3 voltage-gated K+ channel subunit as a potential diagnostic marker and therapeutic target for breast cancer. BMB Rep.42(8), 535–539 (2009).
  • Abdul M , HooseinN. Voltage-gated potassium ion channels in colon cancer.Oncol. Rep.9(5), 961–964 (2002).
  • Abdul M , HooseinN. Reduced Kv1.3 potassium channel expression in human prostate cancer. J Membr Biol214(2), 99–102 (2006).
  • Chang KW , YuanTC, Fang Kp et al. The increase of voltage-gated potassium channel Kv3.4 mRNA expression in oral squamous cell carcinoma. J. Oral Pathol. Med.32(10), 606–611 (2003).
  • Lew TS , ChangCS, FangKP, ChenCY, ChenCH, LinSC. The involvement of Kv3.4 voltage-gated potassium channel in the growth of an oral squamous cell carcinoma cell line. J. Oral Pathol. Med.33(9), 543–549 (2004).
  • Suzuki T , TakimotoK. Selective expression of hERG and Kv2 channels influences proliferation of uterine cancer cells. Int. J. Oncol.25(1), 153–159 (2004).
  • Lan M , ShiY, HanZet al. Expression of delayed rectifier potassium channels and their possible roles in proliferation of human gastric cancer cells. Cancer Biol. Ther. 4(12), 1342–1347 (2005).
  • Zhanping W , XiaoyuP, NaC, ShenglanW, BoW. Voltage-gated K+ channels are associated with cell proliferation and cell cycle of ovarian cancer cell. Gynecol. Oncol.104(2), 455–460 (2007).
  • Preussat K , BeetzC, SchreyMet al. Expression of voltage-gated potassium channels Kv1.3 and Kv1.5 in human gliomas. Neurosci Lett. 346(1–2), 33–36 (2003).
  • Ouadid-Ahidouch H , AhidouchA. K+ channel expression in human breast cancer cells: Involvement in cell cycle regulation and carcinogenesis. J. Membr. Biol.221(1), 1–6 (2008).
  • Villalonga N , FerreresJC, ArgilesJM, CondomE, FelipeA. Potassium channels are a new target field in anticancer drug design.Recent Pat. Anticancer Drug Discov.2(3), 212–223 (2007).
  • Fiske JL , FominVP, BrownML, DuncanRL, SikesRA. Voltage-sensitive ion channels and cancer.Cancer Metastasis Rev.25(3), 493–500 (2006).
  • Felipe A , VicenteR, VillalongaNet al. Potassium channels: new targets in cancer therapy. Cancer Detect Prev. 30(4), 375–385 (2006).
  • Pardo LA , Contreras-JuradoC, ZientkowskaM, AlvesF, StuhmerW. Role of voltage-gated potassium channels in cancer.J. Membr. Biol.205(3), 115–124 (2005).
  • Le Guennec JY , Ouadid-AhidouchH, SorianiO, BessonP, AhidouchA, VandierC. Voltage-gated ion channels, new targets in anti-cancer research.Recent Pat. Anticancer Drug Discov2(3), 189–202 (2007).
  • Bielanska J , Hernandez-LosaJ, Perez-VerdaguerMet al. Voltage-dependent potassium channels Kv1.3 and Kv1.5 in human cancer. Curr. Cancer Drug Targets 9(8), 904–914 (2009).
  • Abdul M , SantoA, HooseinN. Activity of potassium channel-blockers in breast cancer.Anticancer Res.23(4), 3347–3351 (2003).
  • Chen SZ , JiangM, ZhenYS. hERG K+ channel expression-related chemosensitivity in cancer cells and its modulation by erythromycin. Cancer Chemother. Pharmacol.56(2), 212–220 (2005).
  • Perrin MJ , SubbiahRN, VandenbergJI, HillAP. Human ether-a-go-go related gene (hERG) K+ channels. Function and dysfunction. Prog. Biophys. Mol. Biol.98(2–3), 137–148 (2008).
  • Arcangeli A , BianchiL, BecchettiAet al. A novel inward-rectifying K+ current with a cell-cycle dependence governs the resting potential of mammalian neuroblastoma cells. J. Physiol. Lond. 489(2), 455–471(1995).
  • Cherubini A , TaddeiGL, CrocianiOet al. hERG potassium channels are more frequently expressed in human endometrial cancer as compared with non-cancerous endometrium. Br. J. Cancer 83(12), 1722–1729 (2000).
  • Pillozzi S , BrizziMF, BalziMet al. hERG potassium channels are constitutively expressed in primary human acute myeloid leukemias and regulate cell proliferation of normal and leukemic hemopoietic progenitors. Leukemia 16(9), 1791–1798 (2002).
  • Smith GA , TsuiHW, Newell Ew et al. Functional up-regulation of hERG K+ channels in neoplastic hematopoietic cells. J. Biol. Chem.277(21), 18528–18534 (2002).
  • Shao XD , WuKC, GuoXZ, XieMJ, ZhangJ, FanDM. Expression and significance of hERG protein in gastric cancer.Cancer Biol. Ther.7(1), 45–50 (2008).
  • Afrasiabi E , HietamakiM, ViitanenT, SukumaranP, BergelinN, TornquistK. Expression and significance of hERG (KCNH2) potassium channels in the regulation of MDA-MB-435s melanoma cell proliferation and migration.Cell Signal22(1), 57–64 (2010).
  • Crociani O , GuastiL, BalziMet al. Cell cycle-dependent expression of hERG1 and hERG1B isoforms in tumor cells. J. Biol. Chem. 278(5), 2947–2955 (2003).
  • Kupershmidt S , SnydersDJ, RaesA, RodenDM. A K+ channel splice variant common in human heart lacks a c-terminal domain required for expression of rapidly activating delayed rectifier current. J. Biol. Chem.273(42), 27231–27235 (1998).
  • Guasti L , CrocianiO, RedaelliEet al. Identification of a posttranslational mechanism for the regulation of hERG1 K+ channel expression and hERG1 current density in tumor cells. Mol. Cell Biol. 28(16), 5043–5060 (2008).
  • Ding XW , YangWB, GaoSet al. Prognostic significance of hERG1 expression in gastric cancer. Dig. Dis. Sci. 55(4), 1004–1010 (2009).
  • Lastraioli E , TaddeiA, MesseriniLet al. hERG1 channels in human esophagus: evidence for their aberrant expression in the malignant progression of Barrett’s esophagus. J. Cell Physiol. 209(2), 398–404 (2006).
  • Ding XW , LuoHS, LuoB, XuDQ, GaoS. Overexpression of hERG1 in resected esophageal squamous cell carcinomas: a marker for poor prognosis.J. Surg. Oncol.97(1), 57–62 (2008).
  • Bianchi L , WibleB, ArcangeliAet al. hERG encodes a K+ current highly conserved in tumors of different histogenesis: a selective advantage for cancer cells? Cancer Res. 58(4), 815–822 (1998).
  • Roy J , VantolB, CowleyEA, BlayJ, LinsdellP. Pharmacological separation of hEAG and hERG K+ channel function in the human mammary carcinoma cell line mcf-7. Oncol Rep.19(6), 1511–1516 (2008).
  • Zhao J , WeiXL, JiaYS, ZhengJQ. Silencing of hERG gene by shRNA inhibits SH-SY5Y cell growth in vitro and in vivo. Eur. J. Pharmacol.579(1–3), 50–57 (2008).
  • Cherubini A , HofmannG, PillozziSet al. Human ether-a-go-go-related gene 1 channels are physically linked to β1 integrins and modulate adhesion-dependent signaling. Mol. Biol. Cell 16(6), 2972–2983 (2005).
  • Pillozzi S , BrizziMF, Bernabei Pa et al. VEGFR-1 (flt-1), β1 integrin, and hERG K+ channel for a macromolecular signaling complex in acute myeloid leukemia: Role in cell migration and clinical outcome. Blood110(4), 1238–1250 (2007).
  • Masi A , BecchettiA, Restano-CassuliniRet al. hERG1 channels are overexpressed in glioblastoma multiforme and modulate VEGF secretion in glioblastoma cell lines. Br. J. Cancer 93(7), 781–792 (2005).
  • Fontana L , D‘amicoM, CrocianiOet al. Long-term modulation of hERG channel gating in hypoxia. Biochem. Biophys. Res. Commun. 286(5), 857–862 (2001).
  • Lin H , XiaoJ, LuoXet al. Overexpression hERG K+ channel gene mediates cell-growth signals on activation of oncoproteins SP1 and NF-κB and inactivation of tumor suppressor Nkx3.1. J. Cell Physiol. 212(1), 137–147 (2007).
  • Wang H , ZhangY, CaoLet al. hERG K+ channel, a regulator of tumor cell apoptosis and proliferation. Cancer Res. 62(17), 4843–4848 (2002).
  • Wadhwa S , WadhwaP, DindaAK, GuptaNP. Differential expression of potassium ion channels in human renal cell carcinoma.Int. Urol. Nephrol.41(2), 251–257 (2009).
  • Grunnet M , HansenRS, OlesenSP. hERG1 channel activators. A new anti-arrhythmic principle.Prog. Biophys. Mol. Biol.98(2–3), 347–362 (2008).
  • Ganapathi SB , KesterM, ElmslieKS. State-dependent block of hERG potassium channels by r-roscovitine. Implications for cancer therapy.Am. J. Physiol. Cell Physiol296(4), C701–710 (2009).
  • Wang X , HockermanGH, GreenHW, 3rd et al. MERG1a K+ channel induces skeletal muscle atrophy by activating the ubiquitin proteasome pathway. FASEB J.20(9), 1531–1533 (2006).
  • Shao XD , WuKC, HaoZM, HongL, ZhangJ, FanDM. The potent inhibitory effects of cisapride, a specific blocker for human ether-a-go-go-related gene (hERG) channel, on gastric cancer cells.Cancer Biol. Ther.4(3), 295–301 (2005).
  • Hancox JC , McpateMJ, El Harchi A, Zhang YH. The hERG potassium channel and hERG screening for drug-induced torsades de pointes. Pharmacol. Ther.119(2), 118–132 (2008).
  • Martin S , Lino De Oliveira C, Mello De Queiroz F, Pardo LA, Stuhmer W, Del Bel E. Eag1 potassium channel immunohistochemistry in the CNS of adult rat and selected regions of human brain. Neuroscience155(3), 833–844 (2008).
  • Occhiodoro T , BernheimL, Liu Jh et al. Cloning of a human ether-a-go-go potassium channel expressed in myoblasts at the onset of fusion. FEBS Lett.434(1–2), 177–182 (1998).
  • Bijlenga P , OcchiodoroT, LiuJH, BaderCR, BernheimL, FischerlougheedJ. An ether-a-go-go K+ current, Ih-Eag, contributes to the hyperpolarization of human fusion-competent myoblasts. J. Physiol. London512(2), 317–323 (1998).
  • Bai X , MaJ, PanZet al. Electrophysiological properties of human adipose tissue-derived stem cells. Am. J. Physiol. Cell Physiol. 293(5), C1539–1550 (2007).
  • Pardo LA , Del CaminoD, SanchezAet al. Oncogenic potential of eag K+ channels. EMBO J.18(20), 5540–5547 (1999).
  • Diaz L , Ceja-OchoaI, Restrepo-AnguloIet al. Estrogens and human papilloma virus oncogenes regulate human ether-a-go-go-1 potassium channel expression. Cancer Res. 69(8), 3300–3307 (2009).
  • Hemmerlein B , WeselohRM, Mello De Queiroz F et al. Overexpression of eag1 potassium channels in clinical tumours. Mol. Cancer5, 41 (2006).
  • Mareschi K , NovaraM, RustichelliDet al. Neural differentiation of human mesenchymal stem cells: evidence for expression of neural markers and eag K+ channel types. Exp. Hematol. 34(11), 1563–1572 (2006).
  • Murata H , TajimaN, NagashimaYet al. Von hippel-lindau tumor suppressor protein transforms human neuroblastoma cells into functional neuron-like cells. Cancer Res. 62(23), 7004–7011 (2002).
  • Ouadid-Ahidouch H , Le Bourhis X, Roudbaraki M, Toillon RA, Delcourt P, Prevarskaya N. Changes in the K+ current-density of MCF-7 cells during progression through the cell cycle: Possible involvement of a human-ether-a-go-go K+ channel. Receptors Channels7(5), 345–356 (2001).
  • Spitzner M , OusingsawatJ, ScheidtK, KunzelmannK, SchreiberR. Voltage-gated K+ channels support proliferation of colonic carcinoma cells. FASEB J.21(1), 35–44 (2007).
  • Ding XW , LuoHS, JinX, YanJJ, AiYW. Aberrant expression of eag1 potassium channels in gastric cancer patients and cell lines.Med Oncol.24(3), 345–350 (2007).
  • Ding XW , YanJJ, AnP, LuP, LuoHS. Aberrant expression of ether-a-go-go potassium channel in colorectal cancer patients and cell lines.World J. Gastroenterol.13(8), 1257–1261 (2007).
  • Mello De Queiroz F , Suarez-KurtzG, StuhmerW, PardoLA. Ether-a-go-go potassium channel expression in soft tissue sarcoma patients.Mol. Cancer5, 42 (2006).
  • Meyer R , SchonherrR, Gavrilova-RuchO, WohlrabW, HeinemannSH. Identification of ether-a-go-go and calcium-activated potassium channels in human melanoma cells.J. Membr. Biol.171(2), 107–115 (1999).
  • Weber C , Mello De Queiroz F, Downie B, Sukow A, Stühmer W, Pardo LA. Silencing the activity and proliferative properties of the human Eag1 potassium channel by RNAi. J. Biol. Chem.281, 13033–13037 (2006).
  • Ousingsawat J , SpitznerM, PuntheeranurakSet al. Expression of voltage-gated potassium channels in human and mouse colonic carcinoma. Clin. Cancer Res. 13(3), 824–831 (2007).
  • Toral C , Mendoza-GarridoME, AzorinEet al. Effect of extracellular matrix on adhesion, viability, actin cytoskeleton and K+ currents of cells expressing human ether a go-go channels. Life Sci. 81(3), 255–265 (2007).
  • Ding XW , WangXG, Luo Hs et al. Expression and prognostic roles of eag1 in resected esophageal squamous cell carcinomas. Digestive Dis. Sci.53(8), 2039–2044 (2008).
  • Ousingsawat J , SpitznerM, SchreiberR, KunzelmannK. Upregulation of colonic ion channels in ABC (min/+) mice. Pflugers Arch.456(5), 847–855 (2008).
  • Spitzner M , MartinsJR, Soria Rb et al. Eag1 and bestrophin 1 are up-regulated in fast-growing colonic cancer cells. J. Biol. Chem.283(12), 7421–7428 (2008).
  • Patt S , PreussatK, BeetzCet al. Expression of ether a go-go potassium channels in human gliomas. Neurosci Lett. 368(3), 249–253 (2004).
  • Garcia-Becerra R , DiazL, CamachoJet al. Calcitriol inhibits ether-a-go-go potassium channel expression and cell proliferation in human breast cancer cells. Exp. Cell Res. 316(3), 433–442 (2009).
  • Downie BR , SanchezA, KnotgenHet al. Eag1 expression interferes with hypoxia homeostasis and induces angiogenesis in tumors. J. Biol. Chem. 283(52), 36234–36240 (2008).
  • Agarwal J , GriesingerF, StuhmerW, PardoL. The potassium channel ether a go-go is a novel prognostic factor with functional relevance in acute myeloid leukemia.Mol. Cancer9(1), 18 (2010).
  • Gavrilova-Ruch O , SchonherrK, GessnerGet al. Effects of imipramine on ion channels and proliferation of IGR1 melanoma cells. J. Membr. Biol. 188(2), 137–149 (2002).
  • Gomez-Varela D , Zwick-WallaschE, KnotgenHet al. Monoclonal antibody blockade of the human EAG1 potassium channel function exerts antitumor activity. Cancer Res. 67(15), 7343–7349 (2007).
  • Hegle AP , MarbleDD, WilsonGF. A voltage-driven switch for ion-independent signaling by ether-a-go-go K+ channels. Proc. Natl Acad. Sci. USA103(8), 2886–2891 (2006).
  • Stuhmer W , AlvesF, HartungF, ZientkowskaM, PardoLA. Potassium channels as tumour markers.FEBS Lett.580(12), 2850–2852 (2006).
  • Nilius B , WohlrabW. Potassium channels and regulation of proliferation of human melanoma cells.J. Physiol.445, 537–548 (1992).
  • Wulff H , Kolski-AndreacoA, SankaranarayananA, SabatierJM, ShakkottaiV. Modulators of small- and intermediate-conductance calcium-activated potassium channels and their therapeutic indications.Curr. Med. Chem.14(13), 1437–1457 (2007).
  • Wang J , XuYQ, LiangYY, GongoraR, WarnockDG, MaHP. An intermediate-conductance Ca2+-activated K (+) channel mediates β lymphoma cell cycle progression induced by serum. Pflugers Arch.454(6), 945–956 (2007).
  • Wang ZH , ShenB, Yao Hl et al. Blockage of intermediate-conductance-Ca2+ -activated K+ channels inhibits progression of human endometrial cancer. Oncogene26(35), 5107–5114 (2007).
  • Fioretti B , CatacuzzenoL, SfornaLet al. Histamine hyperpolarizes human glioblastoma cells by activating the intermediate-conductance Ca2+-activated K+ channel. Am. J. Physiol. Cell Physiol. 297(1), C102–110 (2009).
  • Nilius B , SchwarzG, DroogmansG. Control of intracellular calcium by membrane potential in human melanoma cells.Am. J. Physiol.265(6, 1), C1501–1510 (1993).
  • Lallet-Daher H , RoudbarakiM, BavencoffeAet al. Intermediate-conductance Ca2+-activated K+ channels (IKCA1) regulate human prostate cancer cell proliferation through a close control of calcium entry. Oncogene 28(15), 1792–1806 (2009).
  • Parihar AS , CoghlanMJ, GopalakrishnanM, ShiehCC. Effects of intermediate-conductance Ca2+-activated K+ channel modulators on human prostate cancer cell proliferation. Eur. J. Pharmacol.471(3), 157–164 (2003).
  • Lepple-Wienhues A , BerweckS, BohmigMet al. K+ channels and the intracellular calcium signal in human melanoma cell proliferation. J. Membr. Biol. 151(2), 149–157 (1996).
  • Fioretti B , CastigliE, Micheli Mr et al. Expression and modulation of the intermediate- conductance Ca2+-activated K+ channel in glioblastoma GL-15 cells. Cell Physiol. Biochem.18(1–3), 47–56 (2006).
  • Tajima N , SchonherrK, NiedlingSet al. Ca2+-activated K+ channels in human melanoma cells are up-regulated by hypoxia involving hypoxia-inducible factor-1α and the von Hippel-Lindau protein. J. Physiol. 571(Pt 2), 349–359 (2006).
  • Lu X , FeinA, FeinsteinMB, O‘rourkeFA. Antisense knock out of the inositol 1,3,4,5-tetrakisphosphate receptor GAP1(IP4BP) in the human erythroleukemia cell line leads to the appearance of intermediate conductance K(Ca) channels that hyperpolarize the membrane and enhance calcium influx. J. Gen. Physiol.113(1), 81–96 (1999).
  • Koegel H , KaeslerS, BurgstahlerR, WernerS, AlzheimerC. Unexpected down-regulation of the HIK1 Ca2+-activated K+ channel by its opener 1-ethyl-2-benzimidazolinone in HaCaT keratinocytes. Inverse effects on cell growth and proliferation. J. Biol. Chem.278(5), 3323–3330 (2003).
  • De Marchi U , SassiN, FiorettiBet al. Intermediate conductance Ca2+-activated potassium channel (KCA3.1) in the inner mitochondrial membrane of human colon cancer cells. Cell Calcium 45(5), 509–516 (2009).
  • Khaitan D , SankpalUT, WekslerBet al. Role of KCNMA1 gene in breast cancer invasion and metastasis to brain. BMC Cancer 9, 258 (2009).
  • Bloch M , OusingsawatJ, SimonRet al. KCNMA1 gene amplification promotes tumor cell proliferation in human prostate cancer. Oncogene26(17), 2525–2534 (2007).
  • Weaver AK , BombenVC, SontheimerH. Expression and function of calcium-activated potassium channels in human glioma cells.Glia54(3), 223–233 (2006).
  • Ransom CB , SontheimerH. BK channels in human glioma cells.J. Neurophysiol.85(2), 790–803 (2001).
  • Sontheimer H . An unexpected role for ion channels in brain tumor metastasis.Exp. Biol. Med. (Maywood)233(7), 779–791 (2008).
  • Kraft R , KrauseP, JungSet al. BK channel openers inhibit migration of human glioma cells. Pflugers Arch. 446(2), 248–255 (2003).
  • Kessler W , BuddeT, GekleM, FabianA, SchwabA. Activation of cell migration with fibroblast growth factor-2 requires calcium-sensitive potassium channels.Pflugers Arch.456(5), 813–823 (2008).
  • Schwab A , ReinhardtJ, SchneiderSW, GassnerB, SchurichtB. K+ channel-dependent migration of fibroblasts and human melanoma cells. Cell Physiol. Biochem.9(3), 126–132 (1999).
  • Ningaraj NS , RaoM, HashizumeK, AsotraK, BlackKL. Regulation of blood–brain tumor barrier permeability by calcium-activated potassium channels.J. Pharmacol. Exp. Ther.301(3), 838–851 (2002).
  • Hu J , YuanX, Ko Mk et al. Calcium-activated potassium channels mediated blood–brain tumor barrier opening in a rat metastatic brain tumor model. Mol. Cancer6, 22 (2007).
  • Ningaraj NS , RaoM, BlackKL. Calcium-dependent potassium channels as a target protein for modulation of the blood–brain tumor barrier.Drug News Perspect.16(5), 291–298 (2003).
  • Yin D , WangX, Konda Bm et al. Increase in brain tumor permeability in glioma-bearing rats with nitric oxide donors. Clin Cancer Res14(12), 4002–4009 (2008).
  • Ningaraj NS , SankpalUT, KhaitanD, MeisterEA, VatsT. Activation of KATP channels increases anticancer drug delivery to brain tumors and survival.Eur. J. Pharmacol.602(2–3), 188–193 (2009).
  • Ningaraj NS , SankpalUT, KhaitanD, MeisterEA, VatsTS. Modulation of K(ca) channels increases anticancer drug delivery to brain tumors and prolongs survival in xenograft model.Cancer Biol. Ther.8(20), (2009).
  • Woodfork KA , WonderlinWF, PetersonVA, StroblJS. Inhibition of ATP-sensitive potassium channels causes reversible cell-cycle arrest of human breast cancer cells in tissue culture.J. Cell Physiol.162(2), 163–171 (1995).
  • Huang L , LiB, LiW, GuoH, ZouF. ATP-sensitive potassium channels control glioma cells proliferation by regulating ERK activity.Carcinogenesis30(5), 737–744 (2009).
  • Piekarska AE , WebsterL, SaltisJ, McphersonGA. KATP channel blocking actions of quaternary ions play no role in their antiproliferative action on mouse leukaemia and rat vascular smooth muscle cells in vitro.Clin. Exp. Pharmacol. Physiol.25(12), 992–998 (1998).
  • Zhou Q , KwanHY, ChanHC, JiangJL, TamSC, YaoX. Blockage of voltage-gated K+ channels inhibits adhesion and proliferation of hepatocarcinoma cells. Int. J. Mol. Med.11(2), 261–266 (2003).
  • Black KL , YinD, KondaBMet al. Different effects of KCA and KATP agonists on brain tumor permeability between syngeneic and allogeneic rat models. Brain Res. 1227, 198–206 (2008).
  • Gu YT , ZhangH, XueYX. Dexamethasone enhances adenosine 5´-triphosphate-sensitive potassium channel expression in the blood-brain tumor barrier in a rat brain tumor model.Brain Res.1162, 1–8 (2007).
  • Zhang H , GuYT, XueYX. Bradykinin-induced blood-brain tumor barrier permeability increase is mediated by adenosine 5´-triphosphate-sensitive potassium channel.Brain Res.1144, 33–41 (2007).
  • Patel AJ , LazdunskiM. The 2P-domain K+ channels: role in apoptosis and tumorigenesis. Pflugers Arch.448(3), 261–273 (2004).
  • Kim CJ , ChoYG, Jeong Sw et al. Altered expression of KCNK9 in colorectal cancers. APMIS112(9), 588–594 (2004).
  • Mu D , ChenL, ZhangXet al. Genomic amplification and oncogenic properties of the KCNK9 potassium channel gene. Cancer Cell 3(3), 297–302 (2003).
  • Rusznak Z , BakondiG, KosztkaLet al. Mitochondrial expression of the two-pore domain TASK-3 channels in malignantly transformed and non-malignant human cells. Virchows Arch 452(4), 415–426 (2008).
  • Meuth SG , HerrmannAM, Ip Cw et al. The two-pore domain potassium channel TASK3 functionally impacts glioma cell death. J. Neurooncol.87(3), 263–270 (2008).
  • Pei L , WiserO, SlavinAet al. Oncogenic potential of TASK3 (KCNK9) depends on K+ channel function. Proc. Natl Acad. Sci. USA 100(13), 7803–7807 (2003).
  • Voloshyna I , BesanaA, CastilloMet al. TREK-1 is a novel molecular target in prostate cancer. Cancer Res. 68(4), 1197–1203 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.