169
Views
1
CrossRef citations to date
0
Altmetric
Review

Medicinal Chemistry of ρ GABAC Receptors

, , , , , , , & show all
Pages 197-209 | Published online: 11 Feb 2011

Bibliography

  • Crittenden DL , ChebibM, JordanMJT. Stabilization of zwitterions in solution: GABA analogues.J. Phys. Chem. A109(18), 4195–4201 (2005).
  • Kalueff A , NuttDJ. Role of GABA in memory and anxiety.Depress. Anxiety4, 100–110 (1997).
  • Gibbs ME , JohnstonGAR. Opposing roles foρ GABAA and GABAC receptors in short-term memory formation in young chicks. Neurosci.131, 567–576 (2005).
  • Jacobson LH , KellyPH, BettlerB, KaupmannK, CryanJF. Specific roles of GABAB(1) receptor isoforms in cognition. Behav. Brain Res.181, 158–162 (2007).
  • Lewis DA , ChoRY, CarterCSet al. Subunit-selective modulation of GABA type A receptor neurotransmission and cognition in schizophrenia. Am. J. Psychiatry 165, 1585–1593 (2008).
  • Binns KE , SaltTE. Different roles foρ GABAA and GABAB receptors in visual processing in the rat superior colliculus. J. Physiol.504, 629–639 (1997).
  • Enz R , BrandstatterJH, HartveitE, WässleH, BormannJ. Expression of GABA receptor ρ1 and ρ2 subunits in the retina and brain of the rat. Eur. J. Neurosci.7, 1495–1501 (1995).
  • Enz R , CuttingGR. Molecular composition of GABAC receptors. Vision Res.38, 1431–1441 (1998).
  • Sernagor E , YoungC, EglenS. Developmental modulation of retinal wave dynamics. Shedding light on the GABA saga.J. Neurosci.23, 7621–7629 (2003).
  • Storer RJ , AkermanS, GoadsbyPJ. GABA receptors modulate trigeminovascular nociceptive neurotransmission in the trigeminocervical complex.Br. J. Pharmacol.134, 896–904 (2001).
  • Knabl J , WitschiR, HöslKet al. Reversal of pathological pain through specific spinal GABAA receptor subtypes. Nature 451, 330–334 (2008).
  • Neto FL , Ferreira-GomesJ, Castro-LopesJM. Distribution of GABA receptors in the thalamus and their involvement in nociception.Adv. Pharmacol.54, 29–51 (2006).
  • Lancel M , Crönlein Tam, Faulhaber J. Role of GABAA receptors in sleep regulation – differential effects of muscimol and midazolam on sleep in rats. Neuropsychopharmacol.15, 63–74 (1996).
  • Gottesmann C . GABA mechanism and sleep.Neurosci.111, 231–239 (2002).
  • Wafford KA , EbertB. Gaboxadol – a new awakening in sleep.Curr. Opin. Pharmacol.6, 30–36 (2006).
  • Defeudis FV . γ-Aminobutyric acid and cardiovascular function.Experientia39, 845–849 (1983).
  • Defeudis FV . Involvement of γ-aminobutyric acid in cardiovascular regulation.Trends Pharmacol. Sci.4, 356–358 (1983).
  • Jones-Davis DM , MacdonaldRL. GABAA receptor function and pharmacology in epilepsy and status epilepticus. Curr. Opin. Pharmacol.3, 12–18 (2003).
  • Palma E , SpinelliG, TorchiaGet al. Abnormal GABAA receptors from the human epileptic hippocampal subiculum microtransplanted to Xenopus oocytes. Proc. Natl Acad. Sci. USA 102, 2514–2518 (2005).
  • Möhler H . GABAA receptors in central nervous system disease: anxiety, epilepsy and insomnia. J. Recept. Signal Transduct. Res.26, 731–740 (2006).
  • Morris HV , DawsonGR, ReynoldsDS, AtackJR, StephensDN. Both α2 and α3 GABAA receptor subtypes mediate the anxiolytic properties of benzodiazepine site ligands in the conditioned emotional response paradigm. Eur. J. Neurosci.23, 2495–2504 (2006).
  • Crestani F , LorezM, BaerKet al. Decreased GABAA-receptor clustering results in enhanced anxiety and a bias for threat cues. Nature Neurosci. 2, 833–839 (1999).
  • Petty F . GABA and mood disorders: a brief review and hypothesis.J. Affect. Disord.34, 275–281 (1995).
  • Blum BP , MannJJ. The GABAergic system in schizophrenia.Int. J. Neuropsychopharmacol.5, 159–179 (2002).
  • Wassef A , BakerJ, KochanLD. GABA and schizophrenia: a review of basic science and clinical studies.J. Clin. Psychopharmacol.23, 601–640 (2003).
  • Lanctôt KL , HerrmannN, MazzottaP, KhanLR, IngberN. GABAergic function in Alzheimer’s disease: evidence for dysfunction and potential as a therapeutic target for the treatment of behavioural and psychological symptoms of dementia.Can. J. Psychiatry49, 439–453 (2004).
  • Rissman RA , De Blas AL, Armstrong DM. GABAA receptors in aging and Alzheimer’s disease. J. Neurochem.103, 1285–1292 (2007).
  • Caraceni T , CalderiniG, ConsolazioneAet al. Biochemical aspects of Huntington’s chorea. J. Neurol. Neurosurg. Psychiatry 40, 581–587 (1977).
  • Cepeda C , StarlingAJ, WuNet al. Increased GABAergic function in mouse models of Huntington’s disease: reversal by BDNF. J. Neurosci. Res. 78, 855–867 (2004).
  • Johnston GAR , ChebibM, HanrahanJR, MewettKN. Neurochemicals for the investigation of GABA-c receptors.Neurochem. Res.35(12), 1970–1977 (2010).
  • Bormann J . The ‘ABC’ of GABA receptors.Trends Pharmacol. Sci.21, 16–19 (2000).
  • Chebib M , JohnstonGAR. The ‘ABC’ of GABA receptors: a brief review.Clin. Exp. Pharmacol. Physiol.26, 937–940 (1999).
  • Chebib M , JohnstonGAR. GABA-activated ligand gated ion channels: medicinal chemistry and molecular biology.J. Med. Chem.43, 1427–1447 (2000).
  • Johnston GAR . Medicinal chemistry and molecular pharmacology of GABAC receptors. Curr. Top. Med. Chem.2, 903–913 (2002).
  • Connolly CN , WaffordKA. The cys-loop superfamily of ligand-gated ion channels: the impact of receptor structure on function.Biochem. Soc. Trans.32, 529–534 (2003).
  • Carter CR , KozuskaJL, DunnSM. Insights into the structure and pharmacology of GABAA receptors. Future Med. Chem.2(5), 859–887 (2010).
  • Johnston GAR , ChebibM, DukeRK. Ionotropic GABA receptors: ligand gated ion channels. In: Control and Diseases of Sodium Dependent Transport Proteins and Ion Channels. Suketa Y, Carafoli E, Lazdunski M, Mikoshiba K, Okada Y, Wright E (Eds). Elsevier-Science B.V., MI, USA 369–372 (2000).
  • Le Novére N , Changeux J-P. The ligand gated ion channel database. Nucleic Acids Res.27, 340–342 (1999).
  • Filippova N , WotringVE, WeissDS. Evidence that the TM1–TM2 loop contributes to the ρ1 GABA receptor pore. J. Biol. Chem.279, 20906–20914 (2004).
  • Qian H , RippsH. Focus on molecules: the GABAC receptor. Exp. Eye Res.88, 1002–1003 (2009).
  • Barnard EA . Receptor classes and the transmitter-gated ion channels.Trends Biochem. Sci.17, 368–374 (1992).
  • Absalom NL , LewisTM, SchofieldPR. Mechanisms of channel gating of the ligand-gated ion channel superfamily inferred from protein structure.Exp. Physiol.89, 145–153 (2004).
  • Johnston GAR , CurtisDR, BeartPM, GamerCJA, McCullochRM, TwitchinB. Cis- and trans-4-aminocrotonic acid as GABA analogues of restricted conformation. J. Neurochem.24, 157–160 (1975).
  • Drew CA , JohnstonGAR, WeatherbyRP. Bicuculline-insensitive GABA receptors: studies on the binding of (–)-baclofen to rat cerebellar membranes.Neurosci. Lett.52, 317–321 (1984).
  • Polanzani L , WoodwardRM, MilediR. Expression of mammalian γ-aminobutyric acid receptors with distinct pharmacology in xenopus oocytes.Proc. Natl Acad. Sci. USA88, 4318–4322 (1991).
  • Cutting GR , LuL, O‘HaraBFet al. Cloning of the γ-aminobutyric acid (GABA) ρ1 cDNA: a GABA receptor subunit highly expressed in the retina. Proc. Natl Acad. Sci. USA. 88, 2673–2677 (1991).
  • Feigenspan A , WässleH, BormannJ. Pharmacology of GABA receptor Cl- channels in rat retinal bipolar cells. Nature361, 159–162 (1993).
  • Qian H , DowlingJE. Novel GABA responses from rod-driven retinal horizontal cells.Nature361, 162–164 (1993).
  • Enz R . GABAC receptors: a molecular view. Biol. Chem.382, 1111–1122 (2001).
  • Zhang D , Pan Z-H, Awobuluyi M, Lipton SA. Structure and function of GABAC receptors: a comparison of native versus recombinant receptors. Trends Pharmacol. Sci.22, 121–132 (2001).
  • Wang T -L, Guggino WB, Cutting GR. A novel γ-aminobutyric acid receptor subunit (ρ2) cloned from human retina forms bicuculline-insensitive homooligomeric receptors in xenopus oocytes. J. Neurosci.14, 6524–6531 (1994).
  • Qian H , DowlingJE, RippsH. Molecular and pharmacological properties of GABA-ρ subunits from white perch retina.J. Neurobiol.37, 305–320 (1998).
  • Kusama T , SpivakCE, WhitingP, Dawson Vl, Schaeffer JC, Uhl GR. Pharmacology of GABA ρ1 and GABA α/β receptors expressed in Xenopus oocytes and COS cells. Br. J. Pharmacol.109, 200–206 (1993).
  • Shingai R , YanagiK, FukushimaT, SakataK, OgurusuT. Functional expression of GABA ρ3 receptors in Xenopus oocytes. Neurochem. Res.26, 387–390 (1996).
  • Pan Y , KhaliliP, RippsH, QianH. Pharmacology of GABAC receptors: responses to agonists and antagonists distinguish α- and β-subtypes of homomeric receptors expressed in Xenopus oocytes. Neurosci. Lett.376, 60–65 (2005).
  • López-Chávez A , MilediR, Martínez-TorresA. Cloning and functional expression of the bovine GABAC ρ2 subunit – molecular evidence of a widespread distribution in the CNS. Neurochem. Res.53, 421–427 (2005).
  • Alakuijala A , TalviojaK, PasternackA, PasternackM. Functional characterization of rat ρ2 subunits expressed in HEK293 cells. Eur. J. Neurosci.21, 692–700 (2005).
  • Amin J , WeissDS. Homomeric ρ1 GABA channels: activation properties and domains. Receptors Channels2, 227–236 (1994).
  • Boue-Grabot E , RoudbarakiM, BasciesL, TramuG, BlochB, GarretM. Expression of GABA receptor ρ subunits in rat brain.J. Neurochem.70, 899–907 (1998).
  • Enz R , CuttingGR. GABAC receptor ρ subunits are heterogeneously expressed in the human cns and form homo- and heterooligomers with distinct physical properties. Eur. J. Neurosci.11, 41–50 (1999).
  • Hackam AS , Wang T-L, Guggino WB, Cutting GR. Sequences in the amino termini of GABA ρ and GABAA subunits specify their selective interaction in vitro. J. Neurochem.70, 40–46 (1998).
  • Qian H , RippsH. Response kinetics and pharmacological properties of heteromeric receptors formed by coassembly of GABA ρ- and g2-subunits. Proc. R. Soc. Lond. B.266, 2419–2425 (1999).
  • Ekema GM , ZhengW, LuL. Interaction of GABA receptor/channel ρ1 and γ2 subunit. Invest. Ophthalmol. Vis. Sci.43, 2326–2333 (2002).
  • Qian H , PanY. Co-assembly of GABA ρ subunits with the GABAA receptor γ2 subunit cloned from white perch retina. Mol. Brain Res.103, 62–70 (2002).
  • Milligan CJ , BuckleyNJ, GarretM, DeucharsJ, DeucharsSA. Evidence for inhibition mediated by coassembly of GABAA and GABAC receptor subunits in native central neurons J. Neurosci.24, 7241–7250 (2004).
  • Fletcher EL , KoulenP, WässleH. GABAA and GABAC receptors on mammalian rod bipolar cells. J. Comp. Neurol.396, 351–365 (1998).
  • Lukasiewicz PD , WongROL. The properties of GABA(c) receptors on ferret retinal bipolar cells.Invest. Ophthalmol. Vis. Sci.37(3), 1940–1940 (1996).
  • Eggers ED , LukasiewiczPD. GABA(A), GABA(C) and glycine receptor-mediated inhibition differentially affects light-evoked signalling from mouse retinal rod bipolar cells.J. Physiol. – London572(1), 215–225 (2006).
  • Lukasiewicz PD . Synaptic mechanisms that shape visual signaling at the inner retina.Prog. Brain Res.147, 205–218 (2005).
  • Lukasiewicz PD , EggersED, SagdullaevBT, McCallMA. GABA(C) receptor-mediated inhibition in the retina.Vision Res.44(28), 3289–3296 (2004).
  • Lukasiewicz PD , ShieldsCR. Different combinations of GABA(A) and GABA(C) receptors confer distinct temporal properties to retinal synaptic responses.J. Neurophysiol.79(6), 3157–3167 (1998).
  • Rozzo A , ArmellinM, FranzotJ, ChiaruttiniC, NistriA, TongiorgiE. Expression and dendritic mRNA localization of GABAC receptor ρ1 and ρ2 subunits in developing rat brain and spinal cord. Eur. J. Neurosci.15, 1747–1758 (2002).
  • Ogurusu T , ShingaiR. Cloning of a putative γ-aminobutyric acid (GABA) receptor subunit ρ3 cDNA.Biochim. Biophys. Acta1305, 15–18 (1996).
  • Jansen A , HoepfnerM, Herzig K-H, Riecken E-O, Scherübl H. GABAC receptors in neuroendocrine gut cells: a new GABA-binding site in the gut. Pflügers Arch. – Eur. J. Physiol.441, 294–300 (2000).
  • Fletcher EL , ClarkMJ, SeniorP, FurnessJB. Gene expression and localisation of GABAC receptors in neurons of the rat gastrointestinal tract. Neurosci.107, 181–189 (2001).
  • McCall MA , LukasiewiczPD, GreggRG, PeacheyNS. Elimination of the ρ1 subunit abolishes GABAC receptor expression and alters visual processing in the mouse retina. J. Neurosci.22, 4163–4174 (2002).
  • Schlicker K , McCallMA, SchmidtM. GABAC receptor-mediated inhibition is altered but not eliminated in the superior colliculus of GABAc ρ1 knockout mice. J. Neurophysiol.101, 2947–2983 (2009).
  • Zheng W , ZhaoX, WangJ, LuL. Retinal vascular leakage occurring in GABA rho-1 subunit deficient mice.Exp. Eye Res.90, 634–640 (2010).
  • Zheng W , XieW, ZhangJet al. Function of γ-aminobutyric acid receptor/channel ρ1 subunits in spinal cord. J. Biol. Chem. 278, 48321–48329 (2003).
  • Chen Y , ZhouD, ZhouKet al. Study on olfactory function in GABAC receptor/channel ρ1 subunit knockout mice. Neurosci. Lett. 427, 10–15 (2007).
  • Alakuijala A , AlakuijalaJ, PasternackM. Evidence for a functional role of GABA receptors in the rat mature hippocampus.Eur. J. Neurosci.23(2), 514–520 (2006).
  • Xu JY , YangB, SastryBR. The involvement of GABA-C receptors in paired-pulse depression of inhibitory postsynaptic currents in rat hippocampal CA1 pyramidal neurons.Exp. Neurol.216(1), 243–246 (2009).
  • Boue-Grabot E , TaupignonA, TramuG, GarretM. Molecular and electrophysiological evidence for a GABAC receptor in thyrotropin-secreting cells. Endocrinol.141(5), 1627–1632 (2000).
  • Zizzo MG , MuleF, SerioR. Functional evidence foρ GABA as modulator of the contractility of the longitudinal muscle in mouse duodenum: role of GABA(A) and GABA(C) receptors.Neuropharmacol.52(8), 1685–1690 (2007).
  • Chebib M , HintonT, SchmidKLet al. Novel, potent, and selective GABAC antagonists inhibit myopia development and facilitate learning and memory. J. Pharmacol. Exp. Ther. 328, 448–457 (2009).
  • Stone RA , LiuJ, SugimotoR, CapehartC, ZhuX, PendrakK. GABA, experimental myopia, and ocular growth in chick.Invest. Ophthalmol. Vis. Sci.44, 3933–3946 (2003).
  • Chebib M , HanrahanJR, MewettKN, DukeRK, JohnstonGAR. Ionotropic GABA receptors as therapeutic targets for memory and sleep disorders.Annu. Rep. Med. Chem.39, 13–23 (2004).
  • Deschaux O , FroestlW, GottesmannC. Influence of a GABAB and GABAC receptor antagonist on sleep–waking cycle in the rat. Eur. J. Pharmcol.535, 177–181 (2006).
  • Gamel-Didelon K , KunzL, FöhrKJ, GratzM, MayerhoferA. Molecular and physiological evidence for functional γ-aminobutyric acid (GABA)-C receptors in growth hormone-secreting cells.J. Biol. Chem.278, 20192–20195 (2003).
  • Feigenspan A , BormannJ. Differential pharmacology of GABAA and GABAC receptors on rat retinal bipolar cells. Eur. J. Pharmacol.288, 97–104 (1994).
  • Bormann J , FeigenspanA. GABAC receptors. Trends Neurosci.18, 515–519 (1995).
  • Chebib M , MewettKN, JohnstonGAR. GABA receptor antagonists differentiate between human ρ1 and ρ2 receptors expressed in xenopus oocytes. Eur. J. Pharmacol.357, 227–234 (1998).
  • Johnston GAR , ChebibM, HanrahanJR, MewettKN. GABAC receptors as drug targets. Curr. Drug Targets – CNS Neurol. Disord.2, 260–268 (2003).
  • Vien J , DukeRK, MewettKN, JohnstonGAR, ShingaiR, ChebibM. Trans-4-amino-2-methylbut-2-enoic acid (2-meTACA) and (±)-trans-2-sminomethylcyclopropanecarboxylic acid ((±)-TAMP) can differentiate rat r3 from human ρ1 and ρ2 recombinant GABAC receptors. Br. J. Pharmacol.135, 883–890 (2002).
  • Johnston GAR . GABA receptor pharmacology. In: Pharmacological Sciences: Perspectives for Research and Therapy in the Late 1990s. Cuello AC, Collier B (Eds). Birkhäuser Verlag, Basel, Switzerland 11–15 (1995).
  • Chebib M , VandenbergRJ, JohnstonGAR. Analogues of γ-aminobutyric acid (GABA) and trans-4-aminocrotonic acid (TACA) substituted in the 2 position as GABAC receptor antagonists. Br. J. Pharmacol.122, 1551–1560 (1997).
  • Crittenden DL , ParkA, QiuJet al. Enantiomers of cis-constrained and flexible 2-substituted GABA analogues exert opposite effects at recombinant GABAC receptors. Bioorg. Med. Chem. 14, 447–455 (2006).
  • Allan RD , JohnstonGAR. Synthetic analogs for the study of GABA as a neurotransmitter.Med. Res. Rev.3, 91–118 (1983).
  • Hinton T , ChebibM, JohnstonGAR. Enantioselective actions of 4-amino-3-hydroxybutanoic acid and (3-amino-2-hydroxypropyl)methylphosphinic acid at recombinant GABAC receptors. Bioorg. Med. Chem. Lett.18, 402–404 (2008).
  • Allan RD , CurtisDR, HeadleyPM, JohnstonGAR, LodgeD, TwitchinB. The synthesis and activity of cis- and trans-2-(aminomethyl)cyclopropanecarboxylic acid as conformationally restricted analogues of GABA. J. Neurochem.34, 652–654 (1980).
  • Duke RK , ChebibM, BalcarVJ, AllanRD, MewettKN, JohnstonGAR. (+)- and (–)-cis-2-aminomethylcyclopropanecarboxylic acids show opposite pharmacology at recombinant ρ1 and ρ2 GABAC receptors. J. Neurochem.75, 2602–2610 (2000).
  • Segal M , SimsK, SmissmanE. Characterisation of an inhibitory receptor in rat hippocampus: a microiontophoretic study using conformationally restricted amino acid analogues.Br. J. Pharmacol.54, 181–188 (1975).
  • Nicoll RA . The effect of conformationally restricted amino acid analogues on the frog spinal cord in vitro. Br. J. Pharmacol.59, 303–309 (1977).
  • Allan RD , JohnstonGAR, TwitchinB. Synthesis of analogues of GABA. III. All four stereoisomers of 3-aminocyclopentanecarboxylic acid and a stereochemical correlation with amidinomycin.Aust. J. Chem.32, 2517–2521 (1979).
  • Allan RD , DickensonHW, FongJ. Structure–activity studies on the activity of a series of cyclopentane GABA analogues on GABAA receptors and GABA uptake. Eur. J. Pharmcol.122, 339–348 (1986).
  • Chebib M , AllanRD, DukeRK, JohnstonGAR. The effects of cyclopentane and cyclopentene analogues of GABA at recombinant GABAC receptors. Eur. J. Pharmacol.430, 185–192 (2001).
  • Kumar RJ , ChebibM, HibbsDEet al. Novel γ-aminobutyric acid ρ1 receptor antagonists; synthesis, pharmacological activity and structure–activity relationships. J. Med. Chem. 51, 3825–3840 (2008).
  • Chebib M , VandenbergRJ, FroestlW, JohnstonGAR. Unsaturated phosphinic analogues of γ-aminobutyric acid as GABAC receptor antagonists. Eur. J. Pharmacol.329, 223–229 (1997).
  • Kusama T , Wang T-L, Guggino WB, Cutting GR, Uhl GR. GABA ρ2 receptor pharmacological profile: GABA recognition site similarities to ρ1. Eur. J. Pharmacol. Mol. Pharmacol. Sect.245, 83–84 (1993).
  • Madsen C , JensenAA, LiljeforsTet al. 5-substituted imidazole-4-acetic acid analogues: synthesis, modeling, and pharmacological characterization of a series of novel γ-aminobutyric acid(C) receptor agonists. J. Med. Chem. 50(17), 4147–4161 (2007).
  • Krehan D , Fr⊘lundB, EbertBet al. Aza-thip and related analogues of thip as GABAC antagonists. Bioorg. Med. Chem. 11, 4891–4896 (2003).
  • Allan RD , DickensonHW, JohnstonGAR, KazlauskasR, MewettKN. Structural analogues of ZAPA as GABAA agonists. Neurochem. Int.30, 583–591 (1997).
  • Woodward RM , PolanzaniL, MilediR. Characterization of bicuculline/baclofen-insensitive (ρ-like) γ-aminobutyric acid receptors expressed in Xenopus oocytes II. Pharmacology of γ-aminobutyric acidA and γ-aminobutyric acidB receptor agonists and antagonists. Mol. Pharmacol.43, 609–625 (1993).
  • Allan RD , TwitchinB. Synthesis of analogues of GABA. IV. Three unsaturated derivatives of 3-aminocyclopentane-1-carboxylic acid.Aust. J. Chem.33, 599–604 (1980).
  • Olpe H -R, Steinmann MW, Ferrat T et al. The actions of orally active GABAB receptor antagonists on GABAergic transmission in vivo and in vitro. Eur. J. Pharmacol.233, 179–186 (1993).
  • Froestl W , MickelSJ, Von Sprecher G et al. Phosphinic acid analogues of GABA. 2. Selective, orally active GABAB antagonists. J. Med. Chem.38, 3313–3331 (1995).
  • Chowdhury S , MuniNJ, GreenwoodNP, PepperbergDR, StandaertRF. Phosphonic acid analogs of GABA through reductive dealkylation of phosphonic diesters with lithium trialkylborohydrides.Bioorg. Med. Chem. Lett.17, 3745–3748 (2007).
  • Murata Y , WoodwardRM, MilediR, OvermanLE. The first selective antagonists for a GABAC receptor. Bioorg. Med. Chem. Lett.6, 2073–2076 (1996).
  • Hanrahan JR , MewettKN, ChebibM, BurdenPM, JohnstonGAR. An improved, versatile synthesis of the GABAc antagonists (1,2,5,6-tetrahydropyridin-4-yl)methylphosphinic acid (TPMPA) and (piperidin-4-yl)methylphosphinic acid (P4MPA). J. Chem. Soc. Perkin Trans.1, 2389–2392 (2001).
  • Dumond YR , Montchamp J-L. Palladium-catalysed cross-coupling reaction of anilinium hypophosphite with alkenyl bromides and triflates: Application to the synthesis of GABA analogues. J. Organomet. Chem.653, 252–260 (2002).
  • Ragozzino D , WoodwardRM, MurataY, EusebiF, OvermanLE, MilediR. Design and in vitro pharmacology of a selective γ-aminobutyric acidc receptor antagonist. Mol. Pharmacol.50, 1024–1030 (1996).
  • Chebib M , HanrahanJR, KumarRJet al. (3-aminocyclopentyl)methylphosphinic acids: novel GABAc receptor antagonists. Neuropharmacol. 52, 779–787 (2007).
  • Krehan D , Fr⊘lundB, Krogsgaard-LarsenP, KehlerJ, JohnstonGAR, ChebibM. Phosphinic, phosphonic and seleninic acid bioisosteres of isonipecotic acid as novel and selective GABAC receptor antagonists. Neurochem. Int.42, 561–565 (2003).
  • Hanrahan JR , MewettKN, ChebibMet al. Diastereoselective synthesis of (±)-(3-aminocyclopentane)alkylphosphinic acids, conformationally restricted analogues of GABA. Org. Biomol. Chem. 4, 2642–2649 (2006).
  • Chebib M . GABAC receptor ion channels. Clin. Exp. Pharmacol. Physiol.31, 800–804 (2004).
  • Chebib M , GavandeN, WongKYet al. Guanidino acids act as ρ1 GABA(C) receptor antagonists. Neurochem. Res. 34, 1704–1711 (2009).
  • Gavande N , YamamotoI, SalamNKet al. Novel cyclic phosphinic acids as GABAC ρ receptor antagonists: design, synthesis, and pharmacology. Med. Chem. Lett. 2(1), 11–16 (2010).
  • Vu TQ , ChowdhuryS, MuniNJ, QianH, StandaertRF, PepperbergDR. Activation of membrane receptors by a neurotransmitter conjugate designed for surface attachment.Biomaterials26(14), 1895–1903 (2005).
  • Gussin HA , TomlinsonID, LittleDMet al. Binding of muscimol-conjugated quantum dots to GABA-c receptors. J. Am. Chem. Soc. 128(49), 15701–15713 (2006).
  • Wu SM , QiaoX, NobelsJL, YangXL. Localization and modulatory actions of zinc in vertebrate retina.Vision Res.33, 2611–2616 (1993).
  • Calvo D , VazquezAE, MilediR. Cationic modulation of ρ1-type γ-aminobutyrate receptors expressed in xenopus oocytes. Proc. Natl Acad. Sci. USA91, 12725–12729 (1995).
  • Morris K , MoorefieldCN, AminJ. Differential modulation of the γ-aminobutyric acid type C receptor by neuroactive steroids.Mol. Pharmacol.56, 752–759 (1999).
  • Li W , JinX, CoveyDF, SteinbachJH. Neuroactive steroids and human recombinant ρ1 GABAC receptors. J. Pharmacol. Exp. Ther.323, 236–247 (2007).
  • Thomet U , BaurR, DoddRH, SigelE. Loreclezole as a simple functional marker for homomeric ρ type GABA receptors.Eur. J. Pharmcol.408, R1–R2 (2000).
  • Goutman JD , WaxembergaMD, Doñate-OliverF, PomataaPE, CalvoDJ. Flavonoid modulation of ionic currents mediated by GABAA and GABAC receptors. Eur. J. Pharmcol.461, 79–87 (2003).
  • Froestl W , GallagherM, JenkinsHet al. SGS742: the first GABA(B) receptor antagonist in clinical trials. Biochem. Pharmacol. 68, 1479–1487 (2004).
  • Matsui K , HasegawaJ, TachibanaM. Modulation of excitatory synaptic transmission by GABA(C) receptor-mediated feedback in the mouse inner retina.J. Neurophysiol.86(5), 2285–2298 (2001).
  • Denter DG , HeckN, RiedemannT, WhiteR, KilbW, LuhmannHJ. GABAC receptors are functionally expressed in the intermediate zone and regulate radial migration in the embryonic mouse neocortex. Neurosci.167(1), 124–134 (2010).
  • Harvey VL , DuguidIC, KraselC, StephensGJ. Evidence that GABA rho subunits contribute to functional ionotropic GABA receptors in mouse cerebellar purkinje cells.J. Physiol.577(Pt 1), 127–139 (2006).
  • Schmidt M , BollerM, OzenG, HallWC. Disinhibition in rat superior colliculus mediated by GABAc receptors. J. Neurosci.21, 691–699 (2001).
  • Nakayama Y , HattoriN, OtaniH, InagakiC. Gamma-aminobutyric acid (GABA)-C receptor stimulation increases prolactin (PRL) secretion in cultured rat anterior pituitary cells.Biochem. Pharmacol.71(12), 1705–1710 (2006).
  • Arnaud C , GauthierP, GottesmannC. Study of a GABAC receptor antagonist on sleep-waking behavior in rats. Psychopharmacol.154, 415–419 (2001).
  • Reis GM , DuarteID. Involvement of chloride channel coupled GABA(C) receptors in the peripheral antinociceptive effect induced by GABA(C) receptor agonist cis-4-aminocrotonic acid. Life Sci.80, 1268–1273 (2007).

Patents

  • Klein RD, Brennan TJ: WO2002079380 (2002).
  • Chebib M, Johnston GAR, Hanrahan JR: WO200345897 (2003).
  • Chebib M, Kumar RJ, Johnston GAR, Hanrahan JR: WO2006000043 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.