189
Views
0
CrossRef citations to date
0
Altmetric
Review

Natural Products and Ion Channel Pharmacology

&
Pages 731-744 | Published online: 12 May 2010

Bibliography

  • Cuatrecasas P . Drug discovery in jeopardy.J. Clin. Investig.116(11), 2837–2842 (2006).
  • Kola I , LandisJ. Can the pharmaceutical industry reduce attrition rates?Nat. Rev. Drug Discov.3(8), 711–715 (2004).
  • Munos B . Lessons from 60 years of pharmaceutical innovation.Nat. Rev. Drug Discov.8(12), 959–968 (2009).
  • PhRMA . Pharmaceutical industry profile 2009. America, PRaMo, PhRMA, Washington, DC, USA (2009).
  • Hirschler B . Drugmakers face $140 billion patent ‘Cliff’. In: Reuters.London, UK (2007)
  • Hopkins AL . Network pharmacology: the next paradigm in drug discovery.Nat. Chem. Biol.4(11), 682–690 (2008).
  • Molinari G . Natural products in drug discovery: present status and perspectives.Adv. Exp. Med. Biol.655, 13–27 (2009).
  • Newman DJ . Natural products as leads to potential drugs: an old process or the new hope for drug discovery?J. Med. Chem.51(9), 2589–2599 (2008).
  • Newman DJ , CraggGM. Natural products as sources of new drugs over the last 25 years.J. Nat. Prod.70(3), 461–477 (2007).
  • Newman DJ , CraggGM, SnaderKM. Natural products as sources of new drugs over the period 1981–2002.J. Nat. Prod.66, 1022–1037 (2003).
  • Gorse AD . Diversity in medicinal chemistry space.Curr. Top. Med. Chem.6(1), 3–18 (2006).
  • Bohacek RS , McMartinC, GuidaWC. The art and practice of structure-based drug design: a molecular modeling perspective.Med. Res. Rev.16(1), 3–50 (1996).
  • Koehn FE , CarterGT. The evolving role of natural products in drug discovery.Nat. Rev. Drug Discov.4(3), 206–220 (2005).
  • Li JW , VederasJC. Drug discovery and natural products: end of an era or an endless frontier?Science325(5937), 161–165 (2009).
  • Soejarto DD , FongHH, TanGTet al. Ethnobotany/ethnopharmacology and mass bioprospecting: issues on intellectual property and benefit-sharing. J. Ethnopharmacol. 100(1–2), 15–22 (2005).
  • Chang CC , LeeCY. Isolation of neurotoxins from the venom of bungarus multicinctus and their modes of neuromuscular blocking action. Arch. Int. Pharmacodyn. Ther.144, 241–257 (1963).
  • Biass D , DutertreS, GerbaultAet al. Comparative proteomic study of the venom of the piscivorous cone snail conus consors. J. Proteomics 72(2), 210–218 (2009).
  • Escoubas P , KingGF. Venomics as a drug discovery platform.Expert Rev. Proteomics6(3), 221–224 (2009).
  • Escoubas P , SollodB, KingGF. Venom landscapes: mining the complexity of spider venoms via a combined cDNA and mass spectrometric approach.Toxicon47(6), 650–663 (2006).
  • Corpuz GP , JacobsenRB, JimenezECet al. Definition of the M-conotoxin superfamily: characterization of novel peptides from Molluscivorous conus venoms. Biochemistry 44(22), 8176–8186 (2005).
  • Espiritu DJD , WatkinsM, Dia-MonjeV, CartierGE, CruzLJ, OliveraBM. Venomous cone snails: molecular phylogeny and the generation of toxin diversity.Toxicon.39, 1899–1916 (2001).
  • Olivera BM , TeichertRW. Diversity of the neurotoxic conus peptides: a model for concerted pharmacological discovery.Mol. Intervent.7(5), 251–260 (2007).
  • Santos AD , McIntoshJM, HillyardDR, CruzLJ, OliveraBM. The α-superfamily of conotoxins: structural and functional divergence.J. Biol. Chem.279, 17596–17606 (2004).
  • Escoubas P , QuintonL, NicholsonGM. Venomics: unravelling the complexity of animal venoms with mass spectrometry.J. Mass Spectrom.43(3), 279–295 (2008).
  • Ueberheide BM , FenyoD, AlewoodPF, ChaitBT. Rapid sensitive analysis of cysteine rich peptide venom components.Proc. Natl Acad. Sci. USA106(17), 6910–6915 (2009).
  • Miljanich GP . Ziconotide: neuronal calcium channel blocker for treating severe chronic pain.Curr. Med. Chem.11, 3029–3040 (2004).
  • Prommer E . Ziconotide: a new option for refractory pain.Drugs Today (Barc), 42(6), 369–378 (2006).
  • Olivera BM , CruzLJ, de Santos V et al. Neuronal Ca channel antagonists. Discrimination between Ca channel subtypes using ω-conotoxin fromconus magus venom. Biochemistry26, 2086–2090 (1987).
  • Olivera BM , GrayWR, ZeikusRet al. Peptide neurotoxins from fish-hunting cone snails. Science 230, 1338–1343 (1985).
  • Olivera BM , MiljanichG, RamachandranJ, AdamsME. Calcium channel diversity and neurotransmitter release: the ω-conotoxins and ω-agatoxins.Annu. Rev. Biochem.63, 823–867 (1994).
  • Yoshikami D , BagabaldoZ, OliveraBM. The inhibitory effects of ω-conotoxins on calcium channels and synapses.Ann. NY Acad. Sci.560, 230–248 (1989).
  • Cahalan MD , ChandyKG. The functional network of ion channels in t lymphocytes.Immunol. Rev.231(1), 59–87 (2009).
  • Rangaraju S , ChiV, PenningtonMW, ChandyKG. Kv1.3 potassium channels as a therapeutic target in multiple sclerosis. Expert Opin. Ther. Targets, 13(8), 909–924 (2009).
  • Pennington MW , ByrnesME, ZaydenbergIet al. Chemical synthesis and characterization of shk toxin: a potent potassium channel inhibitor from a sea anemone. Int. J. Pept. Protein Res. 46(5), 354–358 (1995).
  • Castañeda O , SotolongoV, AmorAMet al. Characterization of a potassium channel toxin from the caribbean sea anemone Stichodactyla helianthus. Toxicon 33, 603–613 (1995).
  • Wulff H , CalabresiPA, AllieRet al. The voltage-gated Kv1.3 K+ channel in effector memory T cells as new target for MS. J. Clin. Invest. 111(11), 1703–1713 (2003).
  • Kalman K , PenningtonMW, LaniganMDet al. Shk-dap22, a potent Kv1.3-specific immunosuppressive polypeptide. J. Biol. Chem. 273(49), 32697–32707 (1998).
  • Beeton C , WulffH, BarbariaJet al. Selective blockade of t lymphocyte K+ channels ameliorates experimental autoimmune encephalomyelitis, a model for multiple sclerosis. Proc. Natl Acad. Sci. USA 98(24), 13942–13947 (2001).
  • Pennington MW , BeetonC, GaleaCAet al. Engineering a stable and selective peptide blocker of the Kv1.3 channel in t lymphocytes. Mol. Pharmacol. 75(4), 762–773 (2009).
  • Press Release . Kineta acquires novel drug candidates from airmid for potential treatment of multiple sclerosis, Type 1 diabetes and other autoimmune diseases. Kineta, Inc., Seattle, Washington, USA, July2009.
  • Fusetani N , KemW. Marine toxins: an overview.Prog. Mol. Subcell Biol.46, 1–44 (2009).
  • Nakao Y , FusetaniN. Enzyme inhibitors from marine invertebrates.J. Nat. Prod.70(4), 689–710 (2007).
  • Röckel D , KornW, KohnAJ. Manual of the living conidae. Verlag Christa Hemmen, Wiesbaden, Germany (1995).
  • Duda J r TE, Palumbi SR. Gene expression and feeding ecology: evolution of piscivory in the venomous gastropod genus conus. Proc. Royal Soc. London271, 1165–1174 (2004).
  • Imperial J , SilvertonN, OliveraBMet al. Using chemistry to reconstruct evolution: on the origins of fish-hunting in venomous cone snails. Proc. Am. Phil. Soc. 151, 185–200 (2007).
  • Olivera BM . Conus venom peptides, receptor and ion channel targets and drug design: 50 million years of neuropharmacology. Mol. Biol. Cell8, 2101–2109 (1997).
  • Olivera BM , CruzLJ. Conotoxins, in retrospect.Toxicon39, 7–14 (2001).
  • Terlau H , ShonK, GrilleyM, StockerM, StühmerW, OliveraBM. Strategy for rapid immobilization of prey by a fish-hunting cone snail.Nature381, 148–151 (1996).
  • Hillyard DR , MonjeVD, MintzIMet al. A new conus peptide ligand for mammalian presynaptic Ca2+ channels. Neuron 9, 69–77 (1992).
  • Twede VD , MiljanichG, OliveraBM, BulajG. Neuroprotective and cardioprotective conopeptides: an emerging class of drug leads.Curr. Opin. Drug Discov. Devel.12(2), 231–239 (2009).
  • Sato K , IshidaY, WakamatsuKet al. Active site µ-conotoxin giiia, a peptide blocker of muscle sodium channels. J. Biol. Chem. 266, 16989–16991 (1991).
  • Barbier J , LamthanhH, Le Gall F et al. A δ-conotoxin from conus ermineus venom inhibits inactivation in vertebrate neuronal Na+ channels but not in skeletal and cardiac muscles. J. Biol. Chem.279, 4680–4685 (2004).
  • McIntosh JM , CruzLJ, HunkapillerMW, GrayWR, OliveraBM. Isolation and structure of a peptide toxin from the marine snail conus magus. Arch. Biochem. Biophys.218, 329–334 (1982).
  • Hopkins C , GrilleyM, MillerCet al. A new family of conus peptides targeted to the nicotinic acetylcholine receptor. J. Biol. Chem. 270, 22361–22367 (1995).
  • Zafaralla GC , RamiloC, GrayWR, KarlstromR, OliveraBM, CruzLJ. Phylogenetic specificity of cholinergic ligands: A-conotoxin s1.Biochemistry27, 7102–7105 (1988).
  • Myers RA , ZafarallaGC, GrayWR, AbbottJ, CruzLJ, OliveraBM. α-Conotoxins, small peptide probes of nicotinic acetylcholine receptors.Biochemistry30, 9370–9377 (1991).
  • Ramilo CA , ZafarallaGC, NadasdiLet al. Novel α- and ω-conotoxins from conus striatus venom. Biochemistry 31, 9919–9926 (1992).
  • Jacobsen R , YoshikamiD, EllisonMet al. Differential targeting of nicotinic acetylcholine receptors by novel α-conotoxins. J. Biol. Chem. 272, 22531–22537 (1997).
  • Shon K , KoerberSC, RivierJE, OliveraBM, McIntoshJM. Three-dimensional solution structure of α-conotoxin mii, an a3b2 neuronal nicotinic acetylcholine receptor-targeted ligand.Biochemistry36, 15693–15700 (1997).
  • Zhang MM , FiedlerB, GreenBRet al. Structural and functional diversities among mu-conotoxins targeting ttx-resistant sodium channels. Biochemistry 45(11), 3723–3732 (2006).
  • Shon K , OliveraBM, WatkinsMet al. µ-conotoxin piiia, a new peptide for discriminating among tetrodotoxin-sensitive Na channel subtypes. J. Neurosci. 18, 4473–4481 (1998).
  • Bulaj G , WestPJ, GarrettJEet al. Novel conotoxins from conus striatus and conus kinoshitai selectively block ttx-resistant sodium channels. Biochemistry 44, 7259–7265 (2005).
  • Leipold E , HanselA, OliveraBM, TerlauH, HeinemannSH. Synergistic voltage sensor trapping of sodium channels by d-conotoxins and scorpion a-toxins.FEBS Lett. (2005) (In Press).
  • Shon K , GrilleyMM, MarshMet al. Purification, characterization and cloning of the lockjaw peptide from conus purpurascens venom. Biochemistry 34, 4913–4918 (1995).
  • Bayrhuber M , VijayanV, FerberMet al. Conkunitzin-S1 is the first member of a new kunitz-type neurotoxin family. Structural and functional characterization. J. Biol. Chem. 280(25), 23766–23770 (2005).
  • Walker CS , JensenS, EllisonMet al. A novel conus snail polypeptide causes excitotoxicity by blocking desensitization of AMPA receptors. Curr. Biol. 19, 1–9 (2009).
  • Groebe DR , DummJM, LevitanES, AbramsonSN. α-Conotoxins selectively inhibit one of the two acetylcholine binding sites of nicotinic receptors.Mol. Pharmacol.48, 105–111 (1995).
  • Terlau H , OliveraBM. Conus venoms: a rich source of novel ion channel-targeted peptides. Physiol. Rev.84, 41–68 (2004).
  • Adams DJ , SmithAB, SchroederCI, YasudaT, LewisRJ. ω-conotoxin CVID inhibits a pharmacologically distinct voltage-sensitive calcium channel associated with transmitter release from preganglionic nerve terminals (PDB ID. 1TTK).J. Biol. Chem.278, 4057–4062 (2003).
  • Tudor JE , PallaghyPK, PenningtonMW, NortonRS. Solution structure of Shk toxin, a novel potassium channel inhibitor from a sea anemone (PDB ID. 1ROO).Nat. Struct. Biol.3, 317–320 (1996).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.