279
Views
0
CrossRef citations to date
0
Altmetric
Review

Drug Delivery to the CNS and Polymeric Nanoparticulate Carriers

Pages 1681-1701 | Published online: 11 Nov 2010

Bibliography

  • Calabria AR , ShustaEV. Blood–brain barrier genomics and proteomics: elucidating phenotype, identifying disease targets and enabling brain drug delivery.Drug Discov. Today11, 792–799 (2006).
  • Pardridge WM . Blood–brain barrier delivery.Drug Discov. Today12, 54–61 (2007).
  • Garcia-Garcia E , AndrieuxK, GilS, CouvreurP. Colloidal carriers and blood–brain translocation: a way to deliver drugs to the brain?Int. J. Pharm.298, 274–292 (2005).
  • Lampson LA . Targeted therapy for neuro-oncology: reviewing the menu.Drug Discov. Today14, 185–191 (2009).
  • Stenehjem DD , HartzAMS, BauerB, AndersonGW. Novel and emerging strategies in drug delivery for overcoming the blood–brain barrier.Fut. Med. Chem.1, 1623–1641 (2009).
  • Hitchcock SA , PenningtonLD. Structure-brain exposure relationships.J. Med. Chem.49, 7559–7583 (2006).
  • Prokai-Tatrai K , ProkaiL. Modifying peptide properties by prodrug design for enhanced transport into the CNS. In: Peptide Transport and Delivery Into the Central Nervous System. Prokai-Tatrai K, Prokai L (Eds.). Birkhauser-Verlag, Basel, Switzerland, 155–188 (2003).
  • Kerns EH , DiL. Chapter 10. In: Drug-like Properties: Concepts, Structure Design and Methods. Academic Press 122–136 (2008).
  • Reichel A . Addressing central nervous system (CNS) penetration in drug discovery: basics and implications of the evolving new concept.Chem. Biodiversity6, 2030–2049 (2009).
  • Hammarlund-Udenaes M , FridenM, SyvanenS, GuptaA. On the rate and extent of drug delivery to the brain.Pharm. Res.25, 1737–1750 (2008).
  • Jones AR , ShustaEV. Blood–brain barrier transport of therapeutics via receptor mediation.Pharm. Res.24, 1759–1771 (2007).
  • Juillerat-Jeanneret L . The targeted delivery of cancer drugs across the blood–brain barrier: chemical modifications of drugs or drug-nanoparticles?Drug Discov. Today13, 1099–1106 (2008).
  • Kumagai AK , EisenbergWM, PardridgeWM. Absorptive-mediated endocytosis of cationized albumin and a β-endorphin-cationized albumin chimeric peptide by isolated brain capillaries. Model system of blood–brain barrier transport.J. Biol. Chem.262, 15214–15219 (1987).
  • Trigueiro D , BuciakJB, PardridgeWM. Capillary depletion method for quantifying blood–brain barrier transcytosis of circulating peptides and plasma proteins.J. Neurochem.54, 1882–1888 (1990).
  • Bickel U , YoshikawaT, PardridgeWM. Delivery of peptides and proteins through the blood–brain barrier.Adv. Drug Del. Rev.46, 247–279 (2001).
  • Lee HJ , PardridgeWM. Pharmacokinetics and delivery of Tat and Tat-protein conjugates to tissues in vivo. Bioconj. Chem.12, 995–999 (2001).
  • Zorko M , LangelU. Cell-penetrating peptides: mechanism and kinetics of cargo delivery.Adv. Drug Del. Rev.57, 529–545 (2005).
  • DeBoer AG , GaillardPJ. Strategies to improve drug delivery across the blood–brain barrier.Clin. Pharmacokinet.46, 553–576 (2007).
  • Rousselle C . New advances in the transport of doxorubicin through the blood–brain barrier by a peptide vector-mediated strategy.Mol. Pharmacol.57, 679–686 (2000).
  • Rousselle C , ClairP, SmirnovaMet al. Improved brain uptake and pharmacological activity of dalargin using a peptide vector mediated strategy. J. Pharmacol. Exp. Ther. 306, 371–376 (2003).
  • Malakoutikhah M , TeixidoM, GiraltE. Toward an optimal blood–brain barrier shuttle by synthesis and evaluation of peptide libraries.J. Med. Chem.51, 4881–4889 (2008).
  • Malakoutikhah M , PradesR, TeixidoM, GiraltE. N-methyl phenylalanine-rich peptides as highly versatile blood–brain barrier shuttles. J. Med. Chem.2354–2363 (2010).
  • Gabathuler R . Approaches to transport therapeutic drugs across the blood–brain barrier to treat brain diseases.Neurobiol. Disease37, 48–57 (2010).
  • van Rooy I , Cakir-TasciogluS, CouraudPOet al. Identification of peptide ligands for targeting to the blood–brain barrier. Pharm. Res. 27, 673–682 (2010).
  • Gan CW , FengSS. Transferrin-conjugated nanoparticles of poly(lactide)-D-α-tocopheryl. polyethylene glycol succinate diblock copolymer for targeted drug delivery across the blood–brain barrier. Biomaterials31(30), 7748–7757 (2010).
  • Kumar P , WuHQ, JodiLMet al. Transvascular delivery of small interfering RNA to the central nervous system. Nature 448, 39–43 (2007).
  • Pan W , KastinAJ, ZankelTC, van Kerkhof P, Terasaki T, Bu G. Efficient transfer of receptor-associated protein (RAP) across the blood–brain barrie. J. Cell Sci.117, 5071–5078 (2004).
  • Prince WS , CormickLM, WendtDJet al. Lipoprotein receptor binding, cellular uptake, and lysosomal delivery of fusion between the receptor-associated protein (RAP) and α-iduronidase or acid α-glucosidase. J. Biol. Chem. 279, 35037–35046 (2004).
  • Demeule M , ReginaA, CheCet al. Identification and design of peptides as new drug delivery system for the brain. J. Pharmacol. Exp. Ther. 324, 1064–1072 (2008).
  • Thomas FC , TaskarK, RudrarajuVet al. Uptake of ANG1005, a novel paclitaxel derivative, through the blood–brain barrier into brain and experimental brain metastases of breast cancer. Pharm. Res. 26, 2486–2494 (2009).
  • Regina A , DemeuleM, CheCet al. Anti-tumor activity of ANG1005, a conjugate between paclitaxel and the new brain delivery vector Angiopep-2. Br. J. Pharmacol. 155, 185–197 (2008).
  • Drappatz J , BrennerA, RosenfeldSet al. Ang-1005: new EPiC compound for the treatment of recurrent malignant glioma. Presentated at: The EORTC-NCI-AACR Annual Meeting 2009, Boston, MA, USA, 15–19 November, 2009.
  • Che C , YangG, ThiotCet al. New angiopep-modified doxorubicin (ANG1007) and etoposide (ANG1009) chemotherapeutics with increased brain penetration. J. Med. Chem. 53, 2814–2824 (2010).
  • Esfand R , TomaliaDA. Poly(amidoamine) (PAMAM) dendrimers: from biomimicry to drug delivery and biomedical applications.Drug Discov. Today6, 427–436 (2001).
  • Medina SH , El-SayedEH. Dendrimers as carriers for delivery of chemotherapeutic agents.Chem. Rev.109, 3141–3157 (2009).
  • Astruc D , BoisselierE, OrnelasC. Dendrimers designed for functions: from physical, photophysical, and supramolecular properties to applications in sensing, catalysis, molecular electronics, photonics, and nanomedicine.Chem. Rev.110, 1857–1959 (2010).
  • Nanjwade BK , BechraHM, DerkarGK, ManviFV, NanjwadeVK. Dendrimers: emerging polymers for drug-delivery systems.Eur. J. Pharm. Sci.38, 185–196 (2009).
  • Zhang L , GuF, ChanJM, WangAZ, LangerRS, FarokhzadOC. Nanoparticles in medicine: therapeutic applications and developments.Clin. Pharmacol. Ther.83, 761–769 (2008).
  • Ke W , ShaoK, HuangRet al. Gene delivery targeted to the brain using an angiopep- conjugated polyethyleneglycol-modified polyamidoamine dendrimers. Biomaterials 30, 6976–6985 (2009).
  • Huang RQ , KeWL, LiuY, ChenJ, PeiYY. The use of lactoferrin as a ligand for targeting the polyamidoamine-based gene delivery system to the brain.Biomaterials29, 238–246 (2008).
  • Liu Y , HuangR, HanLet al. Brain-targeting gene delivery and cellular internalization mechanisms for modified rabies virus glycoprotein RVG29 nanoparticles. Biomaterials 30, 4195–4202 (2009).
  • Farokhzad OC , LangerR. Impact of nanotechnology on drug delivery.ACS Nano3, 16–20 (2009).
  • Huang G , ZhangN, BiX, DouM. Solid lipid nanoparticles of temozolomide: potential reduction of cardiac and nephric toxicity.Int. J. Pharm.355, 314–320 (2008).
  • Kaur IP , BhandariR, BhandariS, KakkarV, Potential of solid-lipid nanoparticles in brain targeting. J. Contr. Rel.127, 97–109 (2007).
  • Joshi MD , MullerRH. Lipid nanoparticles for parenteral delivery of actives.Eur. J. Pharm. Biopharm.71, 161–172 (2009).
  • Costantino L , TosiG, RuoziB, BondioliL, VandelliMA, ForniF. Colloidal systems for CNS drug delivery.Progr. Brain Res.180, 35–69 (2009).
  • Saad M , GarbuzenkoOB, BerEet al. Receptor targeted polymers, dendrimers, liposomes: which nanocarrier is the most efficient for tumor-specific treatment and imaging? J. Contr. Rel. 130, 107–114 (2008).
  • Tosi G , CostantinoL, RuoziB, ForniF, VandelliMA. Polymeric nanoparticles for the drug delivery to the central nervous system.Exp. Opin. Drug Del.5, 155–174 (2008).
  • Owens DE , PeppasNA. Opsonization, biodistribution and pharmacokinetics of polymeric nanoparticles.Int. J. Pharm.307, 93–102 (2006).
  • Moghimi SM , SzebeniJ. Stealth liposomes and long circulating nanoparticles: critical issues in pharmacokinetics, opsonisation and protein-binding properties.Prog. Lipid Res.42, 463–478 (2003).
  • Aggarwal P , HallJB, McLelandCB, DobrovolskaiaMA, McNeilSE. Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy.Adv. Drug Del. Rev.61, 428–437 (2009).
  • Dobrovolskaia MA , AggarwalP, HallJB, McNeilS. Preclinical studies to understand nanoparticle interaction with the immune system and its potential effects of nanoparticle biodistribution.Mol. Pharmaceutics5, 487–495 (2008).
  • Kreuter J . Nanoparticulate systems for brain delivery of drugs.Adv. Drug Del. Rev.47, 65–81 (2001).
  • Alexis F , PridgenE, MolnarLK, FarokhzadOC. Factors affecting the clearance and biodistribution of polymeric nanoparticles.Mol. Pharmaceutics5, 505–515 (2008).
  • Li SD , HuangL. Pharmacokinetics and biodistribution of nanoparticles.Mol. Pharmaceutics5, 496–504 (2008).
  • Cho WS , ChoM, JeongJet al. Size-dependent kinetics of PEG-coated gold nanoparticles. Toxicol. App. Pharmacol. 245, 116–123 (2010).
  • He C , HuY, TangC, YinC. Effect of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles.Biomaterials31, 3657–3666 (2010).
  • Gaumet M , VargasA, GurnyR, DelieF. Nanoparticles for drug delivery: the need for precision in reporting particle size parameters.Eur. J. Pharm. Biopharm.69, 1–9 (2008).
  • Zhang L , ChanJM, GuFXet al. Self-assembled lipid-polymer hybrid nanoparticles: a robust drug delivery platform. ACS Nano 2, 1696–1702 (2008).
  • Ambruosi A , KhalaskyAS, YamamotoH, GelperinaSE, BegleyDJ, KreuterJ. Biodistribution of polysorbate 80-coated doxorubicin-loaded [14C]-poly(butyl cyanoacrylate) nanoparticles after intravenous administration to glioblastoma-bearing rats. J. Drug Targ.14, 97–105 (2006).
  • Besheer A , VogelJ, GlanzD, KresslerJ, GrothT, MaderK. Characterization of PLGA nanospheres stabilized with amphiphilic polymers: hydrophobically modified hydroxyethyl starch vs Pluronics.Mol. Pharmaceutics6, 407–415 (2009).
  • Sahagun G , MooreSA, HartMN. Permeability of neutral vs anionic dextrans in cultured brain microvascular endothelium.Am. J. Physiol.259, H162–H166 (1990).
  • Gaumet M , GurnyR, DelieF. Localization and quantification of biodegradable particles in an intestinal cell model: the influence of particle size.Eur. J. Pharm. Sci.36, 465–473 (2009).
  • Gao K , JiangX, Influence of particle size on transport of methotrexate across blood–brain barrier by polysorbate 80-coated polybutylcyanoacrylate nanoparticles. Int. J. Pharm.310, 213–219 (2006).
  • Xu P , GullottiE, TongLet al. Intracellular drug delivery by poly(lactic-co-glycolic acid) nanoparticles, revisited. Mol. Pharmaceutics 6, 190–201 (2009).
  • Mitragotri S , LahannJ. Physical approaches to biomaterial design.Nat. Mater.8, 15–23 (2009).
  • Doshi N , MitragotriS. Designer biomaterials for nanomedicine.Adv. Funct. Mater.19, 3843–3854 (2009).
  • Champion JA , MitragotriS. Role of target geometry in phagocytosis.Proc. Natl Acad. Sci. USA103, 4930–4934 (2006).
  • Hwang HY , KimIS, KwonIC, KimYH. Tumor targetability and antitumor effect of Docetaxel-loaded hydrophobically modified glycol chitosan nanoparticles.J. Contr. Rel.128, 23–31 (2008).
  • Sun X , RossinR, TurnerJLet al. An assessment of the effects of shell cross-linked nanoparticle size, core composition, and surface PEGylation on in vivo biodistribution. Biomacromolecules 6, 2541–2554 (2005).
  • Bertholon I , VauthierC, LabarreD. Complement activation by core-shell poly(isobutylcyanoacrylate)-polysaccharide nanoparticles: influences of surface morphology, length, and type of polysaccharide.Pharm. Res.23, 1313–1323 (2006).
  • Costantino L , GandolfiF, TosiG, RivasiF, VandelliMA, ForniF. Peptide derivatized biodegradable nanoparticles able to cross the blood–brain barrier.J. Contr. Rel.108, 84–96 (2005).
  • Lu W , ZhangY, TanYZ, HuKL, JiangXG, FuSK. Cationic albumin-conjugated pegylated nanoparticles as novel drug carrier for brain delivery.J. Contr. Rel.107, 428–448 (2005).
  • Hu K , LiJ, ShenYet al. Lactoferrin-conjugated PEG-PLA nanoparticles with improved brain delivery: in vitro and in vivo evaluations. J. Contr. Rel. 134, 55–61 (2009).
  • Zhang Z , FengSS. In vitro investigation of poly(lactide)-Tween 80 copolymer nanoparticles fabricated by dialisys method for chemotherapy. Biomacromolecules7, 1139–1146 (2006).
  • Huang CY , LeeYD. Core-shell type of nanoparticles composed of poly[(n-butyl cyanoacrylate)-co-(2-octyl cyanoacrylate)] copolymers for drug delivery application: synthesis, characterization and in vivo degradation. Int. J. Pharm.325, 132–139 (2006).
  • Vauthier C , DubernetC, FattalE, Pinto-AlphandaryH, CouvreurP. Poly(alkylcyanoacrylates) as biodegradable materials for biomedical applications.Adv. Drug Del. Rev.55, 519–548 (2003).
  • Yoon SJ , KimSH, HaHJet al. Reduction of inflammatory reaction of poly(D,L-lactic-co-glycolic acid) using demineralised bone particles. Tissue Eng. Part A 14, 539–547 (2008).
  • Anderson JM , ShiveMS. Biodegradation and biocompatibility of PLA and PLGA microspheres.Adv. Drug Del. Rev.28, 5–24 (1997).
  • Lherm C , MullerRH, PuisieuxF, CouvreurP. Alkylcyanoacrylate drug carriers II. Cytotoxicity of cyanoacrylate nanoparticles with different alkyl chain length.Int. J. Pharm.84, 13–22 (1992).
  • Maurer-Jones MA , BantzKC, LoveSA, MarquisBJ, HaynesCL. Toxicity of therapeutic nanoparticles.Nanomedicine4, 219–241 (2009).
  • Xia T , KovochichM, LiongM, ZinkJI, NelAE. Cationic polystyrene nanosphere toxicity depends on cell-specific endocytic and mitochondrial injury pathways.ACS Nano2, 85–96 (2008).
  • Rao KS , ReddyMK, HorningJL, LabhasetwarV. TAT-conjugated nanoparticles for the CNS delivery of anti-HIV drugs.Biomaterials29, 4429–4438 (2008).
  • Jiskoot W , van Schie RMF, Carstens MG, Schellekens H. Immunological risk of injectable drug delivery systems. Pharm. Res.26, 1303–1314 (2009).
  • Bertholon I , VauthierC, LabarreC. Complement activation by core-shell poly(isobutylcyanoacrylate)-olysaccharide nanoparticles: influences of surface morphology, length, and type of polysaccharide.Pharm. Res.23, 1313–1323 (2006).
  • Hamada I , HunterAC, SzebeniJ, MoghimiSM. Poly(ethylene glycol)generate complement activation products in human serum through increased alternative pathway turnover and a MASP-2-dependent process.Molecular Immunol.46, 225–232 (2008).
  • Lu W , WanJ, SheZ, JiangX, Brain delivery property and accelerated blood clearance of cationic albumin conjugated pegylated nanoparticle. J. Contr. Rel.118, 38–53 (2007).
  • Simeonova M , ChorbadjievK, AntchevaM. Study of the effect of polybutylcyanoacrylate nanoparticles and their metabolites on the primary immune response in mice to sheep red blood cells.Biomaterials19, 2187–2193 (1998).
  • Arima Y , KawagoeM, TodaM, IwataH. Complement activation by polymers carrying dhydroxyl groups.ACS Appl. Mat. Interfaces1, 2400–2407 (2009).
  • Koziara JM , OhJJ, AkersWS, FerrarisSP, MumperRJ. Blood compatibility of cetyl alcohol/polysorbate-based nanoparticles.Pharm. Res.22, 1821–1828 (2005).
  • Kim D , El-ShallH, DennisD, MoreyT. Interaction of PLGA nanoparticles with human blood constituents.Colloids and Surf. B Biointerfaces40, 83–91 (2005).
  • Rajendran L , KnolkerHJ, SimonsK. Subcellular targeting strategies for drug design and delivery.Nature Rev. Drug Disc.9, 29–42 (2010).
  • Panyam J , ZhouWZ, PrabhaS, SahooSK, LabhasetwarV. Rapid endo-lysosomal escape of poly(D,L-lactide-co-glycolide) nanoparticles: implications for drug and gene delivery. FASEB J.16, 1217–1226 (2002).
  • Lockman PR , KoziaraJM, MumperRJ, AllenDD. Nanoparticle surface charges alter blood–brain barrier integrity and permeability.J. Drug Target.12, 635–641 (2004).
  • Brigger I , MorizetJ, LaudaniLet al. Negative preclinical results with stealth nasnospheres-encapsulated Doxorubicin in an orthotopic murine brain tumor model. J. Contr. Rel. 100, 29–40 (2004).
  • Lundqvist M , StiglerJ, EliaG, LynchI, CedervallT, DawsonKA. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts.Proc. Natl Acad. Sci. USA105, 14265–14270 (2008).
  • Langer K , SeegmullerE, ZimmerA, KreuterJ. Characterization of polybutylcyanoacrylate nanoparticles: I. Quatification of PBCA polymer and dextrans.Int. J. Pharm.110, 21–27 (1994).
  • Batrakova EV , KabanovAV. Pluronic block copolymers: evolution of drug delivery concept from inert nanocarriers to biological response modifiers.J. Contr. Rel.130, 98–106 (2008).
  • Huang JG , SiLQ, JiangLL, FanZZ, QiuJ, LiG. Effect of Pluronic F68 block copolymer on P-glycoprotein transport and CYP3A4 metabolism.Int. J. Pharm.351–353 (2008)
  • Sahoo SK , PanyamJ, PrabhaS, LabhasetwarV. Residual polyvinyl alcohol associated with poly(D,L-lactide-co-glycolide) nanoparticles affects their physical properties and cellular uptake. J. Contr. Rel.82, 105–114 (2002).
  • Sun W , XieC, WangH, HuY. Specific role of polysorbate 80 coating on the targeting of nanoparticles to the brain.Biomaterials25, 3065–3071 (2004).
  • Breunig M , BauerS, GoepferichA. Polymers and nanoparticles: intelligent tools for intracellular targeting?Eur J. Pharm. Biopharm.68, 112–128 (2008).
  • Sahay G , AlakhovaDY, KabanovAV. Endocytosis of nanomedicines.J. Contr. Rel.145, 182–195 (2010).
  • Prabha S , ZhouWZ, PanyamJ, LabhasetwarV. Size-dependency of nanoparticle-mediated gene transfection: studies with fractionated nanoparticles.Int. J. Pharm.244, 105–115 (2002).
  • Zauner W , FarrowNA, HainesAM. In vitro uptake of polystyrene microspheres: effect of particle size, cell line and cell density. J. Contr. Rel.71, 39–51 (2001).
  • Torchilin VP . Rrecent approaches to intracellular delivery of drugs and DNA and organelle targeting.Annu. Rev. Biomed. Eng.8, 343–375 (2006).
  • Khalil IA , KogureK, AkitaH, HarashimaH. Uptake pathways and subsequent intracellular trafficking in nonviral gene delivery.Pharmacol. Rev.58, 32–45 (2006).
  • Tahara K , YamamotoH, KawashimaY. Cellular uptake mechanism and intracellular distribution of polysorbate 80-modified poly(D,L-lactide-co-glycolide) nanospheres for gene delivery. Eur. J. Pharm. Biopharm.75, 218–224 (2010).
  • Calvo P , GouritinB, ChacunHet al. Long-circulating PEGylated polycyanoacrylate nanoparticles as new drug carrier for brain delivery. Pharm. Res. 18, 1157–1166 (2001).
  • Kim HR , GilS, AndrieuxKet al. Low density lipoprotein receptor-mediated endocytosis of PEGylated nanoparticles in rat brain endothelial cells. Cell. Mol. Life Sci. 64, 356–364 (2007).
  • Garcia-Garcia E , AndrieuxK, GilSet al. A methodology to study intracellular distribution of nanoparticles in brain endothelial cells. Int. J. Pharm. 298, 310–314 (2005).
  • Lockman PR , OyewumiMO, KoziaraJM, RoderKE, MumperRJ, AllenDD. Brain uptake of thiamine-coated nanoparticles.J. Contr. Rel.93, 271–282 (2003).
  • Koziara J , LockmanPR, AllenDD, MumperRJ, In situ blood–brain barrier transport of nanoparticles. Pharm. Res.20, 1772–1778 (2003).
  • Lockman PR , KoziaraJ, RoderKE, PaulsonJ, AbbruscatoTJ, MumperRJ, AllenDD. In vivo and in vitro assessment of baseline blood–brain barrier parameters in the presence of novel nanoparticles. Pharm. Res.20, 705–713 (2003).
  • Menei P , DanielV, Montero-MeneiC, BrouillardM, Pouplard-BarthelaixA, BenoitJP. Biodegradation and brain tissue reaction of poly(D,L-lactide-co-glycolide) microspheres. Biomaterials14, 470–478 (1993).
  • Nicholas AP , McInnisC, GuptaKBet al. The fate of biodegradable microspheres injected into rat brain. Neurosci. Lett. 323, 85–88 (2002).
  • Chernenko T , MatthausC, MilaneL, QuinteroL, AmijiM, DiemM. Label-free raman spectral imaging of intracellular delivery and degradation of polymeric nanoparticle system.ACS Nano3, 3552–3558 (2009).
  • van Apeldoorn A , van Manen H, Bezemer J, de Bruijn, J, van Blitterswijk C, Otto C. Raman imaging of PLGA microspheres degradation inside macrophages. J. Am. Chem. Soc.126, 13226–13227 (2004).
  • Bazole DV , RopertC, HuvePet al. Body distribution of fully biodegradable [14C]poly(lactic acid) nanoparticles coated with albumin after parenteral administration to rats. Biomaterials 13, 1093–1102 (1992).
  • Muller RH , LhermC, HerbertJ, CouvreurP. In vitro model for the degradation of alkylcyanoacrylate nanoparticles. Biomaterials11, 590–595 (1990).
  • Hasadsri L , KreuterJ, HattoriH, IwasakiT, GeorgeJM. Functional protein delivery into neurons using polymeric nanoparticles.J. Biol. Chem.284, 6972–6981 (2009).
  • Zensi A , BegleyD, PontikisCet al. Albumin nanoparticles targeted with Apo E enter the CNS by transcytosis and are delivered to neurones. J. Contr. Rel. 137, 78–86 (2009).
  • Cartiera M , JohnsonKM, RajendranV, CaplanMJ, SaltzmanWM. The uptake and intracellular fate of PLGA nanoparticles in epithelial cells.Biomaterials30, 2790–2798 (2009).
  • Hu YL , GaoJQ. Potential neurotoxicity of nanoparticles.Int. J. Pharm.394, 115–121 (2010).
  • Reis SA , WillemsenR, van Unen L, Hoogeveen AT, Oostra BA. Prospect of TAT-mediated protein therapy for fragile X syndrome. J. Mol. Histol.35, 389–395 (2004).
  • Olivier JC . Drug transport to brain with targeted nanoparticles.NeuroRx2, 108–119 (2005).
  • Sharma HS . Nanoneuroscience: emerging concepts on nanoneurotoxicity and nanoneuroprotection.Nanomedicine2, 753–758 (2007).
  • Sisson WB , OldendorfWH. Brain distribution spaces of mannitol-3H, inulin-14C, and Dextran-14C in the rat. Am. J. Physiol.221, 214–217 (1971).
  • Alyautdin RN , ReichelA, LobenbergR, RamgeP, KreuterJ, BegleyDJ. Interaction of poly(butyl cyanoacrylate) nanoparticles with the blood–brain barrier in vivo and in vitro.J. Drug Targ.19, 209–221 (2001).
  • Thole M , NobmannS, HuwylerJ, BartmannA, FrickerG. Uptake of cationized albumin coupled liposomes by cultured porcine brain microvessel endothelial cells and intact brain capillaries.J. Drug Targ.10, 337–344 (2002).
  • Parikh T , BommanaMM, SquillanteE. Efficacy of surface charge in targeting pegylated nanoparticles of sulpiride to the brain.Eur. J. Pharm. Biopharm.74, 442–450 (2010).
  • Wang ZH , WangZY, SunCS, WangCY, JiangTY, WangSL. Trimethylated chitosan-conjugated PLGA nanoparticles fort the delivery of drugs to the brain.Biomaterials31, 908–915 (2010).
  • Kreuter J . Influence of the surface properties on nanoparticle-mediated transport of drugs to the brain.J. Nanosci. Nanotech.4, 484–488 (2004).
  • Garcia-Garcia E , GilS, AndrieuxKet al. A relevant in vitro rat model for the evaluation of blood–brain barrier translocation of nanoparticles. CMLS Cell. Mol. Life Sci. 62, 1400–1408 (2005).
  • Hekmatara T , GelperinaS, VitaliV, Yang,SR, KreuterJ. Encapsulation of water-insoluble drugs in poly(butyl cyanoacrylate) nanoparticlesJ. Nanosci. Nanotech.9, 5091–5098 (2009).
  • Reimold I , DomkeD, BenderJ, SeyfriedCA, RadunzHE, FrickerG. Delivery of nanoparticles to the brain detected by fluorescence microscopy.Eur. J. Pharm. Biopharm.70, 627–632 (2008).
  • Weiss CK , KohnleMV, LandfesterKet al. The first step into the brain: uptake of NIO PBCA nanoparticles by endothelial cells in vitro and in vivo, and direct evidence for their blood–brain barrier permeation. ChemMedChem. 3, 1395–1403 (2008).
  • Olivier JC , FenartL, ChauvetR, PariatC, CecchelliR, CouetW. Indirect evidence that drug brain targeting using polysorbate 80-coated polybutylcyanoacrylate nanoparticles is related to toxicity.Pharm. Res.16, 1836–1842 (1999).
  • Kreuter J , RamgeP, PetrovVet al. Direct evidence that polysorbate-80-coated poly(butylcyanoacrylate) nanoparticles deliver drugs to the CNS via specific mechanisms requiring prior binding of drug to the nanoparticles. Pharm. Res. 20, 409–416 (2003).
  • Azmin MN , StuartJFB, FlorenceAT. The distribution and elimination of metotrexate in mouse blood and brain after concurrent administration of polysorbate 80.Cancer Chemother. Pharmacol.14, 238–242 (1985).
  • Sakane T , TanakaC, YamamotoAet al. The effect of polysorbate 80 on brain uptake and analgesic effect of D-kyothorphin. Int. J. Pharm. 57, 77–83 (1989).
  • Schroeder U , SchroederH, SabelBA. Body distribution of 3H-labelled dalargin bound to poly(butyl cyanoacrylate) nanoparticles after i.v. injections to mice.Life Sci.66, 495–502 (2000)
  • Kurakhmaeva KB , DjindjikhashviliIA, PetrovVEet al. Brain targeting of Nerve Growth Factor using poly(butyl cyanoacrylate) nanoparticles. J. Drug Targ. 17, 564–574 (2009).
  • Michaelis K , HoffmannMM, DreisSet al. Covalent linkage of apolipoprotein E to albumin nanoparticles strongly enhances drug transport into the brain. J. Pharmacol. Exp. Ther. 317, 1246–1253 (2006).
  • Kreuter J , HekmataraT, DreisS, VogelT, GelperinaS, LangerK, Covalent attachment of apolipoprotein A-I and apolipoprotein B-100 to albumin nanoparticles enables drug transport into the brain. J. Contr. Rel.118, 54–58 (2007).
  • Lemarchand C , GrefR, PassiraniCet al. Influence of polysaccharide coating on the interactions of nanoparticles with biological systems. Biomaterials 27, 108–118 (2006).
  • Goppert TM , MullerRH. Plasma protein adsorption on Tween 80 and Poloxamer 188-stabilized solid lipid nanoparticles.J. Drug Targ.11, 225–231 (2003).
  • Kreuter J . Use of nanoparticles for cerebral cancer.Tumor.94, 271–277 (2008).
  • Gelperina S , MaksimenkoO, KhalanskyAet al. Drug delivery to the brain using surfactant-coated poly(lactide-co-glycolide) nanoparticles: influence of the formulation parameters. Eur. J. Pharm. Biopharm. 74, 157–163 (2010).
  • Petri B , BootzA., Khalansky A et al. Chemotherapy of brain tumor using doxorubicin bound to surfactant-coated poly(butyl cyanoacrylate) nanoparticles: revisiting the role of surfactants. J. Contr. Rel.117, 51–58 (2007).
  • Sun W , WangH, XieC, HuY, YangX, XuH. An attempt to directly trace polymeric nanoparticles in vivo with electron microscopy. J. Contr. Rel.115, 259–265 (2006).
  • Santander-Ortega MJ , Jodar-ReyesAB, CsabaN, Bastos-GonzalezD, Ortega-VinuesaJL. Colloidal stability of Pluronic F68-coated PLGA nanoparticles: A variety of stabilisation mechanisms.J. Colloid Interface Sci.302, 522–529 (2006).
  • Kim HR , AndrieuxK, GilSet al. Translocation of poly(ethylene glycol-co-hexadecyl)cyanoacrylate nanoparticles into rat brain endothelial cells: role of apolipoproteins in receptor-mediated endocytosis. Biomacromolecules 8, 793–799 (2007).
  • Zara GP , CavalliR, BargoniA, FundaroA, VighettoD, GascoMR. Intravenous administration to rabbits of non-stealth and stealth Doxorubicin-loaded solid lipid nanoparticles at increasing concentrations of stealth agent: pharmacokinetics and distribution of doxorubicin in brain and other tissues. J. Drug Targ.10, 327–335 (2002).
  • Ulbrich K , HekmataraE, KreuterJ. Transferrin- and transferrin-receptor-antibody-modified nanoparticles enable drug delivery across the blood–brain barrier (BBB).Eur. J. Pharm. Biopharm.71, 251–256 (2009).
  • Aktas Y , YemisciM, AndrieuxK. et al. Development and brain delivery of chitosan-PEG nanoparticles functionalized with the monoclonal antibody OX26. Bioconj. Chem.16, 1503–1511 (2005).
  • Karatas H , AktasY, Gursoy-OzdemirYet al. A nanomedicine transports a peptide Caspase-3 inhibitor across the blood–brain barrier and provides neuroprotection. J. Neurosci. 29, 13761–13769 (2009).
  • Vergoni AV , TosiG, TacchiR, VandelliMA, BeroliniA, CostantinoL. Nanoparticles as drug delivery agents specific for CNS: in vivo biodistribution. Nanomedicine: NBM5, 369–377 (2009).
  • Brigger I , MorizetJ, AubertGet al. Poly(ethylene glycol)-coated hexadecylcyanoacrylate nanospheres display a combined effect for brain tumor targeting. J. Pharmacol. Exp. Ther. 303, 928–936 (2002).
  • LeRay AM , VertM, GautierJC, BenoitJP. Fate of [14C]poly(D,L-lactide-co-glycolide) nanoparticles after intravenous and oral administration to mice. Int. J. Pharm.106, 201–211 (1994).
  • Lode J , FichtnerI, KreuterJ, BerndtA, DiederichsJE, ReszkaR. Influence of surface-modifying surfactants on the pharmacokinetic behaviour of 14C-poly(methylmethacrylate) nanoparticles in experimental tumor models. Pharm. Res.18, 1613–1619 (2001).
  • Dhuria SV , HansonLR, FreyWH. Intranasal delivery to the central nervous system: mechanisms and experimental considerations.J. Pharm. Sci.99, 1654–1673 (2010).
  • Veldhorst-Janssen NML , FiddelersAAA, van der Ruy PHM, Neef C, Marcus MAE. A review of the clinical pharmacokinetics of opioids, benzodiazepines, and antimigraine drugs delivered intranasally. Clin. Ther.31, 2954–2987 (2009).
  • Mistry A , StolnikS, IllumL. Nanoparticles for direct nose to brain delivery of drugs.Int. J. Pharm.379, 146–157 (2009).
  • Ozsoy Y , GungorS, CevherE. Nasal delivery of high molecular weight drugs.Molecules14, 3754–3779 (2009).
  • Illum L . Nanoparticulate systems for nasal delivery of drugs: a real improvement over simple systems?J. Pharm. Sci.96, 473–483 (2007).
  • Schroeder U , SommerfeldP, SabelBA, Efficacy of oral dalargin-loaded nanoparticle delivery across the blood–brain barrier. Peptides19, 777–780 (1998).
  • Das D , LinSS. Double-coated poly(butylcyanoacrylate) nanoparticulate delivery systems for brain targeting of dalargin via oral administration.J. Pharm. Sci.94, 1343–1353 (2005).
  • Putney SD , BurkePA. Improving protein therapeutics with sustained-release formulations.Nat. Biotech.16, 153–157 (1998).
  • He W , JiangX, ZhangZR. Preparation and evaluation of poly-butylcyanoacrylate nanoparticles for oral delivery of thymopentin.J. Pharm. Sci.97, 2250–2259 (2008).
  • van de Weert M , HenninkWE, JiskootW. Protein instability in poly(lactic-co-glycolic acid) microparticles.Pharm. Res.17, 1159–1167 (2000).
  • Yang SX , YuanWE, JinT. Formulating protein therapeutics into particulate forms.Exp. Opin. Drug Del.6, 1123–1133 (2009).

Patent

  • Khrestchatisky M, Marion D, Yves M, Vlieghe P. 2937322 A1 20100423 (2010).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.